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Network models are increasingly being used to understand the spread of diseases through sparsely

connected populations, with particular interest in the impact of animal movements upon the dynamics of

infectious diseases. Detailed data collected by the UK government on the movement of cattle may be

represented as a network, where animal holdings are nodes, and an edge is drawn between nodes where

a movement of animals has occurred. These network representations may vary from a simple static

representation, to a more complex, fully dynamic one where daily movements are explicitly captured.

Using stochastic disease simulations, a wide range of network representations of the UK cattle herd are

compared. We find that the simpler static network representations are often deficient when compared

with a fully dynamic representation, and should therefore be used only with caution in epidemiological

modelling. In particular, due to temporal structures within the dynamic network, static networks

consistently fail to capture the predicted epidemic behaviour associated with dynamic networks even when

parameterized to match early growth rates.
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1. INTRODUCTION
The movement of animals within the UK is vital to the

economics of the livestock industry, but carries with it

the risk of transmitting infectious diseases across sub-

stantial geographical distances. Data on the movement of

all cattle in the UK are collected by the Department for

Environment Food and Rural Affairs (DEFRA), as part

of the Rapid Analysis and Detection of Animal-related

Risks (RADAR) system, itself part of the Veterinary

Surveillance Strategy (Lysons et al. 2007).

This movement data may be abstracted into a directed

contact network in which agricultural premises are nodes,

and the movements of cattle between premises are edges.

The resulting network may be analysed using a range of

techniques, including those developed for handling social

networks (Wasserman & Faust 1994; Carrington et al.

2005). A common approach has been to consider all the

movements within a fixed period (typically 7 or 28 days, or

a year) as a static network, and then to analyse the

properties of the resulting network (Christley et al. 2005;

Bigras-Poulin et al. 2006), or to repeat this process for a

consecutive sequence of such periods and look for trends

in the properties of the resulting networks (Robinson et al.

2007). Indeed, most social network analysis concentrates

on static networks, and there is a paucity of strategies

for addressing the structure of dynamic networks

(Wasserman & Faust 1994). Research into dynamic

networks has concentrated on models based on how

individuals create or change their ties in a network, in

response to their perception of that network’s structure

(Snijders 2005), how popular other individuals in the

network are (Barabási & Albert 1999), their social

distance from and shared activities with other individuals

(Kossinets & Watts 2006) or how the other individuals
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perform in a game-theoretic framework (Skyrms &

Pemantle 2000; Zimmermann et al. 2004). The dynamic

pattern of movement between farms is also likely to

be governed by some underlying set of rules linking

livestock population dynamics with economics; however,

given the comprehensive nature of the recorded move-

ments, our aim is to understand how they influence

disease transmission.

The UK cattle movement data, and the network of

connections that can be derived from it, are one of the

most detailed datasets available on dynamic network

structure. As such, these data have provided an ideal test

of many theories and concepts from network theory. What

is more, the presence of information about infection on

cattle farms (Wint et al. 2002; Gilbert et al. 2005) provides

a real-world comparison with the ideals of network theory.

Obviously predicting the spread of actual infections

through the cattle movement network requires models

that can accurately capture the epidemiology and natural

history of a particular pathogen, and produce results that

are specific to the particular infection studied. Here we

adopted an alternative, and more generic approach, using

simple disease models to understand the implications of

dynamic cattle movements, as opposed to static network

connections. These simple models treat the farm as a

single epidemiological unit.

In this paper, a range of static and dynamic network

representations of the UK’s cattle herd are considered.

Since the purpose of constructing network models of

cattle movement is to understand the impact of move-

ments upon the dynamics of infectious disease, simulated

disease processes were employed to assess the suitability of

the different network representations. More specifically,

a stochastic, discrete-time susceptible, infectious, recov-

ered (SIR) disease model was developed, and the

dynamics and final epidemic size of simulations run upon
This journal is q 2008 The Royal Society
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the different network representations measured. Our aim

was to ascertain whether any static network provides a

consistent approximation to the fully dynamic network, or

to identify regions of epidemiological parameter space

where static network approximations may be valid.
2. MATERIAL AND METHODS
(a) Movement data

Cattle movement data were provided by DEFRA from the

RADAR project on 24 May 2006. In this analysis, only

movements occurring during 2004 were considered.

