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Abstract GDF-15 is a novel distant member of the TGF-β
superfamily and is widely distributed in the brain and
peripheral nervous system. We have previously reported
that GDF-15 is a potent neurotrophic factor for lesioned
dopaminergic neurons in the substantia nigra, and that
GDF-15-deficient mice show progressive postnatal losses
of motor and sensory neurons. We have now investigated
the regulation of GDF-15 mRNA and immunoreactivity in

the murine hippocampal formation and selected cortical
areas following an ischemic lesion by occlusion of the
middle cerebral artery (MCAO). MCAO prominently
upregulates GDF-15 mRNA in the hippocampus and
parietal cortex at 3 h and 24 h after lesion. GDF-15
immunoreactivity, which is hardly detectable in the unle-
sioned brain, is drastically upregulated in neurons identified
by double-staining with NeuN. NeuN staining reveals that
most, if not all, neurons in the granular layer of the dentate
gyrus and pyramidal layers of the cornu ammonis become
GDF-15-immunoreactive. Moderate induction of GDF-15
immunoreactivity has been observed in a small number of
microglial cells identified by labeling with tomato lectin,
whereas astroglial cells remain GDF-15-negative after
MCAO. Comparative analysis of the size of the infarcted
area after MCAO in GDF-15 wild-type and knockout mice
has failed to reveal significant differences. Together, our
data substantiate the notion that GDF-15 is prominently
upregulated in the lesioned brain and might be involved in
orchestrating post-lesional responses other than the trophic
support of neurons.
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Introduction

Stroke is the third most common cause of death in
industrialized countries. Despite intense research efforts,
there is still no advisable therapy for most patients
(Kidwell et al. 2001; Schäbitz and Fisher 2006). Neuro-
trophins and growth factors with a capacity to promote the
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survival and regeneration of lesioned neurons have been
proposed as useful for the treatment of cerebral ischemia.
Their protective potential in ischemic lesions has been
shown in a variety of in vitro and animal model studies
(Kawamata et al. 1997; Ma et al. 2001; Schäbitz and
Fisher 2006; Schäbitz et al. 2001; Song et al. 2002;
Sugimori et al. 2001; Wagner et al. 1999). Even so, the
transfer of trophic molecules from the bench to the clinic
is still in its infancy, involves many still unresolved
problems, such as modes of delivery, and may include
unexpected draw-backs, as previously shown for fibro-
blast growth factor-2 (FGF-2; Bogousslavsky et al.
2002).

A major obstacle in the development of rational
therapies for stroke is the lack of a coherent understanding
of the primary and secondary molecular scenarios elicited
by the ischemic insult. This also applies to the still
incomplete picture of the lesion-mediated regulation of
growth factors; this is of particular importance in light of
the accumulating evidence for the multiple synergies and
contextual actions of many growth factors (cf. Peterziel et
al. 2002).

Growth/differentiation factor-15 (GDF-15) is a novel
member of the transforming growth factor (TGF)-β
superfamily and has been cloned and characterized in our
and several other laboratories (Böttner et al. 1999a, b;
Strelau et al. 2000b); it is identical to macrophage-
inhibitory cytokine-1 (MIC-1; Bauskin et al. 2000; Bootcov
et al. 1997; Fairlie et al. 1999), which is found in
macrophages, and to some other published sequences
(Hromas et al. 1997; Lawton et al. 1997; Yokoyama-
Kobayashi et al. 1997). GDF-15/MIC-1 is widely expressed
by many epithelia of exocrine glands, e.g., the prostate,
salivary, and mammary glands, in the placenta, airways,
liver, intestinal epithelia, and in the S3 segment of nephrons
(Böttner et al. 1999b). Its functions at these locations are
enigmatic. In macrophages, GDF-15/MIC-1 is induced by
proinflammatory cytokines such as tumor necrosis factor
(TNF)-α, interleukin (IL)-1β, and IL-6, but not by
interferon (IFN)-γ and lipopolysaccharide (Bootcov et al.
1997).

