
RESEARCH ARTICLE

Research on OpenCL optimization for FPGA

deep learning application

Shuo ZhangID, Yanxia Wu*, Chaoguang Men, Hongtao He, Kai Liang

College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China

* wuyanxia@hrbeu.edu.cn

Abstract

In recent years, with the development of computer science, deep learning is held as compe-

tent enough to solve the problem of inference and learning in high dimensional space.

Therefore, it has received unprecedented attention from both the academia and the busi-

ness community. Compared with CPU/GPU, FPGA has attracted much attention for its

high-energy efficiency, short development cycle and reconfigurability in the aspect of deep

learning algorithm. However, because of the limited research on OpenCL optimization on

FPGA of deep learning algorithms, OpenCL tools and models applied to CPU/GPU cannot

be directly used on FPGA. This makes it difficult for software programmers to use FPGA

when implementing deep learning algorithms for a rewarding performance. To solve this

problem, this paper proposed an OpenCL computational model based on FPGA template

architecture to optimize the time-consuming convolution layer in deep learning. The compar-

ison between the program applying the computational model and the corresponding optimi-

zation program provided by Xilinx indicates that the former is 8-40 times higher than the

latter in terms of performance.

Introduction

Recently, artificial intelligence technology has attracted worldwide attention. As a new field of

artificial intelligence, deep learning has an excellent strength to solve complex learning prob-

lems [1] [2]. However, with the progressive innovation of technology, the number of neural

network models also increases rapidly. During the period from 2012 to 2018, as the number

of neural network models increased, both the amount of model parameters and calculation

increased rapidly. The size of the AlexNet model designed in 2012 and VGG-16 model

designed in 2014 exceeded 200MB and 500MB respectively [3]. Meanwhile, the model parame-

ters have increased from 60 million to 138 million. Hundreds of millions operations are

required for each run. In order to improve performance, scholars have turned to designing

more efficient deep neural networks [4].

In accelerating the application of deep learning, FPGA has attracted a lot of attention

due to its advantages over GPU and ASIC. Compared with GPU, the acceleration design of

FPGA is hardware design. Its power consumption is lower than GPU. The acceleration of

FPGA can achieve higher performance under per power consumption. For example, in the

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Zhang S, Wu Y, Men C, He H, Liang K

(2019) Research on OpenCL optimization for FPGA

deep learning application. PLoS ONE 14(10):

e0222984. https://doi.org/10.1371/journal.

pone.0222984

Editor: Wajid Mumtaz, National University of

Sciences and Technology, PAKISTAN

Received: November 7, 2018

Accepted: September 11, 2019

Published: October 10, 2019

Copyright: © 2019 Zhang et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by the National

Key Research and Development Program

(2016YFB1000400), the Harbin Outstanding Young

Talents Fund (2017RAYXJ016), Nature Scientific

Foundation of Heilongjiang Province (F2018008).

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-5448-2189
https://doi.org/10.1371/journal.pone.0222984
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0222984&domain=pdf&date_stamp=2019-10-10
https://doi.org/10.1371/journal.pone.0222984
https://doi.org/10.1371/journal.pone.0222984
http://creativecommons.org/licenses/by/4.0/

reasoning stage of convolutional neural network, Microsoft team uses FPGA (Stratix V D5)

to achieve the acceleration performance of 134 pictures processing per second and the

power consumption is only 25 watts. If the superior FPGA (Arria 10 GX1150) is used, this

acceleration performance is expected to 233 pictures processing per second, while the power

consumption is basically unchanged. For high-performance GPU implementation (Caffe +

cuDNN), the acceleration performance is 500-824 pictures processing per second, and the

power consumption is 235 watts [5]. It means that FPGA has better energy efficiency com-

pared with GPU [6] [7] [8] [9]. Unlike GPU and ASIC with fixed hardware architectures,

FPGA is reconfigurable hardware, which means developers can connect the logical blocks

within the FPGA through programmable connections to achieve their desired function

[10]. This programmability enables developers to adjust their hardware design at any time

according to the deep learning algorithm. However, hardware acceleration design based on

FPGA requires software developers have a certain amount of hardware expertise, which is a

high threshold for them. In recent years, FPGA programming environment has been greatly

improved. Until now, the developers without corresponding hardware expertise have been

allowed to develop FPGA with advanced programming languages such as C, C++ and

OpenCL. It to some extent reduces the difficulty of FPGA development, shortens the FPGA

development cycle and provides convenience for researchers and developers [11]. In order

to reduce the difficulty of FPGA development, the key technologies in the automated high

level synthesis tool chain are studied. These researches can be easily classified from different

perspectives. From the perspective of the input language used by the user, it can be divided

into C language and C−like language. The research uses C/C++ as its input language [12]

[13] [14], this kind of research is divided into two categories when implementing automated

generation of FPGA hardware architecture. One category of research is a complete auto-

mated generation tool chain. The process of generating hardware architecture is completely

controllable, but the disadvantage is the insufficient universality of tools [14]. The other is to

use the current mainstream hardware generation high level synthesis tool chain [12] [13],

but it need to study the automation code generator in depth. The C/C++ language is trans-

lated by users to generate the input language supported by the commercial tool chain. The

main research of this category is how to map one high-level language to another high-level

language (such as OpenCL). Another kind of research work that directly uses C−like lan-

guage (such as OpenCL) as an input language, focuses on different architecture of the CNN

Accelerator [15] [16] [17]. However, because the same function of the program is imple-

mented in different OpenCL code, the hardware architecture generated by the automation

tool optimization is different. To implement efficient hardware circuits, developers need to

constantly try to optimize various configuration combinations. Even though the push-but-

ton automated tool also requires iterative optimization. The key innovation point of this

paper is proposed a computational model to help software engineers rationally design

parameters without additional third-party tools, how to quickly reduce the iteratively

written OpenCL code, and generate efficient hardware based on deeply loop pipelined

architecture.