The main information in this database is a ‘livestock

location’ table, with each row containing the following

information: the identity of the location and animal, the

arrival and departure dates, the type of arrival and departure

movements (including details of how they were inferred, if

relevant) and the country imported from or exported to,

if relevant. To derive movements (the edges in a contact

network) from this table, it was necessary to find two stays

on locations where the animal concerned is the same, and

the end date of one stay is the start date of the other;

additionally, the start and end locations of the movement

should be different, and the movement type by which the

animal arrives at the destination holding should not be birth

or death.

In particular, we translated the movement of individual

cattle between farms into a network of nodes and edges, and

then translated the edges into a graph-theoretic matrix

presentation, Gi, j (d ), which defines the strength of the

connection from premise i to premise j on day d (generally

Gi, j(d ) will be 1 if there was a movement of cattle from i to

j on day d and 0 otherwise, although we use the term strength

as Gi, j can take other values in alternative network

representations). We note that the matrix is not symmetric

as movements have a definite direction associated with them.
(b) Disease simulation

The spread of disease on the network representations

discussed in this paper was modelled using a simple stochastic

discrete-time SIR model. Our model treated farms as a single

unit, comparable with the basic assumptions within the

models developed for the 2001 foot-and-mouth epidemic in

the UK (Kao 2002; Keeling 2005). This is akin to a simple

Levins-type metapopulation model (Levins 1969) in which

each farm exists in one of three basic states. In addition, all

farms were considered identical, such that neither number of

cattle, breed nor farming practices have any effect on the

transmission dynamics; this is obviously a crude assumption,

but allows us to examine the impact of network structure in

isolation from other heterogeneities. Most nodes began the

simulation in the susceptible (S) state, although a small

number, a (set to 1 throughout this paper), were chosen at

random to begin in the infected (I) state. The model was then

synchronously updated using a daily time step. During each

time period, disease passed along each edge from an I node to

an S node with probability n. Nodes remained in state I for an

integer number of iterations, m, and then passed into the

recovered (R) state. Nodes in the R state remained in that

state forever. The parameters n and m remained constant

during any given simulation. In the case of dynamic networks,

the network was updated after every model time step.
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Formally, the dynamics can be described as follows:

pðstateði; tC1ÞZ I jstateði; tÞZSÞZ1 K
Q

stateð j;tÞZIð1KnGj;iÞ

pðstateði; tC1ÞZR jstateði; tKmÞsSÞZ1; ð2:1Þ

where stateði; tÞ2 fS; I;Rg is the state of node i at time t. As

such, it is clear that only the infection process (first line of

equation (2.1)) depends on the network structure, while

recovery is independent, operating at the farm level.

This model is implemented using the functions

sir_net and sir_dynamic_net (for static or dynamic net-

works, respectively) in the ‘CONTAGION’ software package

(Vernon 2007).
(c) Network representations

The cattle movement data from 2004 were abstracted to form

networks in six different ways. In general, these networks

either represented plausible approximations to the fully

dynamic network or allowed the exploration of various

aspects of the fully dynamic network. In each case,

agricultural premises (such as farms or slaughterhouses, but

not markets where stays are generally too short to result in

transmission) were represented as nodes, and movements of

cattle were represented as directed edges (edge direction

being the same as the direction of cattle movement). For each

resulting network, 10 000 disease simulations were run with

values of n ranging from 0.01 to 1 at intervals of 0.01 and

with values of m ranging from 1 to 50 (time steps, which are

equal to days) at intervals of 1 (a total of 50 million simu-

lations per network).