We have previously shown that GDF-15 is a potent
neurotrophic factor in vitro and in vivo for embryonic and
lesioned midbrain dopaminergic neurons (Strelau et al.
2000b). Analysis of the knockout has revealed progressive
postnatal losses of motoneurons in the hindbrain and spinal
cord, together with sensory neuron losses (Strelau et al.
2009). GDF-15 is dramatically upregulated in cryolesioned
cortical neurons (Schober et al. 2001) and has also been
shown to prevent the death of potassium-deprived cerebel-
lar granule neurons by activating Akt and inhibiting
constitutively active extracellular signal-regulated kinase
(Subramaniam et al. 2003).

We show now that GDF-15 is upregulated in hippocam-
pal and cortical neurons following the occlusion of the
middle cerebral artery (MCAO) in mice; this further
corroborates the notion that GDF-15 is a lesion-induced
factor. Comparative analysis of the size of the infarcted area
in GDF-15 wild-type and knockout mice has failed to
reveal significant differences suggesting that GDF-15 is
involved in orchestrating post-lesional responses other than
the trophic support of neurons.

Materials and methods

Surgical procedures for MCAO

Adult male C57BL/6 mice (25–35 g) were used throughout
this study. To induce a transient MCAO, mice were
anesthetized with 1% Halothane in 33% O2 and 66%
N2O. Rectal temperature was monitored continuously and
maintained at 37±0.5°C by external heating. For laser
Doppler measurements, the probe (P403; Perimed, Järfälla,
Sweden) was placed 3 mm lateral and 6 mm posterior to the
Bregma. Relative perfusion units were measured. The left
carotid region was exposed through a midline skin incision.
A 5-0 nylon suture (Ethilon, Norderstedt, Germany) with a
blunted tip was inserted into the external carotid artery and
advanced into the internal carotid until the laser Doppler
signal decreased considerably. The suture was removed
after 15 min unless indicated otherwise. In sham-operated
mice no suture was inserted. After 3 h up to 9 days of
reperfusion, mice were deeply anesthetized (Rompun/
Ketanest), and perfused brains were removed. The neuro-
logical status of the mice was assessed according to
Bederson et al. (1986). Contralateral motor deficits of the
upper limb were considered as an effect of MCAO. Infarct
volumes were determined after an occlusion time of
30 min. To measure the infarct size, we deeply reanesthe-
tized mice and perfused them intracardially with Ringer
solution at 24 h after surgery. The procedure for infarct
detection by silver staining of coronal cryosections,
quantification, and edema correction was as previously
described (Herrmann et al. 2005).

To induce permanent MCAO (Table 1), mice were
anesthetized by intraperitoneal injection of 150 μl 2.5%
tribromoethanol per 10 g body weight. The left MCA was
exposed through a burr hole and occluded by microbipolar
coagulation as described previously (Herrmann et al. 2005).
At 48 h after permanent MCAO, infarct volumes were
determined and corrected for brain edema as previously
described (Lin et al. 1993). All animal experiments were
performed in accordance with German animal rights
regulations and with permission of the Regierungspräsi-
dium Karlsruhe, Germany.
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Immunohistochemistry

A polycolonal antibody against a specific peptide
sequence (HRTDSGVSLQTYDDL) of the C-terminus
of the GDF-15 protein was raised in rabbit by Dr. J.
Pineda (FZB Biotechnik GmbH, Berlin, Germany) and
characterized as described (Schober et al. 2001). Coronal
paraffin-embedded sections (4 μm thickness) were stained
with this polyclonal antibody in phosphate-buffered saline
(PBS). A biotinylated secondary antibody against rabbit
IgG was detected by using streptavidin coupled to Cy-2
and Cy-3 (purchased from Vector Labs), respectively, as
indicated. Neurons were identified by staining with α-
neuron-specific nuclear protein (α-NeuN; Santa Cruz,
USA), GFAP+-astrocytes by staining for glial fibrillary
acidic protein (GFAP; Sigma, Germany), and microglial
cells by staining with tomato lectin (Sigma). Sections were
counterstained with the nuclear dye 4,6-diamidino-2-
phenylindole (DAPI; Sigma).