Convolutional neural network

As is often used in image processing, convolutional neural network is one of the most

classical models in deep learning. Given an image and using filtering to extract features, the

machine will obtain an image called feature map [17]. The most commonly used Valid con-

volution assumes that the input feature is one dimension and the filter is one dimension,

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 2 / 19

https://doi.org/10.1371/journal.pone.0222984

there are Eq (1):

y ¼ conðx;w;0valid0 ¼ ðyð1Þ; � � � ; yðtÞ; � � � ; yðn � mþ 1ÞÞ 2 Rn� mþ1

yðtÞ ¼
Xm

i¼1

xðt þ i � 1ÞwðiÞ

8
>><

>>:

ð1Þ

In this equation, t = 1,2,. . .,n-m+1, and n>m.

In addition to CNN, most of the neurons in the neural network layer are fully connected.

Although full-connected neurons can recognize more complex images, there are also some

problems such as lack of flexibility and computational complexity. Convolution operation can

reduce unnecessary weight connections to make the transformed images more robust.

The pooling layer is also called the subsampling layer. It usually connects with the convolu-

tion layer. Through partial correlation principle, on the one hand, it can improve the robust-

ness of the system, and on the other hand, it can reduce the calculation of the characteristic

pattern.

The propagation process in the maximum pooling layer is as Eq (2):

yðkÞij ¼ maxðaðkÞðl1 iþsÞðl2 jþtÞÞ ð2Þ

In the formula, L1 and L2 represent the core pool size. For pooling layer and convolution

layer, we tend to pool after convolution and put an activation function after convolution. The

activation function is a simple non-linear operation, which improves the ability of non-linear

characterization. With the process of convolution-activation function-pooling, CNN can

obtain more robust features.

Deep learning convolutional neural networks bring is that the convolution layer needs to

consume a lot of memory [18], especially in the training process, because back-propagation

needs all the intermediate values of forward transmission. If the size of the input image is

H ×W and the filter size is m × n, the convolution can be expressed in the Eq (3):

zðkÞij ¼
Xm� 1

s¼0

Xn� 1

t¼0

wðkÞst xðiþ sÞðjþ tÞ ð3Þ

In the equation, w is the weight of the kernel. However, the equation above is not enough with

multiple convolution layers considered. Thus, a parameter is added to the kernel. The modi-

fied equation is as Eq (4):

zðkÞij ¼
X

c

Xm� 1

s¼0

Xn� 1

t¼1

wðk;cÞst xðcÞðiþsÞðjþtÞ ð4Þ

In the equation, c represents the image channel. If the number of kernels is k and the channel

is c, the convolution image size is (M −m + 1) × (N − n + 1) through the above equation.

Assuming that the size of the convolution kernel is 5×5, 200 feature map with the size of

150×100 are needed to output. If the input is three channels, the whole process requires 225

million floating point multiplication. This process involves a large number of multiplication

addition calculations, which requires a reasonable calculation computational model to

improve the performance of the system. However, in the actual optimization, we should not

only consider the optimization of computation, but also whether the storage resources on the

FPGA chip can transmit the data needed for multiplication addition calculation at one time

[19]. Assuming that ThroughputRate is the throughput of the system, it is affected by two

aspects of computation and memory access. The relationship between system throughput and

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 3 / 19

https://doi.org/10.1371/journal.pone.0222984

computation and memory access is shown in Eq (5):

ThroughputRate ¼ minðCalculatedPeak;MemoryPeakÞ ð5Þ

CalculatedPeak is the peak of computing power of calculation resources, and MemoryPeak is

the maximum floating point performance of the memory support. According to the above

equation, the overall throughput of the system is less than the minimum value [20] of two

items of calculation and memory access. The execution of the computation requires data sup-

port. The original data convolution layer computation requires are usually copied from Host

memory to FPGA off-chip global memory by the Host program. When the FPGA use that

data, it usually needs to be read from the off-chip global memory. Besides, the data generated

after the execution of the FPGA also need to be written back to the Host memory through the

off-chip global memory. However, FPGA off-chip global memory is not on the FPGA chip,

and FPGA usually takes much time to make data interaction with it. If no optimization is car-

ried out, it usually has a great impact on the performance of the program [21]. At the same

time, convolution calculation involves a relatively large amount of data, and a lot of data also

need to be reused in calculation, which results in low computational efficiency. The paper [22]

proposed a parallel acceleration strategy of CNN based on FPGA with OpenCL by the use of

Xilinx SDAccel. But there is no optimization details and method to configure the parameters,

it is difficult for researchers to reproduce. To deal with the above problems, this paper proposes

an OpenCL optimization strategy with an effective solution to the low memory efficiency and

the extra overhead generated by repeatedly read / written data from FPGA out of memory.

Loop pipelined architecture

The use of OpenCL tools to implement deep learning algorithms on FPGA greatly reduces the

work of designers. For the process of the internal hardware architecture mapping of the FPGA

is not considered, the development threshold is reduced. However, the process of converting

OpenCL into FPGA bitstream through development tools is transparent to the designers, for

whom it is hard to add into the project better hardware modules in other languages. In addi-

tion, most designers do not know the way to configure the bit width reasonably and the way

improve the parallelism to make full use of the advantages of FPGA and the effects of data

transfer on performance [23]. As a result, the deep learning algorithm designed by those

designers has no obvious advantage in performance. In this section, an loop pipelined-

architecture template is proposed for the optimization of convolutional neural network perfor-

mance. By using the optimized architecture template given in this section and the configura-

tion of specific technical parameters, it is verified by experiments that the performance of the

algorithm can be improved effectively in the accelerated design of FPGA deep learning algo-

rithm. The following section gives a detailed description of the optimized template architecture

and configuration of technical parameters.