For each of the networks defined below, we determined a

graph matrix representation (G) that was related to the

recorded pattern of movements. We represented the recorded

movements as

Ĝijðd ÞZ
1; if movement from i to j on day d;

0; otherwise:

(

Hence Ĝðd Þ was an N!N matrix linking the N livestock

premises in Great Britain. We note that ĜðdÞ is solely based on

the presence or absence of movements on a given day and

does not capture the number of animals that are moved.
(i) Dynamic

The dynamic network (G full ) was used to represent the

consequences of all 366 days’ movements for 2004. In

practice, the dynamic network was effectively 366 static

networks, one for each day of the year; if cattle moved from

farm i to farm j on day d, then the network for day d would

contain an edge i/j. To accommodate long-duration

epidemics that lasted more than 1 year, the dynamic network

was made periodic. We therefore set

Gfull Z hĜð0Þ;.; Ĝð365Þi;

where h.i denotes an ordered set. We considered the

behaviour predicted by the dynamic network to be our ‘gold

standard’; while acknowledging that our epidemiological

assumptions are too simplistic to match any real infection,

the dynamic network most faithfully captures the true pattern

of contacts between farms.
(ii) Periodic dynamic

This network representation was constructed in the same

manner to the full dynamic networks, but only movements
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from a limited number of days (either 7 or 28) were

considered. The periodic-dynamic network representation

Gpd(x1, n), for a period of n days starting on day x1 was

defined as

Gpdðx1; nÞZ hĜðx1Þ;.; Ĝðx1 C ðnK1ÞÞi:

As such, comparing results from the periodic dynamic network

with those from the full dynamic network allowed the

assessment of the degree of variation in network structure

throughout the year. The periodic dynamic network captured

the full movement pattern from a short interval; the issue is

whether such an interval is representative of a year. Generally,

we take x1Z0 and either nZ7 or 28 days.
(iii) Static

This network was by far the simplest one considered.

A number of days’ movements (either 7 or 28) were

combined, such that any movement of animals between two

premises within that period would result in an edge between

the nodes corresponding to those premises in the network.

The static network representation Gstat(x1, n), for a period of

n days starting on day x1 was therefore defined as

Gstat
ij ðx1; nÞZ

1; if
Xx1CðnK1Þ

dZx1

Ĝi;jðdÞR1;

0; otherwise:

8><
>:

This static network did not take into account the number

of times a dynamic connection was present and was there-

fore expected to substantially overestimate transmission

compared with its fully dynamic counterpart for the same

epidemiological parameter values.
(iv) Weighted static

The weighted static network represented a straightforward

refinement of the previous static network, but accounted for

the assumption that the frequency of movements between

farms is likely to be relevant to disease transmission. It was

constructed in the same manner as the static network

representation, but the resulting edges were given a weight

equal to their frequency in the time period considered. The

weighted static network representation Gws(x1, n), for a

period of n days starting on day x1 was again an N!N

matrix, the entries of which were defined as

Gws
ij ðx1; nÞZ

Px1CðnK1Þ

dZx1

Ĝi;jðdÞ

n
:

In addition to the standard nZ7 and 28-day periods,

a weighted static network was constructed considering all

movements in 2004 (nZ366). In many ways, the weighted

static network represented the natural static version of the

fully dynamic network (Bell et al. 1999; Corner et al. 2003).

The key issue is the effect of replacing the brief strong

connections of the dynamic network with permanent weaker

connections in the static model. Although both network

assumptions should lead to the same expected transmission

from a given infected farm, the timings and distributions of

secondary cases were anticipated to be very different.

The final two network representations examined ways

in which the dynamic network could be smoothed. As

such, they provided a simple test of the implications of

daily movement structure as opposed to more slowly varying

network structures.
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(v) Sequential weighted static

This representation consisted of a series of weighted static

networks, each being used for the number of simulation

time steps equal to the number of days’ movements it had been

constructed from. For example, where 7-day weighted static

networks were used, the first seven simulation time steps would

be run on the weighted static network constructed from days

1–7 of the original movement data, the second seven

simulation time steps on the weighted static network

constructed from days 8–14 of the original movement data,

and so on. For this representation, due to computational

overheads, only 1000 simulations were performed for each n

and m value. The sequential weighted static representation

considering n days, Gsws(n), was defined thus

GswsðnÞZ hGW ð0Þ;.;GW ðXÞi;

where GW ðx1ÞZGws n
x1

n

j k
; n

� �
;

where bxc represents the integer value of x, rounding down.