In situ hybridization

Mice were perfused with saline followed by 4%
paraformaldehyde (PFA). Brains were removed, postfixed
overnight at 4°C, and then placed in 30% sucrose for
cryoprotection, prior to being frozen on dry ice.
Cryosections (20 μm) were cut on a cryostat and
mounted on Superfrost slides. Non-radioactive in situ
hybridization on cryosections and the preparation of
digoxigenin-labeled probes for mouse GDF-15 were

carried out as previously described (Ernsberger et al.
1997). Mouse GDF-15 (bp: 713-1392, accession code
AF159571) was cloned from adult mouse brain cDNA by
the polymerase chain reaction (PCR) by using a pGEMT
vector system (Promega) following the manufacturer’s
instructions. The plasmid was appropriately linearized and
transcribed with SP6 and T7 for the antisense probe and
sense control, respectively.

Reverse transcription with PCR

Ischemic brain tissue consisting of the ipsilateral hippo-
campal formation and thalamus and the ipsilateral
ischemic cortex (all between Bregma +0.1 mm and
−2.8 mm) were prepared from saline-perfused brains
and immediately frozen on dry ice. Tissue was homog-
enized under liquid nitrogen, and RNA was extracted
with Tri-Fast (PeqLab, Germany). Synthesis of cDNA
was performed with 1 μg total RNA, reverse transcrip-
tase from Moloney murine leukemia virus, and oligo-
dT18 (all purchased from New England Labs, Germany).
For qualitative PCR, equal amounts of cDNAwere used in
a group of PCRs with a set of primers to amplify β-actin
(5′-primer: 5′-TCAT GAAGTGTGACGTTGACATCCGT-
3′ 3′-primer: 5′-CCTA GAAGCATTTGCGGTGCAC-
GATG-3′) as a house-keeping-gene and a set of primers
to amplify GDF-15 (5′-primer: 5′-CCGAGAGGACTC-
GAACTCAG - 3 ′ 3 ′ - p r i m e r : 5 ′ - TAAGAAC -
CACCGGGGTGTAG-3′). For quantitative PCR, serial
dilutions of cDNA were amplified in parallel with primers

Fig. 1 Growth/differentiation factor-15 (GDF-15) is prominently
upregulated in the ipsilateral hippocampal formation and parietal
cortex following transient occlusion of the middle cerebral artery
(MCAO). a Upregulation of GDF-15 mRNA relative to β-actin in the
ipsilateral hippocampal formation at 3 h after MCAO and sham
surgery, respectively. b Quantification of GDF-15 mRNA relative to
the housekeeping gene cyclophilin (set as 100%) reveals a progressive

increase in the parietal cortex and hippocampus at 3 and 24 h,
respectively. Parietal cortex: sham control, 57.06±1.35%; 3 h reperfu-
sion, 62.4±1.55%; 24 h reperfusion 66.4±1.80%. Hippocampus: sham
control, 58.0±1.45%; 3 h reperfusion, 60.94±1.23%; 24 h reperfusion,
63.69±1.78%. *P<0.05, **P<0.01 vs. control, respectively). The
means ± SEM of three independent experiments are shown
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f o r c y c l o p h i l i n ( 5 ′ - p r im e r : 5 ′ -ACCCCACC
GTGTTCTTCGAC-3′; 3′-primer: 5′-CATTTGCCATGGA
CAAGATG-3′) as internal standards and GDF-15 (5′-
primer: 5′-GGCTGCATGCCAACCA-3′; 3′-primer: 5′-

TCTCA CCTCTGGACTGAGTATTCC-3′) with the
SYBR-Green-Kit (PE Biosystems, Germany) in a
GeneAmp-Cycler equipped with GeneAmp 5700SDS
software.