Loop pipelined architecture abstraction

Convolutional neural network algorithm involves a large number of computations. By making

full use of the parallel characteristics of FPGA, convolution algorithm based on OpenCL on

FPGA can be utilized to the advantages of FPGA. An optimized architecture template is pro-

posed of OpenCL based on FPGA, which is shown in Fig 1.

Template parameters

According to the parameterized optimization architecture diagram, the following parameters

are needed for calculation and determination:

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 4 / 19

https://doi.org/10.1371/journal.pone.0222984

Fig 1. Hardware architecture template diagram.

https://doi.org/10.1371/journal.pone.0222984.g001

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0222984.g001
https://doi.org/10.1371/journal.pone.0222984

• Determining the parameter data Nd, the number of elements in the vector data type is Ne.

Nd ¼ Kn � Ne ð6Þ

• Determining the width of the data port bit_width.

bit width ¼

(num bit; num bit 2 f32; 64; 128; 256; 512g

default; num bit =2 f32; 64; 128; 256; 512g
ð7Þ

In the equation, nun_bit is the number of data digits corresponding to the data type.

• The theoretical value of the total number of data transfer times is Nt, and the average data

amount of each data transfer is Kt.

Nt ¼
Xn

i¼1

Ni

Bui

� �

ð8Þ

Kt ¼

Xn

i¼1

NiBi

Nt � 8 � 1000

ð9Þ

In the equation, Ni is the total number of per variable data transfer and Bi is the data bits.

• The number of DSP needed for the calculation is dsp_need.

dspneed ¼ Nunroll � K ð10Þ

In the equation, Nunroll is the unrolling loop degree in the unrolling loop scheme; K is the

number of using DSP for each loop iteration. This value can be obtained from the resource

use report. The number of DSP required for each multiplication operation can be obtained

through the related development board documents, and then K also can be calculated.

• Calculate the number of sub parts of the array data memory, p_num.

pnum¼
minðnum; nummaxÞ; loop partition

min num d
addr i ; nummax

� �
; block partition

8
<

:
ð11Þ

In the equation, num_d is the total number of data in the array. num is the number of conse-

cutive data addresses for each calculation. num_max is the upper limit of the array partition

supported by the compiler. addr_i is the address interval of each of the adjacent data.

• The cyclic boundary Lb.

Lb ¼

(x; cyclic boundary is variable

c; cyclic boundary is constant
ð12Þ

• Determine the number of the configuration computing unit, N.

N < min
1

B
;
1

D
;Nk

� �

ð13Þ

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0222984

In the equation, B and D are the percentages of BRAM resources consumed by a single cell

and the percentage of DSP resources consumed by a single cell respectively, and Nk is the

number of cells restricted by the compiler.

• The number of memory ports for storing data is numport, and the theoretical parallelism of

the data calculation is v_cal. The maximum parallelism of data reading/writing is v_data,

and these three parameters can be obtained from the program execution information.

Computational model

1. The relevant parameters are obtained by calculation out of hardware architecture template

drawing and parameter calculation equation. The specific OpenCL optimization technol-

ogy and related parameters are selected by the following algorithm steps.

(1) Judge whether the address stored in the off-chip global memory of the corresponding

parameter is continuous. If so, entered (2); if not, the data vectorization is not optimized.

(2) Judge whether the data quantity contained in parameter is suitable for data vectoriza-

tion. Ne represents the number of elements in vector data type supported by

OpenCL compiler. Ne 2 {2, 3, 4, 8, 16}. Traverse the value of Ne. If 9Kn 2 N+ can

make Nd and Ne satisfy the formula (1), the value of Kn is recorded. After the traversal

is completed, the whole value of Kn recorded is combined into a set called L. If the set L
is not empty, enter (3). If the set is empty, the data vectorization optimization is not

carried out.

(3) The minimum value in the set is recorded as Lmin. The data are grouped in ascending

order of size, and the number of groups is Lmin. The number of data in each group is Nd/

Lmin. After completing the grouping, each group of data are used as a whole to replace the

original data in kernel. If they can be substituted equivalently and do not affect the correct

execution of the program, they enter (4). Otherwise, remove the Lmin from the set L and

repeat (3).

(4) Carry out data vectorization optimization. Nd/Lmin represents the number of elements

contained in vector type data.

2. Configure the number of data ports and the bit width. The bit width of a data port is usually

related to the data type of data transmitted through the port. At present, the OpenCL com-

piler supports a bit width of 32, 64, 128, 256 and 512 bits. If the data type corresponding to

the data bit num_bit 2 {32, 64, 128, 256, 512}, the port bit width is set as num_bit. Other-

wise, keep the default setting. By default, the OpenCL compiler automatically configures

the bit width of the data port according to the actual situation.

3. Assuming that there are n global variables involved in the data transfer(read), the total

number of data transfers (read) per variable is N1, N2, � � �, Nn. The data digits are B1, B2, � � �,

Bn, and the burst length of data read and write is Bu1, Bu2, � � �, Bun. The burst length of

burst read-write model is usually 16, and the length of non-burst read-write model is 1.

According to the procedure execution report, it is judged whether the new optimization is

carried out. The steps are as follows:

(1) Record the total number of data transfers (reading/writing) in the program execution

report and the average amount of data (reading/writing) per data transfer. The values are

Nr, Nw, Kr, Kw respectively.

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 7 / 19

https://doi.org/10.1371/journal.pone.0222984

(2) According to the Eqs (3) and (4), calculate the total number of data transfers (reading/

writing) and the average amount of data (reading/writing) per data transfer after memory

optimization. The values obtained are Ntr, Ntw, Ktr, and Ktw respectively.