(vi) Smoothed

The smoothed network consisted of a series of weighted static

networks, one per day, to effectively produce a moving

average of the fully dynamic network. For example, using a

7-day moving average, the first network in this representation

was a weighted static network constructed from days 1–7 of

the original movement data, the second was a weighted static

network constructed from days 2–8 of the original movement

data, and so on. Again, both 7- and 28-day moving averages

were considered. For this representation of the network, only

1000 simulations were performed for each n and m value. The

smoothed network representation using a moving average

over n days, G smooth(n) was defined as

GsmoothðnÞZ hGwsð0; nÞ;Gwsð1; nÞ;.;Gwsð365; nÞi:
3. RESULTS
Our first observation concerns the difference between 7-

and 28-day based networks. Throughout, for greater

clarity of the figures, we only show results from 28-day

networks. Smoothing using 7- and 28-day windows

generated similar behaviours. Epidemics run upon the

7-day periodic-dynamic, static and weighted static rep-

resentations behaved similarly to those run on the

equivalent 28-day representations, but with a smaller

final epidemic size (data not shown). This is to be

expected as the shorter 7-day sampling interval leads to

fewer movements being included and therefore a network

which is not as well connected.

(a) The effect of varying infectious period when

transmission probability is constant

Figure 1a,b shows mean final epidemic size against

infectious period for a transmission probability of 0.3

and 0.7, respectively; comparable results are obtained for

all transmission probability values investigated. When

transmission probability was relatively low (as in

figure 1a), disease simulations upon the (28-day) static

network representations resulted in significantly larger

final epidemic sizes than those upon other network

representations; this effect was especially marked with

short infectious periods. The static network representation

combined multiple days’ movements into one single
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Figure 2. Final epidemic size against transmission probability
for different representations of the UK cattle herd in 2004.
Infectious period, mZ50 days.
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Figure 1. Infectious period versus final epidemic size for
different representations of the UK cattle herd in 2004.
Transmission probability, (a) nZ0.3, (b) nZ0.7.
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network, resulting in a comparatively dense network;

accordingly a relatively large number of nodes were

infected, even during a short-lived epidemic. For all but

the smallest infectious periods, the static network gave rise

to an approximately constant final epidemic size (of

approx. 3000 farms); this signified that the epidemic had

reached all available nodes within the network—in this

case it was the sample size of 28 days and not the

transmission process that limited the epidemic. This

means that epidemics generated on networks that used

all the movements in 2004 could potentially exceed 28-day

static network epidemics if the infectious period and

transmission probability were large enough.

Other networks based on 28-day samples (the periodic-

dynamic and 28-day weighted static network represen-

tations) produced results that approached asymptotically

to those of the static network as the infectious period

became sufficiently long. However, for shorter infectious

periods, both of these models produced smaller epidemic

sizes due to the weaker strength of connections (in the

case of the weighted static) or intermittency of connec-

tions (in the case of the periodic-dynamic network).

Interestingly, the periodic-dynamic network consistently

produced larger epidemics than the weighted static, due to

the way that the fixed infectious period interacted with

daily movements.

The two smoothed networks generated similar sized

epidemics to the full dynamic network; with all three

showing increasing final epidemic size with increasing

transmission probability and infectious period.

For low transmission rates, the year-long weighted

static network (the most natural static approximation)
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produced final epidemic sizes similar to those of the full

dynamic model; hence it might be argued that, in terms of

this simplest measure, the weighted static network per-

forms well. However, as the transmission probability

increased, the weighted static network produced far larger

epidemic sizes. This discrepancy is due to which element

limits the epidemic spread—when transmission rates are

high, spread through the dynamic network was limited by

the intermittent presence of connections, whereas for the

year-long weighted static network, connections were

always present and it was the probabilistic nature of

transmission that limited the infection process. This

argument is made more precisely later.

