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Combustible Cigarette and Smokeless Tobacco Product
Preparations Differentially Regulate Intracellular
Calcium Mobilization in HL.60 Cells

S. Arimilli,' P. Makena®,>” and G.L. Prasad®

Abstract— Changes in the level of intracellular calcium ([Ca?*];) are central to leukocyte
signaling and immune response. Although evidence suggests that cigarette smoking affects
inflammatory response via an increase in intracellular calcium, it remains unclear if the use of
smokeless tobacco (e.g., moist snuff) elicits a similar response. In this study, we evaluated the
effects of tobacco product preparations (TPPs), including total particulate matter (TPM) from
3R4F reference cigarettes, smokeless tobacco extract (STE) from 2S3 reference moist snuff,
and nicotine alone on Ca>* mobilization in HL60 cells. Treatment with TPM, but not STE or
nicotine alone, significantly increased [Ca®*]; in a concentration-dependent manner in HL60
cells. Moreover, TPM-induced [Ca®*]; increase was not related to extracellular Ca>* and did
not require the activation of the IP3 pathway nor involved the transient receptor potential
(TRP) channels. Our findings indicate that, in cells having either intact or depleted endoplas-
mic reticulum (ER) Ca** stores, TPM-mediated [Ca®*]; increase involves cytosolic Ca**
pools other than thapsigargin-sensitive ER Ca”* stores. These results, for the first time,
demonstrate that TPM triggers [Ca”*]; increases, while significantly higher nicotine
equivalent doses of STE or nicotine alone, did not affect [Ca**]; under the experimental
conditions. In summary, our study suggests that in contrast with STE or nicotine preparations,
TPM activates Ca®* signaling pathways in HL60 cells. The differential effect of combustible
and non-combustible TPPs on Ca®* mobilization could be a useful in vitro endpoint for
tobacco product evaluation.
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INTRODUCTION

Chronic smoking is associated with the onset of chronic
obstructive pulmonary disease and is a major risk factor for
lung cancer and cardiovascular disease [1-5]. Combustible
tobacco smoke is a complex mixture of several thousands of
chemicals, some of which have been reported to exhibit
oxidant, proinflammatory, cytotoxic, mutagenic, carcinogen-
ic, and/or antigenic properties [6—12].

A number of studies have reported that the use of
smokeless tobacco (ST) products is associated with a re-
duced risk of adverse health effects compared with com-
bustible cigarette smoking [13—17]. For cigarette smokers
who are unwilling or unable to quit tobacco product use,
reducing exposure to potentially harmful cigarette smoke
constituents by switching to alternative tobacco products
might lower health risks. This concept is the basis of the
tobacco harm reduction principle and relies on the exis-
tence of a risk continuum across a range of tobacco prod-
ucts, with combustible cigarettes being considered the
most harmful tobacco product [14, 18]. We have previous-
ly assessed the effects of combustible and non-combustible
tobacco product preparations (TPPs) on several functional
endpoints in several cell types. For example, we have
shown differential effects of combustible and non-
combustible TPPs on DNA damage in oral cavity cells
[19], regulation of gene expression in cultured human
dermal fibroblasts [20], and immune cell function in NK
and T cells [21]. Thus, a better understanding of the effects
of the tobacco products will aid in developing rapid and
functionally relevant tools for tobacco product evaluation.

Chronic smoking impacts several key immune func-
tions, including adaptive and innate immune functions
[22-25]. Additionally, smokeless tobacco use is also re-
ported to be associated with immune dysfunction, includ-
ing the dysregulation of immune cells and their compo-
nents [26]. Our previous findings have consistently dem-
onstrated that combustible TPPs induce more potent effects
on leukocyte functions compared with non-combustible
preparations [21, 27].

One of the key molecular events of leukocyte signal-
ing and regulation of immune responses is an increase in
intracellular calcium [Ca2+]i, which, in turn, activates
diverse signal transduction pathways involved in
regulating cell function. Two major mechanisms
contribute to the elevation of [Ca®*]; are: (1) store-
operated calcium entry (SOCE) from intracellular pools,
including the endoplasmic reticulum (ER), mitochondria,
and lysosomes and (2) receptor-operated calcium entry
(ROCE) of extracellular Ca>*. Both processes often occur
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either simultaneously or sequentially. Additionally, in
many excitable cell types, entry of Ca®* through transient
receptor potential (TRP) channels can be activated by
membrane depolarization [28]. Extracellular calcium mo-
bilization may be triggered by a variety of processes,
including direct and indirect activation of cell surface re-
ceptors by mechanical, electrical, and chemical stimuli
[29-31].