(3) If Ntr is less than Nr (or Ktr is greater than Kr) or Ntw is less than Nw (or Ktw is greater than

Kw), and the difference is larger, it is necessary to adjust the optimization; Otherwise,

there is no need to be re-optimized.

4. The set A is all iterations in the nested loop to be analyzed. Unrolling loop and optimizing

array partition are carried out according to the following process:

(1) The analysis is started from the most inner loop in the set A. If the layer is already the out-

ermost loop or the cycle order of the layer cannot be exchanged with the innermost loop,

record the innermost loop and all loops that can exchange order with the inner loop as

the set B. Remove the elements in set B from set A and enter (2); Otherwise, analyze the

outer loop.

(2) According to the Eq (10), the number of DSP dspneed required for the scheme is calcu-

lated. And then, compare dspneed with the total number of DSP on-chip dsptotal. If

dspneed< dsptotal, and the array division that conforms to the computational parallelism

of the scheme can be realized, enter (3); Otherwise, analyze the next scheme.

(3) In this scheme, if all loops in set B are fully expanded and set A is not empty, then enter

(1) and calculate the degree of parallelism; otherwise, enter (4).

(4) Optimization is carried out according to the unrolling loop scheme and the correspond-

ing array partition scheme. Analyze whether an array partition that satisfies the compu-

tation parallelism in (2) can be achieved. Next, analyze the data after the unrolling loop

and group the data, and then the array stored on the same FPGA on-chip memory is

divided into a set. Analyze each group of data sequentially, and select the corresponding

analysis method according to its storage method on FPGA in the forms of one-dimen-

sional array and multi-dimensional array. If all arrays can be partitioned to satisfy

computational parallelism, it is shown that an efficient array partition can be made for

the unrolling loop scheme. Otherwise, the effective array partition cannot be carried

out.

(5) It is analyzed from two aspects: one-dimensional array and multi-dimensional array.

The steps of one-dimensional array analysis are given as follows:

(a) Analyze the address characteristics of each calculation involving data after the loop

unrolling. If the addresses are continuous, carry out cyclic division to the array and enter

(c). If the address is not continuous but the interval is uniform, carry out block division

to the array and enter (c). If the data address characteristics do not meet the both of the

above conditions, enter (b). The calculation method of dividing the number of sub-parts

storing array data memory is like Eq (11).

(b) If num_d< num_reg, the array is to be divided entirely and enter (c), otherwise it cannot be

effectively divided.num_reg is the total number of FPGA on-chip registers available.

(c) Verify whether the parallelism of data reading/writing after array partition satisfies the

parallelism of computation in the unrolling loop scheme. If it is satisfied, the array parti-

tion is effective and the array partition scheme is recorded; otherwise, the array partition

is invalid.

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 8 / 19

https://doi.org/10.1371/journal.pone.0222984

The steps of multi-dimensional array analysis are as follows:

(a) According to the array dimension, the array is completely divided on this dimension.

Verify whether the parallelism of data reading/writing after array partition satisfies the

parallelism of computation in the unrolling loop scheme.

(b) If there exists a dimension that can be realized, the multi-dimensional array is regarded

as one dimension array of this dimension, and the analysis method is carried out accord-

ing to the one dimension array; otherwise, it enters (c). It should be noted that in the anal-

ysis of complete partitioning, what needs to be considered is not the restriction of

registers on the FPGA chip, but the number of subparts of the array partitioning p_num
< num_max.

(c) If num_d< num_reg, the multi-dimensional array is to be divided entirely, otherwise it

cannot be effectively divided.

(6) Optimization based on the cyclic pipelining is as follows:

(a) In loop unrolling, if there is a circular boundary Lb which is x, no optimization is made;

Otherwise, enter (2).

(b) If there is a loop which enables all loops to unfold optimization, the involved cycles are to

be its sub-cycles, with the most inner loop selected and enter (3); otherwise, the optimiza-

tion of cyclic flow is not carried out.

(c) If the Lb of all the sub loops in the inner loop is c, the optimization of the cyclic flow is

performed; otherwise, it will not be optimized.

(7) According to the program execution report, the percentage of BRAM(B) resources and

the percentage of DSP(D) resources consumed by a single computing element are

obtained. Calculate the values of 1/B and 1/D, and then compare them with Nk to find out

the minimum, with the limit conditions for configuring the number of computing ele-

ment N obtained according to the Eq (13).

(8) According to the program execution report, the number of storing data memory ports is

numport, and the theoretical parallelism of data calculation is v_cal. If the data is not stored

in registers and numport = 1, it can be judged that the computing does not make full use of

data reading/writing parallelism, because the OpenCL compiler can allocate up to two

data ports for each memory at most. To deal with this situation, it is generally necessary

to re-optimize the calculation. If numport = 2, it illustrates that the parallelism of data read-

ing/writing is fully utilized. At this time, compare the values of A and B. If v_call>
v_data, repartition the array.

Experimental section

The compiler tool used in this experiment is the Xilinx SDx tool, and the FPGA development

board produced by the Alpha Data company is the ADM-PCIE-7V3 board. Linux is the execu-

tion environment of the Host terminal. The specific environment of this experiment is shown

in Table 1 and the specific configuration of the ADM-PCIE-7V3 board is given in Table 2.

Optimization example

In this section, this paper introduces the OpenCL example of convolution layer on FPGA

firstly. Based on this example, the computational model is applied to the convolution layer.

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 9 / 19

https://doi.org/10.1371/journal.pone.0222984

Later the application of the computational model is explained in detail. Finally, the results of

the optimized program execution are given.

Convolution layer OpenCL example on FPGA. In the convolutional neural network

model, the operation of each convolution layer is consistent and it is convolution operation.

The difference lies in data processing and the scale of data, so the optimization methods and

ideas are basically the same in the optimization of different convolution layer. Accordingly,

this section focuses on the example of a single convolution layer in convolutional neural net-

work. The example program given in this section is an ordinary convolution layer program

without any optimization, whose parameters are shown in Table 3.