(b) The effect of varying transmission probability

when infectious period is constant

Figure 2 again shows final epidemic size, but now the

infectious period is fixed (at mZ50 days) and the

transmission probability is varied. A similar pattern is

visible here as in figure 1a,b—however, it is more

noticeable that both of the smoothed networks under-

estimated the final epidemic size predicted by the fully

dynamic network. This underestimation was in part due to

the way that transmission probabilities were modified by

the smoothed networks. For the extreme case where the

transmission probability nZ1, a single connection in the

dynamic network was guaranteed to transmit infection

(assuming the farm is infectious); however, this was not

the case for the smoothed networks where the reduced

transmission rate (over a longer period) meant that

infection may fail to transmit.

(c) Differences in epidemic time courses between

different network representations

Turning to the epidemic dynamics in more detail,

figure 3a illustrates typical time courses for outbreaks

simulated on the various network representations. It

shows the mean number of recovered nodes (total

epidemic size so far) at each time step from simulations

run with a transmission probability of nZ0.36 and an

infectious period of mZ12 days; lines stop when the

epidemic dies out. Figure 3b shows the same information,

but with the static network representation result removed,

for clarity. These figures give the clearest indication so far

that the different networks give rise to different epidemic

profiles; as expected, for these parameters the static

network produced by far the largest and most rapid
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epidemic. In all cases, the epidemics followed the typical

sigmoidal time course of an SIR epidemic—initial slow
Proc. R. Soc. B (2009)
spread, followed by a period of rapid growth, which then

slowed again as the susceptible population was depleted

(Anderson & May 1991). It is interesting to note that the

weekly farming cycle is observable in the dynamic network

with far less transmission occurring on Sundays; a similar

feature is seen for the periodic-dynamic network.
(d) The differences between the network represen-

tations are not merely a matter of scaling

It is not clear from the above results whether epidemics on

different network representations are systematically

different, or merely represent different scalings of the

underlying parameters. To address this question, we

looked for a consistent pattern between early growth and

final epidemic size across all networks. Figure 4a enables

this question to be addressed, plotting final epidemic size

against the number of infectious nodes after one infectious

period (comparable with R0) across the full range of

transmission probability and infectious period values

(each point represents the outcome of a single model

run). The relationship between early epidemic growth and

final epidemic size was different for all the different

representations (excepting the smoothed and sequential

weighted static representations, which are similar to each

other in this regard). In figure 4b, the x -axis is a log scale,

which clarifies the differences between the year-long

weighted static representation and the dynamic represen-

tation for smaller epidemic sizes. These figures highlight

the fact that the differences between networks are not due

to a simple rescaling of transmission probabilities, but a

more subtle interplay between total probability of
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transmission, time to infection and the scale of the

interconnected network.

(e) Theoretical considerations

We now use some simple analytical calculations to

interpret the differences observed so far, focusing in

particular on the somewhat unexpected differences

between dynamic and weighted static networks.

Traditionally, analytical techniques for considering

disease spread through networks are based upon concepts

from percolation theory—which itself assumes that the

network is static and assigns probabilities to each link.

However, to understand the differences between dynamic

and static networks, we need to work from first principles

in considering the spread of infection between nodes

(farms). Consider the contacts and interaction between

two farms; one of the simplest situations is whether animals

are moved between them just once in a year. In the fully

dynamic network,Gfull
ij ðdÞwill be 1 on the day of movement

and 0 on all 365 other days; by contrast, the year-long

weighted static network will have GWS
ij Z1=366 for all time

points. Comparing these two network representations

we see that the probability of transmission is given by

pfull Z n
m

366
pWS Z1K 1K

n

366

� �m
;

such that there is a nonlinear scaling between the two

probabilities and pfullRpWS. (We note that the two proba-

bilities are equal whenever mZ1). The ratio of these

probabilities at the level of individual contacts can be

translated into relative population-level epidemic sizes,

with the clear prediction that higher transmission prob-

abilities should (on average) lead to larger epidemic

sizes—this is observed when comparing the 28-day

periodic-dynamic with 28-day weighted static represen-

tations in figures 1–3.

The calculation of transmission probabilities can

also be extended to the situation where there are n move-

ments from one farm to the other; assuming that

movements occur at random throughout the year we

have that

pfull
n Z

Xn
mZ1

m

n

 !
ð366KnÞ!m!ð366KmÞ!