The most common mechanism of voltage-
independent Ca”* signaling involves receptor-mediated
activation of phospholipase C (PLC). Activated PLC re-
leases inositol 1,4,5-trisphosphate (IP3), which in turn
induces the release of Ca®* from intracellular stores
(components of the ER) into the cytosol. In non-excitable
cells, the most commonly observed mechanism of regulat-
ed Ca”" entry is a process known as capacitative Ca** entry
through store-operated Ca®* channels (SOC). Via this
process, the depletion of intracellular stores, due to the
action of IP3 or other Ca®* releasing signals, activates a
mechanism that opens plasma membrane Ca’>* ion
channels known as calcium release-activated channels
(CRAC) to replenish ER Ca’" levels [32, 33]. Canonical
TRP channels have also been reported to facilitate an
increase in intracellular Ca?* concentrations either
directly, through coupled plasma membrane receptor
stimulation, or through store depletion in different cell
types [34-36]. In addition, there are many other non-
store-operated routes of Ca®* entry and modulators of
lymphocyte cytosolic Ca** concentration [37-40].

In this study, we evaluated the effects of tobacco
product TPM and smokeless tobacco extract (STE) from
reference tobacco products as well as nicotine alone, on
[Ca®*]; in human leukemia HL60 cells. The objective of
this study was to evaluate if combustible TPM
differentially induces [Ca”*]; compared with STE and
nicotine alone. We performed a series of experiments to
investigate whether (1) [Ca®*]; induced by combustible
TPM or STE was mediated through SOCE and/or ROCE
and (2) the role of IP3 receptors and TRP channels using
pharmacological inhibitors to better understand the effect
of the TPPs on intracellular Ca®* mobilization.

MATERIALS AND METHODS

Cell Culture

HL60 cells were purchased from the American Type
Culture Collection (Manassas, VA) and grown in suspen-
sion in RPMI complete medium containing L-glutamine
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and penicillin/streptomycin and supplemented with 10%
fetal bovine serum in the presence of 5% CO,.

Tobacco Product Preparations

As described previously [21], total particulate matter
(TPM) was prepared by smoking 3R4F reference cigarettes
(University of Kentucky) using the standard ISO method
(35-mL puff volume, 60-s inter puff interval, and 2-s puff
duration) and dissolving the particulate phase in DMSO.
Smokeless tobacco extract was prepared by adding 10 g
smokeless tobacco reference product, 2S3 (University of
Kentucky), into 200 mL 10 mM phosphate buffer solution.
The mixture was placed in an incubating shaker set to
37 °C at 250 rpm for 2 h. The STE was centrifuged at
room temperature for 15 min at 3000 rpm. Decanted liquid
supernatant was filtered through a sterile 1.6-pum glass fiber
filter and then filtered through a sterile 0.22-um cellulose
acetate filter. Osmolarity of the final extract was measured
and aliquots were stored at <—70 °C. Neat nicotine
(Sigma-Aldrich, Milwaukee, WI) was used as a reference.
Aliquots of frozen TPPs were analyzed for nicotine at
Labstat International ULC (Kitchener, Ontario, Canada).

Chemical Analysis

Aliquots of frozen TPM and STE were analyzed to
determine the levels of nicotine; final nicotine content of
the TPPs was used for calculating the exposure of cells.
This allowed for exposures to be conducted on relative
nicotine levels or equi-nicotine units. To compare the ef-
fects of in vitro exposure to TPM and STE, we used equi-
nicotine units, expressed in micrograms per milliliter, as a
common measure of exposure to the different TPPs [21].

