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Abstract: Nowadays, surface acoustic wave (SAW) resonators are attracting growing attention, owing
to their widespread applications in various engineering fields, such as electronic, telecommunication,
automotive, chemical, and biomedical engineering. A thorough assessment of SAW performance
is a key task for bridging the gap between commercial SAW devices and practical applications. To
contribute to the accomplishment of this crucial task, the present paper reports the findings of a
new comparative study that is based on the performance evaluation of different commercial SAW
resonators by using scattering (S-) parameter measurements coupled with a Lorentzian fitting and an
accurate modelling technique for the straightforward extraction of a lumped-element equivalent-
circuit representation. The developed investigation thus provides ease and reliability when choosing
the appropriate commercial device, depending on the requirements and constraints of the given
sensing application. This paper deals with the performance evaluation of commercial surface acoustic
wave (SAW) resonators by means of scattering (S-) parameter measurements and an equivalent-
circuit model extracted using a reliable modeling procedure. The studied devices are four TO-
39 packaged two-port resonators with different nominal operating frequencies: 418.05, 423.22,
433.92, and 915 MHz. The S-parameter characterization was performed locally around the resonant
frequencies of the tested SAW resonators by using an 8753ES Agilent vector network analyzer
(VNA) and a home-made calibration kit. The reported measurement-based study has allowed for
the development of a comprehensive and detailed comparative analysis of the performance of the
investigated SAW devices. The characterization and modelling procedures are fully automated with
a user-friendly graphical user interface (GUI) developed in the Python environment, thereby making
the experimental analysis faster and more efficient.

Keywords: circuit modeling; metrological evaluation; resonators; scattering parameter measure-
ments; surface acoustic waves

1. Introduction

Surface acoustic wave (SAW) devices are key electronic components, which were
firstly described by Lord Rayleigh in 1885 [1]. They are able to convert electrical energy into
mechanical waves on the basis of the inverse piezoelectric effect. Basically, SAW devices
are realized using an interdigital transducer (IDT) on a piezoelectric crystal substrate, such
as quartz or lithium niobate (LiNbO3) [2]. When excited by an AC voltage coming from
an external voltage source or RF signal, the IDT provides, as a consequence of the inverse
piezoelectric effect, the electric field necessary to displace the substrate and thus to form
an acoustic wave on the piezoelectric crystal substrate. Variations of physical parameters
change the characteristics of acoustic waves, such as velocity, phase shift, and intensity.
Therefore, by monitoring acoustic wave characteristics (or the resonant frequency of the
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device), these environmental properties can be measured. In particular, by exploiting
the sensitivity of piezoelectric substrate materials to physical parameters, it is possible
to use SAW devices as temperature, humidity, and strain sensors [3,4], as well as for the
detection of gases [5] and liquids [6]. Moreover, SAW devices are largely employed in
telecommunications with more than three billion SAW components manufactured every
year and used as band pass filters and resonators in radio receivers of mobile cell phones,
base stations, and RF front ends [7–13]. Finally, they are employed in many other different
areas, such as automotive [14] and bioengineering applications, where they are used, for
instance, as microfluidic devices [15–17] by exploiting the fact that, by inducing an electric
field and generating a mechanical wave, it is possible to pump and drive liquids. The main
advantages of SAW-based sensors as opposed to other kinds of sensors are their low cost,
small size, high-temperature stability, and the possibility to be used as wireless passive
sensors [18]. Moreover, high precision can be obtained considering that shifts in frequency
are far easier to measure [19,20] and less noise-sensitive than perturbations in voltage or
current signals [21].

In this paper, we present a measurement-based performance evaluation of four com-
mercial TO-39 packaged two-port SAW resonators working in a frequency range spanning
from 418.05 to 915 MHz. The analyzed devices are experimentally characterized by per-
forming measurements of the scattering (S-) parameters that are transformed into the
corresponding admittance (Y-) form, which is more appropriate for analysis and modeling
purposes. The values of the resonant frequency (fr), the quality factor (Qr), and the ampli-
tude of the resonant peak have been estimated using a Lorentzian fitting of the measured
Re(Y11). Next, an equivalent-circuit model is extracted for the tested devices directly from
the measured data sets by exploiting the observed resonance without using optimization
and/or tuning. The extracted model is able to faithfully reproduce the measurements
locally around the resonant frequency for all of the different tested SAW devices, thereby
confirming the accuracy and reliability of the used modeling technique. The achieved
values of fr and Qr, as well as the extracted circuit elements, are reported and discussed in
detail, thus enabling a quantitative evaluation and comparative analysis of the performance
of the four different SAW devices under consideration in the present study. The significance
of this study lies in the fact that, although the achieved findings can strongly depend on
the specific studied devices, the investigation methodology, based on the equivalent-circuit
extraction from S-parameter measurements, is technology independent and straightfor-
wardly applicable to different commercial SAW devices, allowing for a deeper analysis of
the device behavior and appropriate selection of the device according to the requirements
of the given sensing application.