366!ðmKmÞ!ð366CmKnKmÞ!
½1Kð1KnÞm�

pWS
n Z 1K 1K

nn

366

� �m
:

Although these forms are more complex, it can be shown

that, as before, the fully dynamic model has a higher

probability of transmission compared with the weighted

static network and therefore it is expected to generate

larger epidemics; this effect may be observed in the

results from artificially created dynamic networks and

their associated year-long weighted static equivalents.

In addition, it can be readily seen that a weighted

static network sampled over a shorter time scale has a

lower transmission probability compared with the year-

long version.

For the case when nZ1, we can also calculate the time

to infection (assuming infection has occurred)

T full Z
mC1

2
TWS Z

Xm
iZ1

i 1K
n

366

� �iK1 n

366pWS
;

and hence we find that the weighted static network is likely

to transmit infection more rapidly. When n and m are both
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large (and noting that we are assuming nZ1), we observe

that transmission is likely in both models but occurs far

more rapidly in the weighted static model.

We now compare these theoretical results with our

simulation studies. Two of our theoretical predictions are

supported: (i) the year-long weighted static network gives

rise to larger epidemic sizes than weighted static networks

sampled over shorter time scales, (ii) the year-long

weighted static network gives rise to epidemics that grow

much more rapidly than the fully dynamic network (and

faster than shorter weighted static networks). However, in

contrast to our theoretical predictions, we find that the

year-long weighted static network gives rise to larger

epidemics than the fully dynamic network. Detailed

analysis of the causes for this theoretical failure highlights

the inaccuracy of our assumption (for the case where

nO1) that movements occur randomly throughout the

year; the true pattern of movements from a given farm

shows both positive and negative correlations at a range of

temporal lags. This temporal pattern reflects both live-

stock management (and dynamics) on the farm and legal

constraints on the movement of livestock. In particular,

the 6-day standstill period prevents multiple on- and off-

movements within a 6-day period, while the natural cycle

of births leads to increased number of movements in both

spring and autumn. We therefore observe that the

temporal correlation between movements to and from a

farm leads to a significant reduction in disease spread

compared with a random pattern of movements, which is

the primary aim of the legal restrictions on animal

movements (Madders 2006).
(f ) Distribution of epidemic sizes

One applied use of such between-farm movement net-

works is to examine the early spread of foot-and-mouth

disease (Green et al. 2006). Foot-and-mouth disease is

unlikely to go undetected for more than four weeks, and so

weighted static networks for a 28-day period have been

used to model the early spread of infection. Given the

arguments above concerning the differences between

static and dynamic networks, we would in general hope

that using a shorter interval for both networks would lead

to greater similarity—given that 1-day networks will be

identical. It is therefore reasonable to consider the

suitability of simpler network representations for model-

ling such truncated epidemics.

A rapid infectious disease was simulated, with par-

ameters (nZ0.9, mZ8) chosen such that the final epidemic

size between the 28-day weighted static representation and

the dynamic representation was comparable. The

simulated epidemics were halted after 28 days, and one

hundred million disease simulations were run. Figure 5a

shows the frequency distribution (on a log scale) of

epidemic size after 28 days from these simulations. The

mean final epidemic size for the dynamic network

representation was 121, and for the 28-day weighted

static representation was 155. A two-sample Kolmogorov–

Smirnov test (Conover 1999) shows that these two

distributions are significantly different ( p!2.2!10K16).

We can also conclude, simply from the differences between

the means, that for the same parameter values, epidemics

simulated through dynamic and weighted static networks

do not agree even at the shorter 28-day time scale.
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To generate a more fair comparison, the transmission

probability within the 28-day weighted static network was

changed to achieve agreement between the mean epidemic

sizes predicted by the two network representations. One

hundred million disease simulations were again run with

this new transmission value (nZ0.8327) on the 28-day

weighted static network representation, and the results

plotted against the original dynamic network represen-

tation simulation outputs as figure 5b. Although the mean

final epidemic size was 121 in both cases, a two-sample

Kolmogorov–Smirnov test again showed that the two

distributions were significantly different ( p!2.2!10K16).