Fluo-3AM Labeling

In order to measure the changes in [Ca’*];
concentration, cells were loaded with Fluo-3AM (Thermo
Fisher, Waltham, MA) calcium indicator dye. A Fluo-3AM
stock solution of 1.25 mM was prepared in DMSO. Con-
trol and treated cells were pelleted and washed in warm
MACS running Buffer (Miltenyi Biotec) at a density of 1 x
10° cells/mL. A 4.4 uM working solution of Fluo-3AM
was prepared in warm MACS running Buffer and added to
the pelleted cells and incubated at 37 °C for 30 min. Cells
were washed three times with warm MACS running buffer
and resuspended in 400 pL of 1 mM EGTA solution made
with MACS running buffer to provide Ca®* free cell
suspension. The cell suspensions were then transferred to

cluster tubes for acquisition on the flow cytometer (BD
Biosciences, San Jose, CA).

Flow Cytometry Acquisition on BD FACSCalibur and
Analysis

Phorbol 12-myristate 13-acetate (PMA), ionomycin,
and thapsigargin were purchased from Sigma-Aldrich.
PMA stock solution of 1 mg/mL was prepared in DMSO
and diluted to a working concentration of 60 ng/mL in
RPMI complete media. Ionomycin stock solution of 1 mg/
mL was made using DMSO and diluted to a working
concentration of 600 ng/ml in RPMI complete medium.
A stock solution of 0.5 g/mL (769 mM) thapsigargin was
made with DMSO and used at a working concentration of
5 uM. A stock solution of 1 M CaCl, was made in distilled
water and used at 0.5 mM working concentration. Ruthe-
nium red (Ru) and SKF-96365 (SK), TRP channel inhib-
itors, were purchased from Sigma-Aldrich and used at
10 uM working concentration along with the Fluo-3AM
labeling as well as during the acquisition. With the
cytometer running on low, the fluorescence signals from
cell samples were acquired following stimulation at
488 nm wavelength. Basal Fluo-3 fluorescence was deter-
mined by an initial measurement at 60 s and subsequently
either PMA/ionomycin, or thapsigargin (TG), or the indi-
cated equi-nicotine concentrations of TPPs were added to
the cell suspension for additional 4-min acquisitions. TPPs
or thapsigargin and CaCl, were then further added, as
indicated, and data were acquired for an additional 3 min.
As indicated in some experiments, CaCl, was added to the
samples at 7 min and the fluorescence signal was recorded
for an additional 3 min on the flow cytometer. Data were
analyzed offline using FlowJo software (Tree Star, version
9.3.1).

Area Under the Curve Calculation

The area under the curve (AUC) of all the florescence
signals was calculated using the FlowJo software. Using a
new workspace, all files from one experiment were select-
ed as samples. Using the kinetics platform, the final kinetic
graph was obtained using the mean Yvalue of all the traces
selected followed by a Gaussian smoothing. Time slices
were then made as follows: 0-60 s, 75-240 s, 255-420 s,
and 435-600 s. The AUC was calculated for each time
slice after subtraction of the baseline Y value (0—60 s time
slice) for normalization. All areas belonging to a certain
time slice and experimental procedure were then averaged
and further analyzed statistically.



1644

Statistical Analysis

All the results are presented as mean + standard
deviation of the mean AUC (N =3 or 4). Results obtained
after TPM and STE exposure were statistically compared
with their corresponding controls, DMSO and PB respec-
tively, using the ¢ tests. The statistical significance was
indicated by *p < 0.05.

RESULTS

In this study, we evaluated intracellular calcium mo-
bilization in HL60 cells following exposure to different
concentrations of TPM, STE, and nicotine alone. We
sought to evaluate whether these test materials were able
to induce intracellular and/or extracellular calcium mobili-
zation by SOCE and/or ROCE, and quantitatively compare
their impacts.

Effect of TPPs on [Ca®'];

In the first set of experiments, we measured [Ca®*]; in
Fluo-3AM-labeled HL60 cells following exposure to
TPM, STE, and nicotine alone. HL60 cells were initially
loaded with Fluo-3AM dye and suspended in Ca** free
media. Then, the calcium indicator-loaded cells were ex-
posed to several doses of equi-nicotine units of TPM (1, 5,
10, and 20 ug/mL, Fig. 1a, b), STE (100, 150, 200, and
250 ng/mL, Fig. 1a, c), or nicotine (0, 10, 50, and 100 pg/
mL, Fig. 1a, d). The response to PMA and ionomicyn
(PMA/Iono), agonists of SOCE and ROCE, respectively,
was used as a positive control. DMSO and phosphate
buffer (PB) were used as negative controls (0 pg/mL) for
TPM and STE treatments, respectively (Fig. la—d).

