
cancers

Review

The Glucose-Regulated MiR-483-3p Influences Key
Signaling Pathways in Cancer

Felice Pepe 1, Rosa Visone 2,3 and Angelo Veronese 2,3,*
1 Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA;

Felice.Pepe@osumc.edu
2 Ageing Research Center and Translational Medicine-CeSI-MeT, 66100 Chieti, Italy; r.visone@unich.it
3 Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio University Chieti-Pescara,

66100 Chieti, Italy
* Correspondence: a.veronese@unich.it; Tel.: +39-0871-541561; Fax: +39-0871-541511

Received: 27 April 2018; Accepted: 29 May 2018; Published: 4 June 2018
����������
�������

Abstract: The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs,
miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1
complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the
Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1,
SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific
physiological properties as insulin and melanin production, as well as with cellular physiological
functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p
is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway
induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are
linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as
to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this
review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role
in physiological and pathological contexts, focusing overall on its involvement in cancer and in the
TP53 pathway.

Keywords: miR-483-3p; metabolism; TP53; CTNNB1; chemoresistance; cancer; miR-145-5p

1. Introduction

MicroRNAs (miRNAs) are noncoding RNAs of about 18–28 ribonucleotide lengths, which
modulate gene expression by inhibiting their translation or promoting their mRNA degradation [1].
MicroRNAs play a critical function in the homeostasis of central cellular processes, and their
deregulation in human neoplasm has mainly been proven [2–4].

The hsa-miR-483 gene is a mammal-conserved microRNA that resides at the 2nd intron of
the human insulin growth factor 2 (IGF2) gene at the 11p15.5 chromosome region [5] (Figure 1).
The genomic localization of this microRNA is of particular interest. Indeed, the IGF2 is an imprinted
gene, expressed by the paternal allele to produce an important fetal insulin growth factor. Defects
in the imprinting of the IGF2 locus are observed in the Beckwith-Wiedemann syndrome, which
increases the incidence of pediatric malignancies as nephroblastoma (Wilms’ tumor), hepatoblastoma,
and rhabdomyosarcoma [6]. Moreover, also adult tumors are linked to genetic and epigenetic defects of
this imprinted locus such as colorectal cancer (CRC), hepatocellular carcinoma (HCC) and breast cancer
(BrCA) [7,8] pointing out to IGF2 as the main oncogene of this genomic locus. However, a transgenic
mouse model for IGF2 (without including the miR-483 gene) exhibited several features associated with
the Beckwith-Wiedemann syndrome without association to any neoplasia [9]. These data suggested
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the IGF2/miR-483 locus as the oncogenic unit of the 11p15.5 chromosome region instead of the IGF2
alone [10–12].

The hsa-miR-483 gene encodes for two mature miRNAs: miR-483-5p and miR-483-3p. Both are
found deregulated in different types of cancer. MiR-483-5p is abnormally observed in the serum of
cancer patients suggesting its possible utilise as cancer biomarker in various malignancies [13–26].
On the other hand, the miR-483-3p is extensively studied concerning its function on different
cancer-related pathways as chemoresistance, immune-evasion, cancer metabolism and resistance
to apoptosis by targeting several genes (Table 1).
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Table 1. miR-483-3p verified targets. (h), (r) and (m) indicate respectively human, rat and murine tissues.

Gene Tissues Cells/Cell Lines References

AANAT Pineal gland (h), (r) Neonatal pinealocytes (r), HEK293 [32]
BBC3PUMA Kidney, Colon, Liver (h) HEK293, HCT116, HepG2 [12]

BRCA1 Liver (m) [33]
CDC25A Keratinocytes (h) [34]
CTNNB1 Kidney (h), Colon (h) HEK293, HCT116 [35]

DLC1 Colon (h) HCT116, SW480 [36]
IGF1 Natural Killer cells (h), Cardiomyocites (m) [37]
MK2 Keratinocyte (h) [38]

MKI67 Keratinocyte (h) [38]
PGAM1 Kidney (h) [39]
PRKCA Ovarian (h) IGROV-1 [40]
SMAD4 Pancreas (h) SW1990, PANC1 [41]

YAP1 Keratinocyte (h) [38]