The number of convolution kernel channels is 48, and the number of convolution kernels

is 256. The convolution layer is mainly implemented in the OpenCL kernel program, and the

Host is mainly responsible for configuring the environment required by the kernel program,

calling the kernel program, carrying out data transfer with kernel, etc. The specific implemen-

tation of pseudo code is shown in Algorithm 1.

Algorithm 1: Realization of pseudo code in convolution layer
Input: �image, input feature map data �weights, input weight data
Output: �out output feature map data
1 async_work_group_copy(local_image,image,i_channel�ISize�ISize, 0);
2 async_work_group_copy(local_weight,weights,o_channel�i_channel�WSize
�WSize, 0);

3 index 0;
4 outputLoop: for o_num 0 to o_channel do
5 outYAxis: for o_y 0 to OSize do
6 outXAxis: for o_x 0 to OSize do
7 sum 0;
8 convInchan: for conv_num 0 to i_channel do
9 convILoop:for conv_y 0 to WSize do
10 convJLoop: for conv_x 0 to WSize do
11 x_padding o_x�Stride+con_x-Padding;
12 y_padding o_y�Stride+con_y-Padding;

Table 1. Experimental software and hardware environment.

software environment operating system Centos release 6.7 final

compiler tools SDx 2016.3

hardware environment Host terminal processer Intel (R) Xeon (R) CPU E5-2620 @ 2.00GHz

FPGA development board ADM-PCIE-7V3board

https://doi.org/10.1371/journal.pone.0222984.t001

Table 2. ADM-PCIE-7V3 the specific configuration of the board.

FPGA Logic unit Host interface DDR3 Network interface Power dissipation

(typical value)

Virtex-7

VX690t-2(28nm)

693K PCIe Gen3 x8 16GB ECC

DDR3

1333MT/sec

Dual SFP+(10GbE) 23-26W

https://doi.org/10.1371/journal.pone.0222984.t002

Table 3. Parameters of a single convolution layer.

Input Convolution Kernel Output

Feature Map Size Channels Kernel Size Stride Padding Feature Map Size Channels

27×27 48 5×5 1 2 27×27 256

https://doi.org/10.1371/journal.pone.0222984.t003

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0222984.t001
https://doi.org/10.1371/journal.pone.0222984.t002
https://doi.org/10.1371/journal.pone.0222984.t003
https://doi.org/10.1371/journal.pone.0222984

13 if 0�y_padding<Isize and 0�x_padding<Isize then
14 sum += local_image[con_num � ISize � ISize+y_padding

� ISize + x_padding]�local_weight[((o_num�i_channel +
conv_num)�WSize+conv_y)�WSize+conv_x];

15 end
16 end
17 end
18 end
19 local_out[index++]=sum;
20 end
21 end
22 end
23 async_work_group_copy(out, local_out, o_channel�OSize�OSize, 0);

The original convolution layer program is compiled, deployed and run to get information

about data transfer as shown in Table 4. where it can be seen that there are multiple data trans-

fers between the kernel of convolution layer and the off-chip global memory, and the average

data amount for each data transfer is only 4 bytes. Therefore, the data transfer efficiency is low.

Example optimization scheme. The basic program of convolution layer is optimized

according to the hardware architecture diagram and computational model proposed in the

third and fourth section. The main work of this section is to apply the computational model to

the example program, and give the parameters needed for each step and the detailed optimiza-

tion scheme.

According to the first step of the computational model, the amount of data Nd contained

in the parameter is 307200. Traverse Ne, and figure out Kn 2 {19200, 38400, 76800, 102400,

153600} according to the parameter calculation Eq (6), and Kn is not empty. Take out the

minimum value 19200. The data are grouped in ascending order according to the address.

The number of groups is 19200, and the number of data in each group is 16. Carry out the

vector optimization to the data which can equivalently replace the original data used in the

kernel.

According to the second step of the computational model, the global parameter is set to

be _global int 16� pre, and the bit width of data transfer between the computing unit and the

memory interconnection / memory controller is set to be 16×32, namely, 512 bits. According

to the parameter Eq (8), the bit width is determined to be 512 bits, which makes it accessible to

support a single data transfer of 512 bits. Thus, the number of data transfer each time varies-

from 1 to 16, which can effectively reduce the number of memory transfer data.

According to the third step of the computational model, Nt and Kt are calculated by the

parameter calculation Eqs (8) and (9). For Ntr is larger than Nr in the program execution report

and Ntw is larger than Nw in the execution report in the example, there is no need to re-opti-

mize this time.

The data transfer between convolution layer kernel and off-chip global memory can be

obtained after the first three steps of optimization according to the computational model, as

shown in Table 5, which indicates that the number of data transfers between the convolution

layer kernel program and the global memory off-chip is greatly reduced, and the average

amount of data transfer is increased to 64 bytes.

Table 4. Related information of data transfer in the convolution layer basic program.

Transfer Type Number of Transfers Transfer Rate(MB/s) AvgBandwidth Utilization(%) Avg Size(KB) Avg Time(ns)

Data Transfer:

Kernels and Global Memory

Read 408969216 63.049 0.547 0.004 27.240

Write 186624 0.029 2.4975E-4 0.004 15.000

https://doi.org/10.1371/journal.pone.0222984.t004

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 11 / 19

https://doi.org/10.1371/journal.pone.0222984.t004
https://doi.org/10.1371/journal.pone.0222984

According to the fourth step of the computational model, the dspneed is figured out to be

251 by the parameter calculation Eq (10). The total number of DSP on-chip is 3600. The num-

ber of DSP needed is less than the total number and set B is fully unrolled loop. Fig 2 shows

the use of optimized instruction and the equivalent code after unrolling. Graph (a) shows the

equivalent code when the unrolling factor is 2, and graph (b) shows the equivalent code when

the unrolling factor is by default.