The exposure of HL60 cells to TPM induced a
concentration-dependent and statistically significant in-
crease in [Ca®*]; (Fig. la, b) at all tested concentrations
compared with the DMSO vehicle control (p <0.05). In
contrast, treatment with STE induced a concentration-de-
pendent, though modest but statistically non-significant,
increase in [Ca®*]; compared with the PB vehicle control
(Fig. 1a). Application of nicotine alone, regardless of the
concentrations tested, had no effect on [Ca**]; (Fig. 1a, d).
These data suggest that TPM was able to induce [Ca®*]; at
lower equi-nicotine units in comparison with STE.

Effect of TPPs on Extracellular Ca?" Influx

To assess whether the TPM-induced increase in
[Ca®*]; is due to extracellular Ca®* influx, we investigated
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the effect of TPM exposure in cells with intact ER stores
and with Ca”* supplemented extracellularly. During the
experiment, a single concentration of CaCl, was added to
the cells following TPM or STE treatment. Under these
experimental conditions, TPM induced a dose-dependent
increase in [Ca®*];, similar to the [Ca®*]; evoked in the
absence of extracellular CaCl, (Fig. 2). Notably, the
increase in Ca”* flux at a high dose of TPM (20 pg/mL)
was significantly larger than the increase at the low 1 ug/
mL dose or control. Thus, while the [Ca**]; increase was
slightly greater in the presence of extracellular CaCl, at all
treatments compared with absence of externally provided
calcium, the difference was not statistically significant,
indicating that TPM did not mobilize significant
extracellular Ca** when intracellular ER stores were
available. In contrast to the effects of CaCl, following
TPM exposure, addition of extracellular CaCl, following
exposure to different concentrations of STE (Fig. 2) had no
significant effect on Ca®* flux.

Effect of ER Store Depletion on TPP-Induced [Ca*'];

In lymphocytes and polymorphonuclear leukocytes,
most of the intracellular calcium is stored within the ER.
The intracellular calcium concentration is therefore mainly
regulated by calcium release from the ER via IP3-sensitive
receptors, and its subsequent re-uptake into the ER by a
calcium pump called sarco(endo)plasmic reticulum calci-
um ATPase (SERCA). In order to determine the role of ER
Ca”* stores on the TPM-induced increase in [Ca*];, we
depleted ER Ca®* stores using the SERCA inhibitor TG
[41,42]. We hypothesized that if the TPM- or STE-induced
increase in [Ca®*]; required ER calcium stores, their
depletion by TG would impact the magnitude of the
response from the test materials on [Ca®*].

We exposed Fluo-3AM-labeled HL60 cells in
Ca®" free media to TG (5 uM), preceding the
application of TPM (5, 10, and 20 pug/mL) or STE
(100, 200 and 250 pg/mL). To further test whether
the TG-induced depletion of intracellular stores could
trigger a capacitative Ca”* entry through the plasma
membrane, we continued the experiment by adding
CaCl, (0.5 mM) to the extracellular media, providing
an extracellular calcium source to the cells.

Exposure to TPM for 4 min after TG treatment
significantly increased [Ca®*]; in a dose-dependent
manner compared with the DMSO vehicle control
(»p <0.05) (Fig. 3), indicating that TPM was capable
of increasing [Ca®*]; independently of ER calcium
store release and was potentially mediated by
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Fig. 1. Effect of TPPs on [Ca®*];. Fluo-3AM-labeled HL60 cells exposed to equi-nicotine units of TPM and STE or different concentrations of nicotine.
Intracellular Ca®* mobilization was measured using flow cytometry. PMA/ionomycin was used as a positive control and DMSO and PB as negative vehicle
controls for TPM and STE, respectively. Normalized AUC of PMA/ionomycin and different concentrations of STE, TPM, and nicotine from three
independent experiments are shown as mean + SD (a). A linear regression was performed for each treatment to test the dose effect on the [Ca'];; the
statistical significance is indicated by *p < 0.05. Flow cytometer raw data of kinetics from HL60 cells exposed to different concentrations of TPM (b), STE

(¢), and nicotine (d).

mitochondrial or lysosomal sources. TPM-induced
[Ca®*]; was further enhanced when CaCl, was
added as an extracellular Ca®* source; however, the
difference was not statistically significant. TG
treatment had no effect following STE exposure in
the absence or presence of extracellular calcium.