2. The Regulation of Transcription of MiR-483-3p

2.1. The IGF2/MiR-483 Locus

MiR-483 maps at 11p15.5, a chromosomal region defined Multiple Tumor-Associated
Chromosomes Region 1 (MTACR1). Genetic and epigenetic abnormalities in this chromosomal
region have been associated with various human neoplasms and with the cancer-predisposing
Beckwith-Wiedemann syndrome (BWS). In particular, genetic aberrations at 11p15 are typically
detected in more than 80% of Wilms’ tumors [42] and, albeit, less frequently, in other more common
adult neoplasms [43–46].
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The miR-483-3p host gene, IGF2, is part of the IGF2/H19 genetic locus. This locus is one of a few
hundred imprinted DNA regions in mammals and one of the best studied in human. IGF2 is expressed
exclusively by the paternal allele whereas the H19 gene is maternally expressed. This allelic specific
transcription is dictated by the methylation status of the IGF2/H19 Imprinted Control Region (ICR),
a DNA sequence located between these two genes. At the paternal allele, the ICR is methylated
whereas in the maternal allele is de-methylated [47]. In cancer, especially in Wilms’ tumor, aberrant
methylation of the ICR causes the reactivation of the maternal silent IGF2 allele and the silencing of the
active H19 maternal allele [8,48–51]. Nevertheless, IGF2 murine transgenic models have highlighted
features close to the BWS without tumor predisposition [9]. On the other hand, the Wilms’ tumor
mouse model published by Hu et al. was generated by somatic ablation of Wt1 and constitutional
bi-allelic expression of the IGF2 entire locus which contain the mmu-miR-483 gene [52].

We observed that miR-483-3p is over-expressed in 100% of Wilms’ tumors, and that colorectal,
breast and liver cancers exhibit high levels of miR-483-3p in about the 30% of the cases [12]. It was found
a positive correlation between the expression of miR-483-3p and IGF2 in different types of cancers
as HCC, CRC and Wilms’ tumor, suggesting a co-regulation with IGF2. However, HCC samples
exhibited the lower coefficient of correlation, several samples showed divergent expression between
IGF2 and miR-483-3p. Indeed, it was observed that miR-483-3p could be finely regulated in the HCC
cells independently from its host gene IGF2. This independent mechanism of transcription involves
DNA methylation, specific transcription factors, and cellular glucose concentration. Here we reported
the last discoveries about the miR-483-3p regulation.

2.2. MiR-483-3p and β-Catenin

MiR-483-3p expression was found up-regulated in tumors (HCC, CRC, BrCA and Wilms’
tumor) [12] that show the β-catenin (CTNNB1) signaling frequently dysregulated [53–55]. Interestingly
an association between the mutational status of genes related to β-catenin pathway (APC, CTNNB1,
and AXIN1) and miR-483-3p expression, but not IGF2, was detected in HCC. These observations,
together with in vitro experiments showed an exclusive regulation of the miR-483-3p expression under
the control of β-catenin transcription factor [35].

However, CTNNB1 itself is a target of miR-483-3p, triggering a negative regulatory loop.
This regulatory mechanism becomes ineffective in cells harboring an activating mutation on the
CTNNB1 coding sequence (ser45 deletion). In pathological conditions, this mutation permits to the
protein to evade the regulative loop and cause high expression of both elements.

Analysis of the minimal promoter region of the miR-483 located the β-catenin responsive element
closely upstream the microRNA gene and identified it as an E-box motif (CACGTG). This E-box
interacts with the basic helix-loop-helix protein upstream stimulatory transcription factor 1 (USF1)
which was demonstrated be the co-factor of β-catenin to regulate the miR-483 gene [35] (Figure 2).
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2.3. MiR-483 and the Glucose Metabolism