For the size of convolution kernel is 5×5, the theoretical parallelism of computation is 25.

However, the input characteristic graph data involved in the calculation and the convolution

kernel data are stored locally in the form of one-dimensional arrays. Without the array parti-

tion optimization, the OpenCL compiler only assigns two ports to it at most. That is, the

degree of parallelism of reading is 2, which is much less than the degree of parallelism of calcu-

lation, so the arrays need to implement array partitioning.

According to the fifth step of the computational model, the p_num of cyclic partitioning

and block partitioning are calculated by Eq (11). Since the total number of num_d in the array

is less than that of num_reg of available registers on-chip, the array is completely partitioned.

In the process of loop unwrapping and array partitioning optimization, the last three layers of

the convolution layer implementation code (calculation of single pixel in output characteristic

graph) are optimized and the corresponding array partitioning is carried out. Meanwhile, for

the convenience of optimization, this section divides the last three layers into double three-

layer according to convolution multiplication and addition. For the two three-layer loops are

consistent in architecture, the corresponding optimization strategies are nearly identical. The

Table 5. Information related to data transfer after memory optimization.

Transfer Type Number of Transfers Transfer Rate(MB/s) AvgBandwidth Utilization(%) Avg Size(KB)

Data Transfer:

Kernels and Global Memory

Read 21387 1.198 0.010 0.064

Write 11664 0.654 0.006 0.064

https://doi.org/10.1371/journal.pone.0222984.t005

Fig 2. Example of using unrolling loop instruction.

https://doi.org/10.1371/journal.pone.0222984.g002

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 12 / 19

https://doi.org/10.1371/journal.pone.0222984.t005
https://doi.org/10.1371/journal.pone.0222984.g002
https://doi.org/10.1371/journal.pone.0222984

specific code of the optimization of the convolution multiplication calculation is shown as in

Fig 3. In this optimization, the inner and outer two-layer cycles are completely unrolled, and

the theoretical calculation parallel degree is 48×5, namely 240. The theoretical value of data

reading/writing parallelism involved in the calculation is 48×5×2, namely 480. Since the paral-

lelism of data reading and writing is greater than that of computing, the outer loop is partially

unrolled in order to match the parallelism of the both and the unrolling factor is 2 in this

optimization.

According to the sixth step of the computational model, the cyclic pipelining instruction

__attribute__ ((xcl_pipeline_loop)) can be used when writing an OpenCL program. The

main function of this instruction is to ensure the FPGA performs each iteration of the loop

in a pipelining manner by adding the instruction outside of the for-loop. The entire loop

boundaries are constants and the Lb is obtained from Eq (12) to optimize cyclic pipelining

for c. Fig 4 shows the use of loop instructions and the execution situation of loops before

and after the use of instructions. Figure (a) gives the performance of the cycle execution

without using loop pipelining optimization, and figure (b) demonstrates the use of loop

pipelining.

According to the seventh step of the computational model, the 1/B and 1/D in the Eq (13) are

22.1 and 14.3 respectively according to the execution report. The compiler limits the number of

computing units to 10. According to the parameter calculation Eq (13), the number of N is less

than 10. In this range, it is the best to use six computing units for this example program, so six

computational are configured elements this time. The kernel program is split into 6 working

groups, with each containing only one work items and the specific OpenCL kernel optimization

code shown in Fig 5. The output characteristic graph data are stored in order according to the

channel. To make the address space of the output data in the off-chip global memory continuous

Fig 3. The specific code optimization of convolution multiplication calculation.

https://doi.org/10.1371/journal.pone.0222984.g003

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0222984.g003
https://doi.org/10.1371/journal.pone.0222984

Fig 4. Using examples of loop instructions.

https://doi.org/10.1371/journal.pone.0222984.g004

Fig 5. Kernel optimization code for multiple computing units.

https://doi.org/10.1371/journal.pone.0222984.g005

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 14 / 19

https://doi.org/10.1371/journal.pone.0222984.g004
https://doi.org/10.1371/journal.pone.0222984.g005
https://doi.org/10.1371/journal.pone.0222984

when each computing unit transmits data with the off-chip global memory, this division of the

kernel program is based on the number of channels in the output characteristic graph.

According to the eighth step of the computational model, unrolling loop and array partition

optimization of the last three layer loops of convolution operation are carried out. The degree

of parallelism of the optimized convolution multiplication is 480, which is two fifths of that of

the ideally optimized convolution multiplication. Multiple computing units optimization of

the outermost loop of the first three layers is carried out, and the parallelism of the output fea-

ture image pixel calculation after optimization is 6, which is much less than that of the pixel

calculation of the output feature image after optimization. The optimization of cyclic flow is

carried out for the inner loop. Finally, by comparing the values of additions, it is found that

there is no need to repartition the array.

Optimization performance analysis of the program. According to the computational

model proposed, the example code is directed toward optimization, whose result compared to

the latest Xilinx optimization program [17] is shown in Table 6. From the runtime of each cell

and the whole kernel, it is found that these four cells are basically executed in parallel.

The final optimization result of this example program is shown in Table 7. The final execu-

tion time of the example program is 9.76 milliseconds after optimization. Moreover, this paper

also tests the performance of the convolution layer optimization program provided by Xilinx,

as summarized in Table 5 where it can be seen that the final performance of the program is 29

times higher than that of the optimization program provided by Xilinx company.

The final optimization results of this experiment are compared with the CPU implementa-

tion [20], as indicated in Table 8. The 1-thread in the table is set as single thread execution,

Table 6. Optimized kernel program execution time.