Effects of TRP Channel Inhibition on TPM-Induced
Calcium Influx

To further investigate the mechanisms underlying
TPM-induced [Ca**]; increase, we tested the role of TRP
channels present on the plasma membrane. HL60 cells
were maintained in Ca”*-free media together with non-
selective TRP channel blockers, either ruthenium red
(Ru; 10 uM) or SKF-96365 (SK; 10 uM) (Fig. 4). The
Fluo-3AM-labeled cells were then exposed to three differ-
ent concentrations of TPM (5, 10, and 20 pg/mL) followed
by a single concentration of CaCl, (0.5 mM). DMSO was
used as a negative vehicle control.

When TRP channels were blocked by Ru or SK
pretreatment, TPM-induced [Ca®*]; in the presence of

extracellular CaCl, tended to be lower at all TPM
concentrations, compared with the response with no
inhibitors. However, the differences were not statistically
significant. Ru and SK had no effect on the DMSO vehicle
control group (Fig. 4). In the absence of extracellular
calcium, the blocker Ru also seemed to decrease TPM (5
and 10 pg/mL)-induced [Ca”"]; increase, suggesting that
an intracellular, Ru-sensitive pathway could be involved.
However, the difference was not statistically significant
compared to the response with no inhibitors. Altogether,
these results indicate that TRP channels do not play a major
role in calcium influx mechanisms responsible for the
TPM-induced [Ca"]; increase.

DISCUSSION

Several adverse cellular effects of combustible TPPs,
in particular TPM, are reported to be associated with in-
creased cytotoxic [27, 43—45], genotoxic [44], and proin-
flammatory effects [20]. However, the mechanism



1646

Arimilli, Makena, and Prasad

8001
B PmA/lonomycin
s 7001 O tpm 20 pg/mL
< [ TPM 10 pg/mL
® 600- @ TPM 5 pg/mL
S TPM 0 “g/
3 TPM 1 mL
sood g ity W Mo :/mL
A S e
400 #
0 100 200
Time (Seconds)
800 ]
o PMA/lonomycin
700 - [] STE 250 pg/mL
2 [ STE 200 pg/mL
P [ sTE 150 pg/mL
£ O] STE 100 pg/mL
[ STEO pg/mL
Time (Seconds)
800
oo B pmA/Ionomycin
s O] Nic 100 pg/mL
- 600 [ Nic50 pg/mL
S [ Nic10 pg/mL
- 500 [ NicO pg/mL
J Nic
400
W‘h‘ 4 &,\_\\,,—4&) —_— Ry AP
a T _ T
0 100 200

Time (Seconds)
Fig. 1. (continued)

underlying TPP-induced [Ca®*]; mobilization from internal
and/or external Ca®* sources remains unclear. To understand
the complex response to TPPs that directly and/or indirectly
affects cellular functions, we assessed the effect of TPM and
STE on [Ca®"]; in an established in vitro model using human
promyelocytic leukemia cells, the HL60 cell line.

In this study, we sought to elucidate the pathways
mediating any TPP-induced [Ca®*]; increase. This
allowed us to compare data obtained using different TPP
sources (combustible cigarettes or smokeless tobacco),
with a view to understanding if combustible and
smokeless tobacco preparations demonstrate different
impacts on intracellular calcium levels and, possibly, the

underlying mechanisms of action. A key finding of the
present study shows that TPM treatment increased [Ca”*];
in a dose-dependent manner, starting at very low equi-
nicotine concentrations.

