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Hemostatic abnormalities and impaired platelet function have been described in patients

affected by connective tissue disorders. We observed a moderate bleeding tendency in

patients affected by collagen VI–related disorders and investigated the defects in platelet

functionality, whose mechanisms are unknown. We demonstrated that megakaryocytes

express collagen VI that is involved in the regulation of functional platelet production. By

exploiting a collagen VI–null mouse model (Col6a12/2), we found that collagen VI–null plate-

lets display significantly increased susceptibility to activation and intracellular calcium sig-

naling. Col6a12/2 megakaryocytes and platelets showed increased expression of stromal

interaction molecule 1 (STIM1) and ORAI1, the components of store-operated calcium entry

(SOCE), and activation of the mammalian target of rapamycin (mTOR) signaling pathway. In

vivo mTOR inhibition by rapamycin reduced STIM1 and ORAI1 expression and calcium

flows, resulting in a normalization of platelet susceptibility to activation. These defects were

cell autonomous, because transplantation of lineage-negative bone marrow cells from

Col6a12/2 mice into lethally irradiated wild-type animals showed the same alteration in

SOCE and platelet activation seen in Col6a12/2 mice. Peripheral blood platelets of patients

affected by collagen VI–related diseases, Bethlem myopathy and Ullrich congenital muscular

dystrophy, displayed increased expression of STIM1 and ORAI1 and were more prone to acti-

vation. Altogether, these data demonstrate the importance of collagen VI in the production of

functional platelets by megakaryocytes in mouse models and in collagen VI–related diseases.

Introduction

Collagen VI is an extracellular matrix protein that forms a distinct microfibrillar network and plays a
remarkably broad range of key roles in different tissues. These include cytoprotection by counteracting
apoptosis and oxidative damage, regulation of autophagy and cell differentiation, contribution to stem cell
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Key Points

� Megakaryocytes
express collagen VI
that regulates the
release of functional
platelets.

� Collagen VI–null
megakaryocytes and
platelets display
increased mTOR
signaling and store-
operated calcium
entry.
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self-renewal and tissue regeneration, and promotion of tumor growth
and progression.1 In humans, the major form of collagen VI is made
up of 3 genetically distinct chains, a1(VI), a2(VI), and a3(VI), that are
coded by the COL6A1, COL6A2, and COL6A3 genes, respec-
tively.1 More recently, 3 additional genes (COL6A4, COL6A5, and
COL6A6) were identified that code for other collagen VI chains that
can substitute for a3(VI).2,3 Mutations in collagen VI genes in humans
have been linked to a broad spectrum of muscular and neurological
diseases, including Bethlem myopathy, Ullrich congenital muscular
dystrophy (UCMD), congenital myosclerosis, and early-onset isolated
dystonia.1,4 Different from other muscular dystrophies, collagen
VI–related myopathies display remarkable alterations of the extracellu-
lar matrix of muscle and other connective tissues, including joints, ten-
dons, and skin, and they can be considered hybrid disorders with
clinical manifestations attributable to muscle and connective tissues.4

The crucial roles exerted by collagen VI in vivo have been unveiled
mainly by exploiting the collagen VI–null (Col6a12/2) mouse model,
which was generated by targeted inactivation of the Col6a1 gene,
resulting in the prevention of assembly and secretion of the entire
collagen VI protein.5 Different studies, aimed at dissecting the patho-
molecular defects underlying the myopathic phenotype of Col6a12/2

mice, revealed several alterations in the mitochondria and the sarco-
plasmic reticulum, 2 organelles that are primarily involved in maintain-
ing intracellular calcium (Ca21) homeostasis.6,7 The pathomolecular
alterations characterizing the muscles of Col6a12/2 mice have
recently been found in other cells and tissues.1,8-10

Some studies and case reports have described hemostatic abnor-
malities and platelet function defects in patients affected by heritable
connective tissue disorders, such as collagenopathies.11-13 When
assessing the blood parameters of patients affected by Bethlem
myopathy and UCMD, we observed a mild bleeding tendency, sug-
gesting a defect in platelet functionality. These findings led us to
broaden the exploration of the defects caused by collagen VI muta-
tions in the circulatory system.