Fig. 2 GDF-15 mRNA revealed by in situ hybridization is increased
in the hippocampal formation and retrosplenial/motor cortex of the
ipsilateral hemisphere following transient occlusion of the middle
cerebral artery (MCAO). a, b Comparison of the hippocampal
formation of the contralateral (contra) and ipsilateral (ipsi) hemisphere
reveals a substantial increase in GDF-15 mRNA signals on the
MCAO-lesioned side at 3 h after reperfusion. c–f Higher magnifica-

tions of the dentate gyrus (DG) illustrating that GDF-15 is sparse, if
detectable, in sham-operated animals (c, d) and contralateral to the
lesion (e) but is robustly induced in granule cells at 3 h on the
ipsilateral side (f). GDF-15 mRNA is also distinctly increased in the
CA1 (g, h) and CA3 (k, l) regions and in the retrosplenial/motor
cortex (PC piriform cortex) on the side ipsilateral to the lesion (i, j).
Bars 200 μm (a, b), 50 μm (c–h), 25 μm (k, l)
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Results

GDF-15 is upregulated in the ischemic core following
transient MCAO

As a variety of TGF-β superfamily members have been
shown to be prominently upregulated following neural
lesions (cf. Kiefer et al. 1995), and as GDF-15 has been
shown to be upregulated in neurons following a cryole-
sion of the rat cortex (Schober et al. 2001), we first
explored the putative regulation of GDF-15 after tran-
sient MCAO by reverse transcription with PCR (RT-
PCR). As shown in Fig. 1a, GDF-15 mRNA was
prominently upregulated in the ipsilateral hippocampal
formation by 3 h after MCAO, whereas in sham-operated
mice, GDF-15 was expressed at levels comparable with
control mice. Figure 1b shows the clear and time-
dependent progressive increase of GDF-15 transcripts in
the parietal cortex and hippocampus ipsilateral to the
lesion after 3 h and 24 h, respectively. At 48 h after
cerebral ischemia, GDF-15 mRNA was significantly
decreased (data not shown).

GDF-15 mRNA is increased in the hippocampal formation
and retrosplenial/motor cortex of the ipsilateral hemisphere
as early as 3 h post-MCAO

We next analyzed the cellular distribution of GDF-15
mRNA following transient MCAO. Figure 2 shows the
hippocampus contralateral (Fig. 2a) and ipsilateral (Fig. 2b)
to the ischemic lesion at 3 h after re-perfusion. At this time
point, GDF-15 mRNAwas not detectable on the non-ischemic
side corroborating our previous findings (cf. Schober et al.
2001; Strelau et al. 2000a) showing that unlesioned adult
neurons express low or undetectable levels of GDF-15
mRNA. On the ipsilateral side, a majority of cells within the
band of pyramidal neurons in the CA1 through CA3 regions
and the majority of cells in the dentate gyrus (DG) expressed
detectable amounts of GDF-15 mRNA. This is illustrated at
higher magnification in Fig. 2c–f showing that GDF-15
mRNA is only sporadically observed or is absent from
granule cells in the DG in sham-operated animals (Fig. 2c, d)
and contralateral to the lesion (Fig. 2e) but is robustly induced
in numerous granule cells at 3 h on the ipsilateral side
(Fig. 2f). Similarly, GDF-15 mRNA was distinctly increased

Fig. 3 Transient MCAO raises levels of GDF-15 immunoreactivity
(GDF-15-ir) in the DG. a, b Increased GDF-15 immunoreactivity in
the ischemic DG at 24 h (a), as compared with the contralateral side
(b), which hardly reveals any GDF-15 immunoreactivity. Inset in a
Representation of the brain area studied showing the region (small
boxed area) viewed in a (DG dentate gyrus). c Higher magnification
of large boxed area in a. GDF-15 immunoreactivity is observed in

nearly all cells in the ischemic DG. e Overlay with the nuclear dye
DAPI (Dapi) reveals that about 90% of all detectable cells in the DG
show GDF-15 immunoreactivity by 24 h after MCAO. d, f In the non-
ischemic contralateral DG, no or sporadic immunostaining for GDF-
15 can be seen. d Higher magnification of boxed area in b. Bars
200 μm (a, b), 100 μm (c–f)
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in neurons of the CA1 and CA3 region, illustrated for the 24 h
time point in Fig. 2g, h, k, l. As shown in Fig. 2i, j, cells in the
retrosplenial/motor cortex, viz., layer II/III ipsilateral to the
lesion, also upregulated GDF-15 mRNA. Generally, the
induction of GDF-15 mRNA was still evident at 48 h after
the ischemic insult, although levels seemed to be substantially
decreased as compared with those at 24 h (not shown).
Together, these data suggest that transient MCAO elicits a
rapid and significant increase in GDF-15 mRNA expression
in two representative areas of the forebrain, viz., the
hippocampal formation and retrosplenial/motor cortex.