Other studies have similarly reported that cigarette
smoke extract triggers [Ca®*]; mobilization [46-49]. In
contrast to the findings with TPM, we demonstrated for
the first time that a smokeless TPP, STE, did not trigger
similar [Ca”*]; increases, even at equi-nicotine concentra-
tions that are two orders of magnitude higher than the TPM
tested in the same cell type used in this study. For example,
TPM-mediated [Ca®*]; increase occurred at equi-nicotine
concentrations as low as 1 pg/mL, whereas a higher equi-
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Fig. 2. Effect of TPPs on extracellular Ca®* influx. Fluo-3AM-labeled HL60 cells exposed to equi-nicotine units of TPM and STE. a Single concentration of
CaCl, was added to each concentration of TPP. Intracellular Ca** mobilization, [Ca>*];, was measured using flow cytometry. DMSO and PB were used as
negative vehicle controls for TPM and STE, respectively. Normalized AUC of PMA/ionomycin and different concentrations of TPM and STE from three
independent experiments are shown as mean + SD. For each TPP, two-way analysis of variance and post hoc analysis using Tukey’s honestly significant

difference test (HSD) was performed.

nicotine level of 250 pg/mL of STE had no effect. These
results suggest that combustion-related toxicants may play
a role in the mobilization of [Ca**]; when compared with
smokeless tobacco products in the HL60 leukemia cell
line. In line with our findings, Sassano et al. (2017)
assessed the impact of 13 individual tobacco smoke con-
stituents on [Ca**]; in HEK293T cells and found that 1-
aminonaphthalene, formaldehyde, and nicotine-derived ni-
trosamine ketone (NNK) were able to elicit [Ca®*];
increases [48].

In our study, testing nicotine alone, even at concen-
trations two orders of magnitude higher (100 pg/mL) than
those present in the TPM, did not induce changes in
[Ca®*];. This finding is in apparent contrast with the
findings of Sassano et al. (2017) who found that nicotine
triggered increases in [Ca®*]; in both HEK293T and human
bronchial epithelial cells (HBEC). However, their study
did not compare equi-nicotine units of nicotine and TPPs.
Hence, the relative impact of nicotine merits further char-
acterization using different cell types.

To elucidate the pathways involved in TPM-induced
increase in [Ca”*]; in the HL60 cell line, we evaluated
capacitative Ca®* mobilization by supplementation of

external CaCl,. Our results indicated that TPM-induced
mobilization of extracellular CaCl, is not significant. Sim-
ilarly, Rasmussen et al. (2014) reported that the vapor
phase of cigarette smoke increased [Ca®*]; and that this
increase was unaffected by extracellular Ca** chelation
[47]. Our results, based on the inhibition of the TRP
channel, also indicated that TRP channels did not play a
major role in TPM-induced calcium influx.

We then intended to identify the intracellular source of
TPM-induced Ca** response by TPM exposure before, or
after, depleting ER Ca®* stores by TG. In both scenarios,
TPM triggered [Ca®"); increase independently of ER store
depletion, suggesting that TPM-mediated [Ca®*]; increase
occurred through TG-insensitive Ca* stores. This finding is
in line with published work from Rasmussen et al. [47]
showing that cigarette smoke neither activates nor inhibits
ER Ca®* release. Rasmussen et al. reported that cigarette
smoke triggered a rise in cytoplasmic Ca** in HBECs,
BHK“"™® HEK293T, and CALU3 cells that may have
emanated from lysosomes [47].

Cytosolic Ca®* is a key second messenger that
regulates several functions including cell growth/cell divi-
sion, apoptosis, and the secretion of both ions and
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macromolecules [48, 50-53]. Calcium signals in cells of
the immune system regulate cell differentiation, gene tran-
scription, and effector functions crucial for the physiolog-
ical functioning of the immune responses.

To our knowledge, this is the first study to assess and
compare the effects of combustible and non-combustible
tobacco product exposures on cellular Ca** mobilization.
Our results suggest that TPM-induced Ca** mobilization
may activate Ca”*-dependent signaling pathways,
potentially leading to altered inflammatory immune
responses in HL60 cells compared with smokeless/non-
combustible tobacco products. Further work will be necessary
to understand the molecular mechanisms underlying these
biological effects.

CONCLUSION

In this study, we evaluated the effects of TPPs from
combustible and non-combustible tobacco products, as well
as of nicotine alone, on cellular Ca”* mobilization in HL60
cells. We found that TPM, but not STE or nicotine, induced a
significant increase in [Ca”*]; and could therefore activate
Ca”*-dependent signaling pathways, potentially leading to
altered inflammatory responses in leukocytes. This study
provides an understanding of the differential effects of
different tobacco products on inflammatory responses in
HL60 cells. Additional studies are warranted to identify the
source of TPM-induced intracellular calcium mobilization.
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