Intracellular Ca21 signaling is a fundamental regulator of megakaryo-
cyte (Mk) and platelet function through modulation of several intra-
cellular pathways.14-18 Store-operated calcium entry (SOCE) is a
well-described mechanism regulating Ca21 entry from the extracel-
lular space following endoplasmic reticulum (ER) store depletion.19

We and other investigators have previously described the expres-
sion and function of SOCE in Mks and platelets.16,20-22 Mks
express the 2 molecular components of SOCE, the ER Ca21 sen-
sor stromal interaction molecule 1 (STIM1) and the plasma mem-
brane Ca21 channel ORAI1, which are activated upon depletion of
the intracellular Ca21 pool. Ca21 mobilization from the intracellular
stores promotes Mk function and proplatelet extension.16 In plate-
lets, STIM1 and ORAI1 have been demonstrated to drive activation
processes in response to agonists.15,23-25 The phosphatidylinositol
3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) axis is
an intracellular signaling pathway enhanced by SOCE.26 In turn,
mTOR regulates the expression of SOCE components.27,28 The
PI3K/Akt/mTOR axis plays a pivotal role in regulating Mk and plate-
let function by controlling Mk proliferation and differentiation and
platelet activation and aggregation, respectively.29-32 In addition to
its role in Mk and platelet function, the PI3K/Akt/mTOR axis is
known to be a crucial regulator of collagen I expression.33,34

Here, we exploited the collagen VI–null mouse model by generat-
ing Mk culture and radiation chimeras using bone marrow (BM)

lineage-negative (Lin2) cell transplantations. We also investigated
platelet function in Col6a12/2 mice and in samples from patients
affected by collagen VI–related disorders.

Methods

Commercial antibodies used are listed in supplemental Table 1. Pri-
mers for human and mouse collagen VI are listed in supplemental
Table 2.

Information about reagents, platelet preparation, platelet aggregation,
reverse transcription polymerase chain reaction (RT-PCR), western
blotting, intracellular Ca21 measurements in platelets, tissue collec-
tion and immunofluorescence, and BM transplant are provided in sup-
plemental materials.

Cell cultures

Human Mks were obtained by differentiating cord blood–derived
CD341 or peripheral blood–derived CD451 hematopoietic progeni-
tors, as described previously.35,36 Mouse Mks were obtained by dif-
ferentiating BM cells for 4 days in Dulbecco’s modified Eagle
medium (Gibco) supplemented with 1% penicillin/streptomycin, 1%
L-glutamine, and 10% fetal bovine serum (Gibco), in the presence
of 10 ng/mL recombinant murine thrombopoietin (PeproTech). On
day 4, mature Mks were isolated by bovine serum albumin gradient
sedimentation. For in vitro treatment with the prolyl-4 hydroxylase
inhibitor ethyl 3,4-dihydroxybenzoate (EDHB), Mks were cultured for
24 hours with 100 mM EDHB or with vehicle alone (0.1% ethanol).
For in vitro treatment with ascorbic acid, Mks were cultured in the
presence of 50 mg/mL ascorbic acid for 48 hours. For in vitro treat-
ment with rapamycin, BM cells were cultured at day 0 for 4 days in
the presence of 100 nM rapamycin or 0.1% dimethyl sulfoxide
(DMSO) as vehicle control.

Flow cytometry

Stim1 and ORAI1 staining. To analyze STIM1 and ORAI1 in
BM Mks, femurs were flushed, and red blood cells were lysed with
0.8% ammonium chloride solution. The remaining cells were
washed by centrifugation with phosphate-buffered saline and
stained with anti-ORAI1 antibody (1:100; Santa Cruz Biotechnolo-
gies) or anti-STIM1 antibody (1:100; Abcam). For STIM1 staining,
cells were permeabilized with commercial buffers (BD Pharmingen)
prior to staining with the antibody. To recognize BM Mks, we cos-
tained cells with an anti-CD41 antibody (0.1 mg/mL; BioLegend).
All Mk samples were characterized as CD41/CD42b-positive and
CD3/CD4/CD8/CD11b/CD19/CD33-negative cells, using appro-
priate antibodies (0.1 mg/mL; all from Beckman Coulter). Samples
were acquired with a FACSDiva flow cytometer (Beckman Coulter).
The analytical gating was set using unstained samples and relative
isotype controls. Offline data were analyzed using the Beckman
Coulter Kaluza software package (Beckman Coulter) and Flowing
software 2.5.1 (University of Turku).