GDF-15 immunoreactivity is increased in the hippocampus
and cerebral cortex of the ipsilateral hemisphere following
transient MCAO

Next, we investigated whether the increase in GDF-15 mRNA
was followed by an increase in GDF-15 protein, detected
through GDF-15 immunoreactivity. Figure 3a demonstrates
GDF-15 immunoreactivity in cells of the DG on the lesioned
side by 24 h after reperfusion. In confirmation of previous
results that had failed to demonstrate detectable levels of
GDF-15 immunoreactivity in unlesioned neurons (Schober et
al. 2001; Strelau et al. 2000a), GDF-15 immunoreactivity in

the contralateral DG was below detectability. To obtain more
information related to the proportion of GDF-15-
immunoreactive cells, we performed double-staining for
GDF-15 protein and DAPI. As shown in Fig. 3c, e for the
ipsilateral DG and in Fig. 3d, f for the contralateral DG, most
cells in the DG ipsilateral to the transient MCAO were
positive for GDF-15 protein within 24 h after reperfusion,
whereas GDF-15 immunoreactivity was virtually absent on
the contralateral side. Figure 4 reveals that, in addition to
occurring in the DG (Fig. 4a), GDF-15 immunoreactivity was
also induced in the ipsilateral piriform cortex (Fig. 4c) and the
hippocampal CA2 region (Fig. 4e) by 24 h after reperfusion.
The corresponding contralateral sides exhibited only scarce
GDF-15 immunostaining. By 48 h, GDF-15 immunoreactivity
was clearly decreased and had become undetectable after
9 days (not shown). We therefore conclude that MCAO-
mediated changes in GDF-15 expression levels imply the
induction of both mRNA and protein.

GDF-15 is predominantly expressed by neurons subsequent
to MCAO

We next aimed at identifying the types of neural cells exhibiting
elevated levels of GDF-15 after transient MCAO by using

Fig. 4 As in the DG (a, b), GDF-15 immunoreactivity (GDF-15-ir) is
also increased in the piriform cortex (c, d) and CA2 region (e, f) at 24
h subsequent to transient MCAO. In the non-lesioned hemisphere,

only a few cells (arrowheads) display GDF-15 immunoreactivity (b,
d, f). Bars 100 μm
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markers specific for neurons (NeuN), astroglia (GFAP),
and microglia (tomato lectin). Figure 5 shows GDF-15
(Fig. 5a, d) and NeuN (Fig. 5b, e) immunoreactivity
together with DAPI staining (Fig. 5c, f, g) and respective
merged images (Fig. 5c, g) in the DG (Fig. 5a–c) and CA3
(Fig. 5d–g) region on the side ipsilateral to the ischemic
lesion at 24 h after re-perfusion. Clearly, most if not all
NeuN-positive cells are also positive for GDF-15 suggest-
ing that a significant proportion of GDF-15 is apparently

localized in neurons. As shown in Fig. 6a–d, GDF-15
immunoreactivity is apparently not associated with GFAP-
positive astrocytes. Labeling with tomato lectin as a
marker for macrophages/microglial cells (Fig. 6e–h)
revealed occasional cells that were double-labeled with
tomato lectin and for GDF-15. Together, these data
corroborate the notion that neurons are a predominant site
of GDF-15 upregulation following an ischemic lesion.

Comparison in GDF-15 wild-type and knockout mice fails
to reveal significant differences in the size of the infarcted
area following transient or permanent MCAO

To evaluate the effect of GDF-15 on the lesion size, we
subjected GDF-15 knockout mice and wild-type controls to
a transient 30-min MCAO and measured the neurological
deficit and the infarct size at 24 h after MCAO. The
genotypes differed neither in the infarct size nor in the
neurological deficit (Table 1). Moreover, in a model of
permanent MCAO, which leads to predominantly cortical
infarcts, the infarct size was unaffected by the GDF-15
deficiency (Table 1).