Kernel Execution Total Times(ms)

9.760

Computational Unit Global Work Size Local Work Size Number of Calls Xilinx(ms) Optimized Program

Computational Unit Utilization 1 6:1:1 1:1:1 1 290.751 8.730

2 6:1:1 1:1:1 1 290.859 8.930

3 6:1:1 1:1:1 1 291.721 9.026

4 6:1:1 1:1:1 1 291.684 8.887

https://doi.org/10.1371/journal.pone.0222984.t006

Table 7. Performance comparison of the different optimization programs in the convolution layer OpenCL.

Original Convolution Layer

Program

The Optimization Program Provided by Xilinx

Company

The Example Optimization

Program

Speedup

Ratio

Execution Time

(ms)

1142.26 291.977 9.76 29x

https://doi.org/10.1371/journal.pone.0222984.t007

Table 8. Comparison of optimization examples and CPU implementation.

Intel Xeon 2.20GHz FPGA

1-thread –O3 16-thread –O3

Execution Time (ms) 94.66 27.0 9.76

Speedup Ratio 1x 3.5x 9.7x

Power(Watt) 95.00 95.00 25.00

Energy(J) 8.99 2.57 0.24

https://doi.org/10.1371/journal.pone.0222984.t008

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 15 / 19

https://doi.org/10.1371/journal.pone.0222984.t006
https://doi.org/10.1371/journal.pone.0222984.t007
https://doi.org/10.1371/journal.pone.0222984.t008
https://doi.org/10.1371/journal.pone.0222984

and the 16-thread is set as the 16-thread execution. -O3 represents the optimization level of a

compiler is -O3.

From Table 8, it can be seen that the performance of the optimized convolution on FPGA is

9.76 times higher than that of single-thread CPU, 2.8 times higher than that of 16-thread CPU.

Also, it is indicated that the energy consumption of the convolution program optimized by the

computational model proposed and implemented on FPGA is significantly lower than that of

CPU.

Comparison and analysis of different scale convolution programs

In order to analyze the performance of different scale convolution programs, eight kinds of

convolution layer programs are set up according to the ascending order as shown in Table 9.

Layer 1 is one of scales, and the number of input and output channels is 64 and 128 respec-

tively. Input a picture sample of a size of 111164 with the convolution kernel of 3364 size,

the number of convolution kernels are 128 and the step size is 1. The result of the final output

after the convolution operation is 1111128. The other 7 scales of convolution program analysis

methods are the same with Layer1.

The computational model proposed is applied to the convolution layer of different scale,

and its performance is compared with the corresponding optimization program provided

by Xilinx company, as shown in Table 10. Convolution of different scales is optimized based

on the computational model proposed, and its optimized time consumption is significantly

reduced while compared with that of the optimization program by Xilinx. Fig 6 shows the

speed-up ratio of Layer1L̃ayer8 where the higher the speed-up ratio, the better the optimiza-

tion effect is. Accordingly, the optimized program has higher performance than optimized

program of Xilinx.

Table 9. CNN configurations.

Layer 1 2 3 4 5 6 7 8

Input_Ch 64 128 64 48 64 48 64 96

Output_Ch 128 192 96 96 128 128 96 128

Row 11 13 17 19 23 27 33 36

Col 11 13 17 19 23 27 33 36

Kernel 3×3 3×3 3×3 3×3 3×3 3×3 3×3 3×3

Stride 1 1 1 1 1 1 1 1

https://doi.org/10.1371/journal.pone.0222984.t009

Table 10. Performance comparison of different convolution scale optimization program with Xilinx company.

Convolution scale Execution time (ms)

The optimization program provided by Xilinx company The program optimized by the computational model

Layer1 12.4 1.4

Layer2 48.81 3.2

Layer3 21.5 2.3

Layer4 20.4 2.6

Layer5 52 4.6

Layer6 54.5 5.6

Layer7 216.2 8.1

Layer8 508.4 12.67

https://doi.org/10.1371/journal.pone.0222984.t010

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 16 / 19

https://doi.org/10.1371/journal.pone.0222984.t009
https://doi.org/10.1371/journal.pone.0222984.t010
https://doi.org/10.1371/journal.pone.0222984

This paper put the code link into the paper openly accessible for other researchers to study

and explore new accelerator method for deep neural networks. It can be found at the following

link: https://github.com/PoetryAndWine/FPGA_CNN_Acceleration.

Conclusion

This paper proposes an computational model based on OpenCL, which enables the transfor-

mation of the OpenCL model on GPU/CPU to FPGA. This computational model is used

to help software programmers without fundamental hardware knowledge for a quick imple-

mentation in deep learning algorithm with high performance using FPGA. In terms of per-

formance, the computational model not only reduces the cost of data interaction, but also

improves the efficiency of data calculation. In terms of adaptability, the computational

model is flexible and suitable for convolution layers of different sizes. The results of the pro-

posed computational model applied to convolution layers of different scales show that the

performance of the proposed computational model is 8-40 times higher than that of the cor-

responding optimization program provided by Xilinx Company.

Fig 6. Optimized speed-up ratio of different scale convolution.

https://doi.org/10.1371/journal.pone.0222984.g006

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 17 / 19

https://github.com/PoetryAndWine/FPGA_CNN_Acceleration
https://doi.org/10.1371/journal.pone.0222984.g006
https://doi.org/10.1371/journal.pone.0222984

Supporting information

S1 File. Convolution layer optimization code and the performance data. (Xilinx and this

paper).

(ZIP)

Acknowledgments

Our work is supported by the National Key Research and Development Program

(2016YFB1000400), the Harbin Outstanding Young Talents Fund (2017RAYXJ016),Nature

Scientific Foundation of Heilongjiang Province (F2018008).

Author Contributions

Formal analysis: Shuo Zhang, Hongtao He.

Funding acquisition: Yanxia Wu.

Methodology: Chaoguang Men.