The association of glucose metabolism to the regulation of miR-483-3p is supported by several
studies that connect CTNNB1 and USF1 activity to cellular glucose metabolism [56–58] and by the
fact that miR-483-3p maps at the INS-IGF2 locus, which is involved in the insulin pathway [7,59].
Moreover, it was observed that the miR-483-3p is up-regulated in streptozotocin-induced diabetic mice,
and cultured cardiomyocytes mimicking hyperglycemia [60]. Studies on HepG2 cells (Hepatoblastoma
cell line) showed that the expression of miR-483-3p is significantly affected by the extracellular
concentration of glucose [61]. Indeed, MiR-483-3p expression was reduced by both glucose starvation
and treatment with the glucose antagonist 2-deoxy-D-glucose (2-DG). The treatment with 2-DG affected
the levels of both miR-483-3p and its precursor pri-miR-483 in a concentration-dependent way. Moreover,
this regulation was independent of IGF2 expression. Glucose concentration affects the miR-483-3p
expression by the O-linked β-N-acetylglucosamine transferase (OGT). OGT protein mediates the
addition of a N-acetylglucosamine in an O-glycosidic linkage (O-GlcNAcylation) to protein serine or
threonine residues [62,63], and influences several cellular processes such as, RNA transcription [64],
insulin signaling [65], Wnt/β-catenin signaling [66,67] and mouse embryonic development [68].
This post-translational modification is executed in the cytoplasm, using the activated derivative of the
glucose metabolism Uridine diphosphate N-acetylglucosamine or UDP-GlcNAc as substrate, and it is
commonly considered a cellular nutrient sensor and a metabolic regulator [69,70]. OGT contributes to
β-catenin stabilization [66,67] and consequently to the regulation of miR-483-3p by the CTNNB1/USF1
complex at the E-box element of the miR-483 promoter. Silencing OGT by siRNA or inhibitors as
azaserine, reduces the miR-483-3p expression, and the affinity between USF1 and the E-box sequence.
This suggests that OGT is fundamental for the CTNNB1/USF1 complex activity regulation of the
miR-483-3p expression [61]. However, the authors do not exclude that OGT could influence the
miR-483-3p expression also by other indirect mechanisms. Indeed, OGT regulates RNA transcription
by O-GlcNAcylation of RNA polymerase II [71] and several critical transcription factors such as the
bHLH transcription factor MYC proto-oncogene [72].

The decrease of miR-483-3p expression, by silencing OGT or by 2-DG treatment, was concomitant
with the increasing of BBC3 mRNA. These results suggest that the use of the glucose inhibitors could
reactivate the TP53 pathway in those tumors where the over-expression of miR-483-3p blocks the
apoptotic effector of BBC3/PUMA. However, despite promising in vitro results that show the 2-DG
able to increase the efficacy of the chemotherapic drug 5-fluorouracil (5-FU); in vivo experiment on
NSG mice transplanted with HepG2 cells, revealed that tumor cells with higher miR-483-3p expression
were selected during tumor progression regardless the 5-FU/2-DG treatment [61].

2.4. MiR-483 and DNA Methylation

It was shown that a fragment of 151bp (IGF2-CBI), immediately upstream miR-483 stem-loop,
has strong insulator activity and binds to the CCCTC-binding factor (CTCF) [73]. CTCF is an important
methyl-sensitive regulator of transcription involved in the epigenetic regulation of genomic imprinted
loci by influencing genomic 3D conformation [74]. Accordingly, the methylation status of IGF2-CBI

correlates positively with the expression of miR-483-3p [35]. There are no direct data about the influence
of the methylation status of the ICR of the IGF2/H19 locus and the expression of the miR-483 gene yet.
However, the paternal allele expression, ruled by the ICR methylation, should reasonably open the
chromatin also for the miR-483 gene expression.

2.5. Other Mechanisms

Recently it was shown that the pseudogene HMGA1P7 could up-regulates miR-483 through
a competing endogenous RNA (ceRNA) mechanism that induces the Egr1 transcription factor,
a positive regulator of miR-483 expression [75].
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It was also shown that the temperature could regulate the miR-483 locus, so, a mild hypothermia
induces an increased expression of the miRNA [76]. Moreover, miR-483 may self-regulate its own
expression independently of its host gene IGF2 in human HeLa cells by activating the USF1
transcription factor [77].

3. Physiological Roles of MiR-483-3p

MiR-483-3p influences many biological processes. Here summary of the most known is provided:

3.1. Cell Cycle Regulation

In a study on skin wound repair, it was observed that miR-483-3p is accumulated in the
terminal phase of the repair process and blocks the cell cycle of keratinocytes by targeting the
phosphatase CDC25A. The miR-483-3p silencing leads to a continuous proliferation and delays the
differentiation [34,78].

3.2. Melatonin Synthesis

In the pineal gland, it was observed a decreased expression of miR-483-3p during development,
increasing of the miR-483-3p target AANAT, and melatonin synthesis [32].

3.3. Adipocytes Differentiation and Imprinting in Newborns

Administration of miR-483-3p modulates the capacity of adipocytes to differentiate and store lipids
in vitro. These effects are probably mediated by translational repression of the growth/differentiation
factor-3 (GDF3), a target of miR-483-3p. In vivo observations registered that miR-483-3p expression can
be regulated by diet and can affect the development of the adipose tissues in off-springs. So, miR-483-3p
is up-regulated in adipose tissue from low-birth-weight adult humans and pre-diabetic adult rats
exposed to suboptimal nutrition in early life. The authors proposed that increased miR-483-3p
expression causes lipotoxicity and insulin resistance by limiting storage of lipids in adipose tissue.
In this view changes in miRNA expression during early-life nutrition could increase susceptibility to
metabolic diseases affecting long-term health [79]. Finally, the authors observed, that in a cohort of 244
twins the environmental factors rather than genetics influence changes in miR-483-3p expression [80].