2. Characterization and Theoretical Analysis

The tested devices are four commercial TO-39 packaged SAW resonators, which have
the manufacturer codes R2630 (Siemens Matsushita, Munich, Germany), SAR423.22MDA
(Murata, Kyoto, Japan), RP1308 (Murata), and RP1094 (RF Monolithics Murata) and nom-
inal resonant frequencies of 418.05, 423.22, 433.92, and 915 MHz, respectively [22–25].
Figure 1 shows two scanning electron microscope (SEM) micrographs of an R2630 SAW
device with a resonant frequency of 418.05 MHz. The metallic TO-39 package was carefully
removed in order to expose the resonator structure.
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Figure 1. Two SEM micrographs of an R2630 SAW resonator working at 418.05 MHz: (left side) overview and (right side)
particular magnification.

The S-parameters of the four tested SAWs were measured using an 8753ES Agilent
vector network analyzer (VNA). A full two-port calibration was performed using a short-
open-load-through (SOLT) technique based on a custom calibration kit [26].

Figure 2 shows the developed test fixture with a custom calibration kit directly on
board, which was developed on Arlon substrate by means of a Protomat S103 rapid PCB
(by LPKF, Garbsen, Germany) prototyping machine. In order to perform the measurement,
the board is connected to the VNA that is controlled remotely from a personal computer via
IEEE 488.2 GPIB interface. Both the characterization and the equivalent circuit model ex-
traction are handled by a graphical user interface (GUI) developed in Python environment
(see Figure 3).
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The remainder of this section is divided into two subsections. The former is focused
on the Lorentzian fitting of the measured data, while the latter is devoted to the equivalent-
circuit modeling.

2.1. Lorentzian Fitting

Resonant frequency, quality factor, and amplitude of the resonant peak in Re(Y11) were
evaluated after a Lorentzian fitting of the acquired data points. This strategy is usually
employed for a more accurate determination of these parameters [27,28]. In this work,
the Lorentzian function in the form reported that the following equation was used as a
reference function for the fitting:

Re(Y11) =
a0

π
·

1
2 G

( f − fr)
2 +

(
1
2 G
)2 (1)

where f is the frequency, a0 is a real coefficient, and G is the full width at half maximum.
Moreover, in order to further improve the fitting procedure, a first-order polyno-

mial function was selected to model the effects of background in the spectrum measure-
ments [29]. Since the acquired spectrum consists of a contribution of the resonance plus a
background signal [29], Re(Y11) was modeled as a Lorentzian function plus a polynomial
function as reported in the following equation:

Re(Y11) =
c0

π
·

1
2 G

( f − fr)
2 +

(
1
2 G
)2 +

N

∑
n=0

an f n (2)

where f is the frequency, c0 and αn are real coefficients, G is the full width at half maximum
of the Lorentzian function, and N is the degree of the polynomial function used to model
the background signal. In this case, N = 1 was enough for a good fitting. The fitting engine
was developed in Python and is based on the Levenberg–Marquardt algorithm. As an
illustrative example, Figure 4 shows the comparison between acquired data points and the
fitted function of Re(Y11) for the SAW resonator with a resonant frequency of 915 MHz.
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2.2. Equivalent Circuit Extraction

The two-port equivalent-circuit model employed for the tested SAW resonators is de-
picted in Figure 5 [30–32]. This circuit is able to reproduce the SAW resonator performance
near the resonant frequency. The elements C01 and C02 are, respectively, the input and
output shunt static (non-motional) capacitances between either pin 1 and ground or pin
2 and ground, including the case parasitic capacitance. The elements Cm, Lm, and Rm are
the motional parameters modeling the contributions of elasticity, inertia, and damping,
respectively. The ideal transformer is associated with the conversion between mechanical
and electrical energy.
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This model shows that the resonance occurs when the inductive and the capacitive
reactance of the motional series RLC network cancel each other out, leading to the following
definition of the Y-parameters, fr, and Qr in terms of the equivalent-circuit elements:

Y11r = jωrC01 +
1

Rm
(3)

Y21r = Y12r =
1

Rm
(4)

Y22r = jωrC02 +
1

Rm
(5)

fr =
1

2π
√

LmCm
(6)

Qr =
2π frLm

Rm
=

1
2π frCmRm

=
1

Rm

√
Lm

Cm
(7)



Micromachines 2021, 12, 303 6 of 12

Therefore, from Equations (3)–(7), we obtain that the five equivalent-circuit elements
can be straightforwardly determined as reported below:

Rm =
1

Re(Y11r)
(8)