Project administration: Yanxia Wu.

Resources: Kai Liang.

Supervision: Yanxia Wu, Chaoguang Men.

Writing – original draft: Shuo Zhang, Kai Liang.

Writing – review & editing: Shuo Zhang, Hongtao He.

References
1. Yu Q, Wang C, Ma X, Li X, Zhou X. A Deep Learning Prediction Process Accelerator Based FPGA.

Ieee/acm International Symposium on Cluster, Cloud and Grid Computing. IEEE, 2015:585-594.

2. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521(7553):436. https://doi.org/10.1038/

nature14539 PMID: 26017442

3. Véstias M, Duarte RP, de Sousa JT, Neto H. Parallel dot-products for deep learning on FPGA. Field

Programmable Logic and Applications (FPL), 2017 27th International Conference on. IEEE, 2017: 1-4.

4. Zhu J, Qian Z, Tsui CY. LRADNN: High-throughput and energy-efficient Deep Neural Network accelera-

tor using Low Rank Approximation. Design Automation Conference. IEEE, 2016:581-586.

5. Lacey G, Taylor GW, Areibi S. Deep Learning on FPGAs: Past, Present, and Future. arXiv: Distributed,

Parallel, and Cluster Computing. 2016

6. Chen DT, Singh DP. Fractal video compression in OpenCL: An evaluation of CPUs, GPUs, and FPGAs

as acceleration platforms. Asia and south pacific design automation conference. 2013:297-304

7. Zhang C, Sun G, Fang Z, Zhou P, Pan P, Cong J. Caffeine: towards uniformed representation and

acceleration for deep convolutional neural networks. International conference on computer aided

design. 2016.

8. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. Accelerating recurrent neural networks

in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC. Field programmable logic and appli-

cations. 2016:1-4.

9. Ouyang J, Lin S, Qi W, Wang Y, Yu B, Jiang S. SDA: Software-defined accelerator for large-scale DNN

systems. Hot Chips 26 Symposium. IEEE. 2016:1-23

10. Nurvitadhi E, Sim J, Sheffield D, Mishra A, Krishnan S, Marr D. Accelerating recurrent neural networks

in analytics servers: Comparison of FPGA, CPU, GPU, and ASIC International Conference on Field

Programmable Logic and Applications. IEEE, 2016:1-4.

11. Stone JE, Gohara D, Shi G. OpenCL: A Parallel Programming Standard for Heterogeneous Computing

Systems. Computing in Science & Engineering, 2010, 12(3):66–73. https://doi.org/10.1109/MCSE.

2010.69

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 18 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0222984.s001
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1371/journal.pone.0222984

12. Wei X, Yu C, Zhang P, Chen Y, Wang Y, Hu H, et al. Automated Systolic Array Architecture Synthesis

for High Throughput CNN Inference on FPGAs. The 54th Annual Design Automation Conference 2017.

ACM, 2017.

13. Abdelouahab K, Pelcat M, Serot J, Bourrasset C, Quinton JC, Berry F. Hardware Automated Dataflow

Deployment of CNNs. arXiv:1705.04543v3.2017

14. Huang Q, Lian R, Canis A, Choi J, Xi R, Brown S, et al. The Effect of Compiler Optimizations on High-

Level Synthesis for FPGAs. IEEE International Symposium on Field-programmable Custom Computing

Machines. IEEE, 2013.

15. Abdelfattah MS, Hagiescu A, Singh D. Gzip on a chip: high performance lossless data compression on

FPGAs using OpenCL. Proceedings of the International Workshop on OpenCL 2013 & 2014.

16. Farabet C, Martini B, Akselrod P, Talay S, LeCun Y, Culurciello E. Hardware accelerated convolutional

neural networks for synthetic vision systems. IEEE International Symposium on Circuits & Systems.

IEEE, 2010.

17. Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, et al. Going Deeper with Embedded FPGA Platform for Con-

volutional Neural Network. Proceedings of the 2016 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays. ACM, 2016.

18. Ko BS, Kim HG, Oh KJ, Choi HJ. Controlled dropout: A different approach to using dropout on deep

neural network. IEEE International Conference on Big Data and Smart Computing. IEEE, 2017:358-

362.

19. Suda N, Chandra V, Dasika G, Mohanty A, Ma Y, Vrudhula S, et al. Throughput-Optimized OpenCL-

based FPGA Accelerator for Large-Scale Convolutional Neural Networks. Proceedings of the 2016

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. 2016:16-25.

20. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J. Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks. Acm/sigda International Symposium on Field-Programmable Gate

Arrays. ACM, 2015:161-170.

21. Czajkowski TS, Aydonat U, Denisenko D, Freeman J, Kinsner M, Neto D, et al. From OpenCL to high-

performance hardware on FPGAs. Field Programmable Logic and Applications (FPL), 2012 22nd Inter-

national Conference on. IEEE, 2012: 531-534.

22. Luo L, Wu Y, Qiao F, Yang Y, Wei Q, Zhou X, et al. Design of FPGA-Based Accelerator for Convolu-

tional Neural Network under Heterogeneous Computing Framework with OpenCL. International Journal

of Reconfigurable Computing, 2018, 2018:1–10. https://doi.org/10.1155/2018/1785892

23. Tapiador R, Riosnavarro A, Linaresbarranco A, Kim M, Kadetotad D, Seo J. Comprehensive Evaluation

of OpenCL-based Convolutional Neural Network Accelerators in Xilinx and Altera FPGAs. Robotic and

Technology of Computers Lab report. 2016.

OpenCL optimization for FPGA deep learning application

PLOS ONE | https://doi.org/10.1371/journal.pone.0222984 October 10, 2019 19 / 19

https://doi.org/10.1155/2018/1785892
https://doi.org/10.1371/journal.pone.0222984