The effect of the diet on miR-483-3p regulation seems to act before birth. In mice, maternal
high fat diet reduces the expression of a group of miRNAs in adult offspring liver, including the
mmu-miR-483-3p [81]. These data attest the importance of the environmental factors on miR-483-3p
regulation and their capacity to affect the cellular development and long-term health.

3.4. Matrix Production in Eye Cells

MiR-483-3p reduces the production of extracellular matrix (ECM) in Human Trabecular Meshwork
Cells by targeting of SMAD4, and in turn reducing the activity of the TGF-β pathway in the eye.
This relationship between miR-483-3p and the ECM production makes this microRNA a potential
target to treat glaucoma [82].

3.5. Vascular Homeostasis

MiR-483-3p rules the vascular homeostasis controlling the components of the renin-angiotensin
system by regulating four different genes of the renin-angiotensin system (RAS) [83]. Moreover,
miR-483-3p is upregulated in endothelial progenitor cells (EPC) from deep vein thrombosis (DVT)
patients and targets the serum response factor (SRF) to decrease EPCs migration and tube development,
concomitantly to the increased rate of the apoptotic cells. In a rat model of venous thrombosis,
miR-483-3p inhibition led to the improved ability of homing and thrombus resolution of EPCs [84].
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3.6. Mesodermal Differentiation

As already mentioned, miR-483-3p could play an important function in differentiation. Mesoderm
cells showed enrichment of miR-483-3p that was identified as a pivotal regulator for the differentiation
to progenitor subpopulations toward lineage specification. MiR-483-3p effect was partially mimicked
by repression of its target PGAM1 gene [39].

4. MiR-483-3p in Cancer

4.1. MiR-483-3p Is Often Deregulated in Cancer

Since miR-483-3p is involved in numerous physiological processes, it is not surprising to find
altered expression of this miRNA in diseases. MiR-483-3p was observed overexpressed in all the
cases of cirrhotic liver and Wilms’ tumor studied [12]. Moreover, it was found upregulated in
adrenocortical carcinoma [85,86], malignant mesothelioma [87], pancreatic ductal adenocarcinoma [41],
and significantly overexpressed in large subsets of colorectal cancer [36], breast cancer and
hepatocellular carcinoma [12]. Different authors observed that the miR-483-3p expression was increased
in cancer cell lines from different tissues treated with chemicals with oncosuppressor activity or
radiation. For example, miR-483-3p expression increased after treatment with cisplatin in ovarian
cancer [40], selenium in adenocarcinoma [88], and 5-fluorouracil in HCC [61], or with radioactive
stress in a lung cancer cell model [89]. Moreover, it was observed that lipotoxic substances in HepG2
cells induced deregulation of miR-483-3p [90]. Interestingly, the overexpression of miR-483-3p was
associated with resistance to apoptosis and clone selection.

Colon organoid culture functionally confirmed the microRNA miR-483 as a dominant driver
oncogene at the IGF2 locus; overexpression of miR-483-3p but not IGF2 induced high-grade dysplasia
of Apc-null organoids by increasing proliferation and invasion in vitro and tumorigenicity in vivo [11].

4.2. MiR-483-3p and the TP53/MiR145-5p Loop in Liver Cancer

Different mechanisms were proposed to explain how the miR-483-3p overexpression could drive
advantages to cancer. For example, an important study showed how miR-483-3p can modulate the
immune response against cancer cells. It was reported that IGF1 and IGF2 suppress their expression
each other and their concentration can affect the immune response. IGF1 promotes the development
and cytotoxic activity of human NK cells [37], therefore the reduction of this protein by the augmented
expression of IGF2 by miR-483-5p [91], or by the direct targeting of IGF1 by miR-483-3p [92,93], provide
a protection to cancer cells by suppressing NK cells activity.