C01 =
Im(Y11r)

2π fr
(9)

C02 =
Im(Y22r)

2π fr
(10)

Lm =
QrRm

2π fr
(11)

Cm =
1

(2π fr)
2Lm

(12)

An important figure of merit to evaluate resonator performance is given by the product
between fr and Qr. Equation (7) shows that this quantity can be straightforwardly defined
in terms of equivalent-circuit elements as follows:

frQr =
1

2πRmCm
(13)

3. Experimental Results and Discussion

By using the modeling procedure described in the previous section, the equivalent-
circuit model has been extracted for the four studied SAW resonators. As illustrated in
Figures 6–9, the accuracy and reliability of this extraction technique is confirmed by the
achieved good agreement between measured and simulated admittance parameters for all
four tested devices. As expected, the extracted model is able to faithfully reproduce the
measurements mostly locally near the resonance, whereas some deviations can be observed
when the operating frequency departs from the resonant frequency. Although including
more equivalent-circuit elements might lead to a better fit over a broader frequency range,
the reported model offers a good trade-off between model complexity and prediction
accuracy, enabling the use of the extracted model for investigating the resonance.
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Table 1 lists the resonant frequency and the quality factor, which were evaluated from
the resonance in the measured Re(Y11) by using the Lorentzian fitting, as well as their
product and the extracted values of the circuit elements, which were obtained with the
illustrated direct modeling procedure.

Table 1. Values of the resonant frequency, quality factor, their product, and equivalent-circuit elements for the four studied
SAW resonators.

SAW Device
(Nominal Frequency)

fr
(MHz) Qr

frQr
(MHz)

C01
(pF)

C02
(pF)

Rm
(Ω)

Lm
(µH)

Cm
(fF)

R2630
(418.05 MHz) 418.03 12,514 5,231,227 2.07 1.92 117.9 561.8 0.26

SAR423.22 MDA
(423.22 MHz) 423.25 13,649 5,776,939 1.42 1.23 105.8 542.9 0.26

RP1308
(433.92 MHz) 433.90 13,439 5,831,182 1.94 1.41 80.3 395.8 0.34

RP1094
(915 MHz) 914.80 7988 7,307,422 2.88 2.97 47.5 66.0 0.46

As can be observed, the values of the resonant frequencies are very close to those
specified in the datasheets of the tested components. The quality-factor is roughly the
same by keeping fr at about 400 MHz, whereas its values reduce to almost half when fr
is roughly doubled to slightly more than 900 MHz. Therefore, the product frQr of the
tested SAWs remains roughly constant (about 5–7 × 106 MHz), exhibiting the highest
value when considering the SAW with the highest fr. The observation that the obtained
values of frQr are reasonably similar can be linked to the fact that all of the tested SAWs
have a piezoelectric crystal substrate made of quartz, which is widely used as a substrate
material for commercial SAW devices because of its low cost and remarkable physical
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properties [33–35]. The input shunt static capacitance is about 2 pF and exhibits a significant
increase to about 3 pF for the SAW with the highest fr, whereas the output shunt static
capacitance is slightly different than the input one to model the observed differences
between Y11 and Y22. By increasing fr, the motional resistance decreases, which turns into a
larger amplitude of the resonant peak in Re(Y11). Similar values of the motional inductance
and capacitance are observed for the three SAW resonators with fr at about 400 MHz,
whereas the device with the highest fr shows a small increase in Cm and a remarkable
decrease in Lm. The latter is responsible for the much higher value of fr.

Finally, it should be noted that, when having access to highly advanced and expensive
manufacturing facilities, finite element method (FEM) simulations can be used to develop a
physically based model for SAW design optimization [36–39], in order to meet the specific
application requirements. On the other hand, when using commercial devices, the user
has access to only the information available in the datasheets. In this case, the extraction
and analysis of a measurement-based equivalent-circuit model is an essential task when
selecting a commercial device for sensing applications, since the equivalent-circuit model
allows for building the bridge between SAW design and practical applications.

4. Conclusions

A quantitative evaluation and comparative analysis of the performance of four com-
mercial surface acoustic wave resonators with different resonant frequencies have been
reported. To achieve this goal, scattering parameter measurements have been carried out
in conjunction with Lorentzian fitting and model extraction. The former has enabled an ex-
cellent reproduction of the resonance in the real part of Y11, whereas the equivalent-circuit
model has allowed for obtaining a good agreement between measured and simulated
admittance parameters as a function of the frequency, which is local to the resonance.

The obtained values of the resonant frequency, quality factor, and lumped equivalent-
circuit elements have been analyzed and discussed, in order to achieve a quantitative
evaluation and comparative analysis of the performance of the studied four surface acoustic
wave resonators with different resonant frequencies.
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