The differences between the weighted static and

dynamic network representations in figure 5a,b are

particularly noticeable at the higher final epidemic sizes,

which would lead to the worst-case scenario being

considerably underestimated if a weighted static network

representation were used to inform policy making. The

peaks observed in the dynamic network representation are

an interesting example of the importance of the dynamic

nature of cattle movement. If a single movement acts to

connect two large interconnected groups of farms, then in

a dynamic model transmission between the two groups

relies on infection reaching the interconnecting link at

the appropriate time. Those epidemics that reach the link

at the appropriate moment and therefore infect both

groups of farms are likely to give rise to far larger

epidemics than those that fail to reach the link—leading

to bimodal distributions of epidemic sizes. This sort of

dynamic effect is lost in static network representations,

yet may be important to understand the dynamics of

infectious diseases in the UK cattle herd. With hindsight,

this bimodal nature is observable in figure 4b for the

dynamic network.
4. DISCUSSION
The cattle movement network from the UK provides one

of the most detailed examples of a well-documented

network that has been continuously sampled over an

extended period. As such, it provides an ideal test of many

ideas about dynamic networks, and how they can be

understood and analysed. In particular, there are clear

resonances with human contact networks, where connec-

tions are often seen as static, but in practice contacts only

occur intermittently. The key question is whether this

complex dynamic pattern of interactions can be captured

by a suitable scaling of a static network or whether the

dynamic complexities have to be modelled explicitly for

their effects to be captured.

Figures 1 and 2 show that the different network

representations of the UK cattle herd exhibit differing

behaviours as the two simulation parameters (infection

probability and infectious period) are varied. Therefore,

for a given set of epidemiological parameters, which set the

local dynamics, no other representation was able to

capture the population-level behaviour. Moreover, by

plotting early epidemic growth against final epidemic size

(figure 4a), we have shown that these differences are

systematic and cannot be removed by a simple rescaling

of epidemiological parameters; even if network models are

all parameterized to match the same observed early

epidemic behaviour, they fail to agree with predictions of

final epidemic size. This shows that the differences
Proc. R. Soc. B (2009)
between the epidemics reflect fundamental differences in

the way that the infection dynamics interact with the

network properties.

Finally, we compared weighted static network models

with results from the dynamic network and consider a

scenario designed to minimize the differences. Both

network models are simulated for just 28 days (minimizing

the impact of longer term temporal correlations) and the

epidemiological parameters are determined such that

the mean epidemic size (at the end of 28 days) is in

agreement. However, despite these measures, we still

observe significant differences between the distributions

of epidemic sizes, with the dynamic network predicting

more extreme values.

While simpler network representations of the UK cattle

herd have their advantages, these results show that great

care must be taken if such representations are to be used

for epidemiological prediction. We have considered a

range of alternatives to the most realistic representation

(i.e. the fully dynamic network), and shown that they are

defective even when considering a relatively simple SIR

disease simulation. In particular, when comparing fully

dynamic network models to their weighted static

equivalent (probably the most natural approximation),

we find that the temporal correlations between

movements substantially reduce the epidemic size associ-

ated with the dynamic model. Therefore, if network

models are to be employed to investigate infectious

diseases in the UK cattle herd, and used to make detailed

quantitative predictions, then they should be based

upon dynamic directed network representations of the

available movement data.

Although these results all focus on the networks derived

from the UK cattle movements, we believe that the general

conclusions hold for a range of other network scenarios.

For example, many human pathogens can be considered

as spreading through a network of connections; while

many family (or social) connections occur so frequently

that they may be represented by a (weighted) static

network, other connections are far more dynamic and are

likely to have strong temporal correlations. As such,

human contact patterns are most likely to be captured

by a mixture of static and dynamic networks, with the

dynamic links most often responsible for transmitting

infection away from tightly clustered social cliques.

Therefore, the general qualitative rules we have

observed governing the differences between dynamic and

static networks are likely to hold for human as well as

livestock infections.

This work was funded by the Wellcome Trust. The authors
are grateful to Thomas House and three anonymous referees
for their input.
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