Fig. 5 GDF-15 immunoreactivity (GDF-15-ir) is predominantly
found in neurons subsequent to transient MCAO as revealed by
NeuN co-labeling. DG (a–c), CA3 (d–g). Insets in b, d Representa-

tions of brain regions studied (boxed areas regions shown in
micrographs). Bars 200 μm (a–c), 100 μm (d–g)

Table 1 Infarct volumes in growth/differentiation factor-15 knockout
(GDF-15 ko) and wild-type control mice. No statistically significant
difference was noted between the genotypes (t-test). The transient
occlusion of the middle cerebral artery (MCAO) lasted 30 min. Values
are expressed as means ± SEM

Measured parameter Wild-type controls GDF-15 ko mice

Transient MCAO

Neuroscore 1.1±0.6 1.4±0.6

Infarct volume (mm³) 16.9±1.8 (n=7) 15.6±0.6 (n=6)

Permanent MCAO

Infarct volume (mm³) 17.9±3.0 (n=5) 18.8±5.4 (n=5)
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Discussion

The results of the present study allowGDF-15, a novel member
of the TGF-β superfamily, to be added to the list of growth
factors and cytokines that play a role in ischemic brain lesion
(Buisson et al. 2003; Harvey et al. 2005; Lykissas et al. 2007;
Wu 2005). GDF-15 was discovered in our laboratory by
searching expressed sequence tag databases for conserved
structural hallmarks of TGF-βs (Böttner et al. 1999a, 1999b).
Independently, the gene was also cloned by several other
groups in the search for genes involved in (1) macrophage
activation (MIC-1; Bootcov et al. 1997; Fairlie et al. 1999),
(2) placental functions (placental bone morphogenetic protein;
Hromas et al. 1997), and (3) anti-inflammatory functions
(non-steroidal anti-inflammatory drug activated gene 1; Baek
et al. 2001). The rat, mouse, and human genes of GDF-15 that
we have isolated by screening of genomic libraries are all
composed of two exons and contain a single intron that
interrupts the coding sequences at identical positions within
the prepro-domain of the corresponding proteins. The
predicted proteins contain the structural hallmarks of members
of the TGF-β superfamily, including the seven conserved
carboxy-terminal cysteine residues that form the cystine knot.
GDF-15 is synthesized as a large precursor molecule, which is
cleaved to yield the biologically active mature protein.
Expression of the proteases involved has not been studied in

sufficient detail. The orthologous molecules show the lowest
sequence conservation of all members of the TGF-β
superfamily (Böttner et al. 1999b).

Most groups studying GDF-15 have focused on its putative
functions in various pathologies and cancer. These include
such diverse roles as, e.g., GDF-15 as a biomarker for p53
pathway activation (Yang et al. 2003), serum concentrations
of GDF-15 as a predictor of miscarriage (Tong et al. 2004),
its identification as a novel downstream target of the AKT/
GSK-3beta pathway (Yamaguchi et al. 2004), and its pro-
apoptotic role in prostate cancer cells (Liu et al. 2003) and
many other cancer cell types. With well over 300 publica-
tions on GDF-15 (medline: gdf15 or gdf-15) to date, the lack
of any in-depth analyses of its physiological functions in
cell-biological contexts and in organs in which it is highly
and specifically expressed and localized is surprising.
Interestingly, in the context of our present study, two
companion articles (Kempf et al. 2006; Xu et al. 2006) have
reported that GDF-15 is a cardioprotective factor that is
rapidly upregulated in cardiomyocytes on ischemia/reperfu-
sion and during other cardiovascular events triggering
oxidative stress, including pressure overload, heart failure,
and atherosclerosis. Together with our data on the regulation
of GDF-15 in brain lesions, this suggests that GDF-15 can
act as a lesion-induced factor in other systems that counteract
the consequences of lesioning. The receptor(s) for GDF-15 is

Fig. 6 GDF-15 in astroglial and microglial cells. Transient MCAO
(isc. ischemia) did not induce GDF-15 immunoreactivity (GDF-15-ir)
in astrocytes labeled with an antibody to glial fibrillary acidic protein
(GFAP; a–d) but did induce GDF-15 immunoreactivity in scattered

microglial cells labeled with tomato lectin (e–h; arrows, arrowheads).
Inset in a Representation of the region studied in a–h (boxed area).
Bars 25 μm (a–d), 20 μm (g), 10 μm (e, f, h)
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unknown and possibly not a member of the TGF-β and glial-
cell-derived neurotrophic factor (GDNF) receptor families.