Today, the most studied mechanism about how miR-483-3p could induce the chemoresistance in
cancer cells involves the capacity of the miR to affect the pro-apoptotic TP53 signaling in the context
of the liver cancer. In hepatocellular carcinoma (HCC), the expression of miR-483-3p is related to
the mutational status of TP53, CTNNB1 genes and impaired epigenetic mechanisms affecting the
IGF2/miR-483/H19 locus. Interesting, CTNNB1 and TP53 are the most commonly mutated gene HCC
(in about the 50% of all cases), but mutations in these two genes are mutually excluding. Therefore,
HCC tumors mutated in CTNNB1 seldom have mutations in TP53 [94]. Notably, IGF2, β-catenin
and TP53 are related to cellular metabolism [95,96], and lipid and glucose metabolisms are impaired
in HCC [97]. In this context, it was observed that the miR-483-3p acts as “onco-miR” targeting
the pro-apoptotic gene TP53 Upregulated Modulator of Apoptosis protein (BBC3/PUMA) [12,35].
PUMA is one of the principal effectors of the TP53 apoptotic pathway, and reduction of PUMA
can inhibit the apoptosis induced by the TP53 signaling activation. Therefore, miR-483-3p aberrant
expression could be the elements that explain the mutual exclusion of the mutational status between
CTNNB1 and TP53 in HCC. It was showed how mutations in CTNNB1, those permitting to escape
the auto-regulation of the miR-483-3p, could lead to an accumulation of the protein and of miR-483-3p,
blocking the pro-apoptotic activity of the TP53 pathway. In fact it was demonstrated that the
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overexpression of the miR-483-3p can overcome the miR-145-5p/TP53 axis in HepG2, and that the
cellular glucose concentration has a major in the interplay between these factors [98].

MiR-145-5p induces p53-dependent apoptosis targeting MDM2 [99–104], an inhibitor of TP53
that induces its degradation by ubiquitination. Accordingly, miR-145-5p is generally down-regulated
in several tumors, including hepatocellular carcinomas (HCCs) [105–110]. TP53 is a transcriptional
activator of miR-145-5p, and it is also implicated in the microRNA maturation complex. This generates
a positive pro-apoptotic feedback loop between miR-145-5p and TP53 [102,104,111,112]. However,
notwithstanding the oncosupressor role of miR-145-5p, some HCC cases showed a physiological
expression of this miRNA. Experiments on HepG2 cell line showed that ectopic constant activation
of the TP53/miR-145-5p signaling induces apoptosis in almost all the cells, but additionally lead to
the selection of clones that exhibit higher miR-483-3p expression. Depletion of miR-483-3p in these
cells reinforces apoptosis, strengthening the concept that the overexpression of the miR-483-3p helps
the cancer cells to overcome the programmed cell death. The glucose concentration has a critical role
in the miR-483-3p and miR-145-5p connected functions. In liver cancer cells grown in low glucose
conditions miR-145-5p lowered miR-483-3p, allowing apoptosis. Instead, when cells were grown in
high glucose, the levels of miR-483-3p increased in response to miR-145-5p, reducing the apoptotic
rate (Figure 3). Accordingly, miR-145-5p and miR-483-3p correlate negatively in the non-neoplastic
livers, but positively in HCCs that have impaired glucose metabolism. This oncogenetic mechanism of
the miR-483-3p could be common also in other types of tumors, but it has still to be directly proven.
However, the connection between the TP53 pro-apoptotic pathway and miR-483-3p involves several
factors that can have auto-regulative loops. For example, OGT activity was shown to upregulate
miR-483-3p expression, and to potentially have an oncogenic role in cancer by glucose uptake, but at
the same time, was shown that inhibition of OGA, the enzyme that catalyzes O-GlcNAc hydrolysis,
stabilizes TP53 from degradation in cancer [113].
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Figure 3. Schematic representation of the role of O-linked β-N-acetylglucosamine transferase (OGT)
and miR-483-3p in the miR-145-5p/TP53 axis in hepatocellular carcinoma (HCC). In the Figure are
showed proteins (squares) and miRNAs (ovals) and their functional connection involved in the
miR-145-5p/TP53 axis in HCC. Briefly, miR-145-5p targets MDM2 and reduces expression of miR-483-3p,
permitting the activation of TP53 that induce PUMA and apoptosis. In case of OGT over-activity,
miR-145-5p is unable to regulate miR-483-3p which expression is increased by CTNNB1 activity.
This leads the miR-483-3p to target PUMA and blocking the pro-apoptotic effect of TP53.
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4.3. MiR-483-3p as Cancer Biomarker

Some authors evaluated the possibility to use the miR-483-3p as a biomarker for diagnosis and
follow-up of cancer events [114]. MiR-483 was observed overexpressed in esophageal squamous cell
carcinoma (ESCC) tissues, and its overexpression was negatively correlated with the prognosis and
positively correlated with multidrug resistance. In vitro functional experiments showed that miR-483-3p
could promote the proliferation, migration and could inhibit cells’ sensitivity to chemotherapy
drugs [115]. In patients with pancreatic ductal adenocarcinoma (PDAC) it was observed a high
expression, relative to healthy controls of the miR-483-3p and miR-21 in blood samples [116]. Moreover,
some articles suggest that aberrant miR-483-3p expression is an early event in PDAC tumorigenesis and
that is associated with tumor differentiation and prognosis, indicating miR-483-3p also as a potential
therapeutic target for PDAC [117]. In addition, miR-483-3p overexpression in plasma from patients
with adrenal cortical cancer and pancreatic ductal adenocarcinoma improved the diagnostic accuracy
of these diseases [86,116], and some authors suggest the efficacy of the miR-483-3p as biomarker in
prostate cancer as well [118]. In another study on colorectal cancer, was observed that in tumor tissues
the expression of both miR-483-3p/-5p and IGF2 was significantly up-regulated in more than 60%
of cases with a concomitant positive correlation between the two genes. However, only miR-483-5p
showed high levels in serum, useful as sensitivity biomarker for the CRC [36]. The miR-483-5p was
found significantly up-regulated in the serum of a broad range of cancer and pathological conditions
ascribing it as potential cancer biomarker [11,13,15,119–124].

4.4. Oncosuppressor Role of MiR 483-3p

Not all the observations in literature concord that miR-483-3p acts as an oncomiR. It was
observed that the miR-483-3p expression is decreased in gastric, nasopharyngeal, and some cases
of hepatocellular carcinomas [125–128]. MiR-483-3p sensitized squamous cell carcinoma cells to
drug-induced apoptosis by the direct targeting of several anti-apoptotic genes, such as API5, BIRC5,
and RAN [78]. In a microarray analysis of breast cancer samples, was observed that the miR-483-3p
and miR-483-5p are significantly deregulated, and the authors underline that these miRNAs could
have a key role during the initiation and the progression of the disease [129].

In the context of liver cancer, it was shown that miR-483-3p and 483-5p are down-regulated in
hepatitis B virus-associated HCCs [127]. Overexpression of miR-483-3p and -5p reduced liver fibrosis
in murine model [130] In a study involving 18 HCC samples, the microRNAs 483-3p and -5p were
observed down-regulated in tumors [126]; miR-483-3p down-regulated in alcoholic hepatitis and in
DDC (Diethyl 1,4-dehydro-2,4,6-trimethyl-3,5-pyridine-dicarboxylate) re-fed mice livers [33]. However,
these studies do not consider the mutational status of the TP53 or CTNNB1 genes.

5. Discussion

In this work, we focused on miR-483-3p roles in cancer. It has been found involved in several
aspects of the cellular homeostasis, and its ability to link crucial cellular pathways such as TP53,
TGFβ, Wnt/β-catenin and metabolic signaling give to it a large impact on the regulation of neoplastic
cells. Indeed, this short non-coding RNA exemplifies the exceptional role of the microRNAs linking
epigenetics, metabolism, microenvironment, programmed cell death and cellular differentiation.
Consequently, considering miR-483-3p as oncosuppressor or oncogene is challenging. However, in
most of the cases reported in the literature, the overexpression of miR-483-3p is positively associated to
cancer. There is another critical microRNA cancer-related that resemblance the miR-483-3p, miR-221.
Hsa-miR-221 is up-regulated in several types of cancer, directly induced by TP53 and able to targets
several downstream effectors of the TP53 pathway as BBC3/PUMA, BMF, PTEN and MDM2 [131–134].
Therefore, the ability to downregulate downstream effectors of the TP53 pathway by microRNAs that
in turn are regulated by TP53 seems to be a common feature at least in those tumors where these
microRNAs are de-regulated.
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For all these reasons the miR-483-3p represents a promising cancer therapeutic target. However,
it is involved in pathways that are ruled by reversible changes that in turn control cellular plasticity.
Since cancer cells exploit cellular plasticity to environmental adaptation and tumor progression [135],
all the genetic, epigenetic and metabolic aspects related to miR-483-3p have to be unveiled in order to
reach a productive targeting of this microRNA in an anti-cancer therapeutic view.
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