Although GDF-15 is widely and prominently expressed
in many injured organs and exocrine glands, in liver, lung,
placenta, and kidney, (cf. Böttner et al. 1999a), its levels of
expression in the adult rat and mouse central nervous
system (CNS) are relatively low (Schober et al. 2001;
Strelau et al. 2000b). The site with the highest expression
level is the choroid plexus, from which GDF-15 is secreted
into the cerebrospinal fluid. Although GDF-15 mRNA and
protein can be detected by RT-PCR and immunoblotting in
every region of the unlesioned brain studied (Strelau et al.
2000b), expression levels are apparently below detectability
by in situ hybridisation and immunohistochemistry. How-
ever, in the neonatal brain, GDF-15 can be found outside
the choroid plexus, in the ventricular and subventricular
layers of the striatum (Schober et al. 2001).

Brain lesions profoundly alter GDF-15 expression. This
has been documented in a previous study in which we have
investigated the regulation of GDF-15 mRNA and protein
following cryolesion of the rat cortex (Schober et al. 2001).
Since GDF-15 is highly expressed by macrophages (Fairlie
et al. 1999; Schlittenhardt et al. 2004), a rise in expression
was primarily expected for microglial cells. Interestingly,
this was not the case, and neurons close to the lesion site,
but also neurons presumably projecting to the lesioned area,
were identified as the predominant site of the observed rise
in GDF-15 mRNA and protein following the cryolesion
(Schober et al. 2001).

The present study, which involves the use of an entirely
unrelated CNS lesion paradigm, further supports the notion that
neurons, rather than microglia, are the predominant site of the
upregulation of GDF-15 subsequent to lesion. The significance
of this upregulation is enigmatic as yet but might be sought in
relation to a role in rescuing neurons or in executing cell death.
Several members of the TGF-β family, but also non-TGF-βs,
have been implicated in performing dual roles in activating
survival and death pathways in neurons, depending on the
activation of specific sets of receptors and the contextual
presence of other growth factors. For example, TGF-β can not
only promote the survival of midbrain dopaminergic neurons in
vitro and in vivo (Farkas et al. 2003; Krieglstein et al. 1995), but
also, when neutralized in vivo, prevent programmed neuron
death suggesting a pro-apoptotic function (Krieglstein et al.
2000). This also applies to GDF-15, for which anti- and
proapoptic roles have been described (Baek et al. 2001; Liu et
al. 2003; Strelau et al. 2000b; Subramaniam et al. 2003). TGF-
β is well established as requiring additional factors for its
neurotrophic actions, such as FGF-2 (Krieglstein et al. 1998c),
GDNF (Krieglstein et al. 1998b; Schober et al. 1999, 2007),
ciliary neurotrophic factor and neurotrophins (Krieglstein et al.
1998a). Whether this also applies to its pro-apoptotic roles is
not known. With regard to GDF-15, any putative synergisti-

cally acting molecules, if required, still need to be identified.
The molecular basis of the synergy of TGF-β with GDNF has
been elucidated in greater detail. TGF-β apparently has the
capacity to increase the insertion of a lipid-anchored co-
receptor of GDNF, viz., GFRα1, into the plasma membrane
(Peterziel et al. 2002, 2007), thereby enabling GDNF to
activate its compound receptor GFRα1 and c-ret. Whether
similar mechanisms are also activated by GDF-15 as a putative
synergistic partner remain to be investigated. Thus, as shown
in the present study, the expression of GDF-15 elicited in
lesioned neurons is not overtly indicative of their protection or
of the activation of death pathways. Although the infarct size
in the GDF-15 knockout mice is not clearly different from that
in GDF-15 wild-type mice, future studies using GDF-15
deficient mice (Strelau et al. 2009) can be expected to assign
more detailed roles to GDF-15 in the orchestration of
responses to brain lesions, possibly with prospects for using
it as a target for therapeutic strategies.
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