BM Mk sorting. Mks were sorted from BM cells as the CD11b2/
CD611/CD91 population.37 The gating strategy is shown in sup-
plemental Figure 9. Mk purity after sorting, by means of CD611/
CD91/CD411, was routinely performed and assessed to be
.95%. Cell viability was checked using Trypan Blue solution
(Sigma Aldrich). Cell sorting experiments were performed using a
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FACSAria IIu (3 lasers; BD Bioscience). FACSDiva software (BD
Pharmingen) was used for data acquisition and analysis.

Platelet activation. For platelet activation, 2 3 106 platelets
washed in modified Tyrode’s buffer (134 mM NaCl, 0.34 mM
Na2HPO4, 2.9 mM KCl, 12 mM NaHCO3, 20 mM HEPES, 5 mM
glucose) containing 1 mM CaCl2 were incubated with 0.1 U/mL
thrombin (Sigma-Aldrich), 25 mM adenosine diphosphate (ADP;
Sigma-Aldrich), 20 ng/mL convulxin (Enzo Life Sciences), or vehicle
alone in the presence of 2 mg/mL JON/A-PE (Emfret Analytics), 12
mg/mL PAC-1–FITC (BD Biosciences), or 10 mg/mL anti-
CD62P–APC (BioLegend) and analyzed 10 minutes later.38 Platelet
activation was expressed as the ratio between the mean fluores-
cence intensity measured after the stimulation with each agonist
and the mean fluorescence intensity measured after incubation with
vehicle alone.39

Intracellular Ca21 measurements in Mks

To study SOCE, Mks were treated with 10 mM cyclopiazonic acid
(CPA) in Ca21-free (Ca21 0) solution to deplete the stores. Similar
to thapsigargin treatment, CPA treatment causes a transient
increase in the intracellular Ca21 concentration [Ca21]i due to the
passive emptying of Ca21 stores. After Ca21 levels return to base-
line, external Ca21 is restored to 1.5 mM, causing a second
increase in intracellular Ca21 levels due to activated SOCE. As an
internal control, Mks were treated with vehicle alone (0.03% vol-
ume-to-volume ratio of DMSO), which did not elicit any significant
increase in [Ca21]i (supplemental Figure 10). Intracellular Ca21

measurements in Mks were performed as previously described.16,40

For a detailed description, please refer to supplemental Methods.

Mice and in vivo treatments

We performed experiments in wild-type (WT) mice of the inbred
C57BL/6NCrl strain and in Col6a12/2 mice that we previously
backcrossed on the C57BL/6NCrl strain for 8 generations, as previ-
ously described.7 We obtained data for 3-month-old mice by com-
paring sex-matched WT and Col6a12/2 animals. Mouse
procedures were approved by the Italian Ministry of Health (appro-
vals #282-2017 and #877-2018). For in vivo treatment with rapa-
mycin, mice were injected intraperitoneally with rapamycin (2 mg/kg
body weight) every 24 hours for 14 days, as previously described.41

Control mice were injected intraperitoneally with vehicle alone (5%
PEG-400/5% Tween-80 in saline).

Patient samples

All relevant data concerning symptoms at disease onset, clinical fea-
tures at last clinical evaluation, disease progression, and genetic
analysis are reported in Table 1.

Two males (M) and 3 females (F) belonging to 3 families were stud-
ied. Four patients were affected by Bethlem myopathy and 1 had
UCMD intermediate [the phenotype was defined upon loss of
ambulation by 20 years and start of noninvasive ventilation by 20
years (patient 2/M)].42 Laboratory tests revealed a normal platelet
count in all patients (Table 1). Hemoglobin, hematocrit, and white
blood cells were also normal. A structured interview was conducted
with all patients using the International Society on Thrombosis and
Hemostasis - Bleeding Assessment Tool (Table 1)43. Three mem-
bers of the same kindred (patients 1/F, 4/F, and 5/F) presented
with menorrhagia and mild trauma-related bruises, 2 patients

(4/F and 5/F) presented with mild oral cavity bleeding, and 1 patient
(4/F) also presented with postpartum hemorrhage. According to the
cutoff values set by the International Society on Thrombosis and
Hemostasis ($4 in adult males, $6 in adult females),44 only patient
5/F showed an increased risk for bleeding. No arterial or venous
thrombosis was observed in our cohort of patients.

Study approval

Human cord blood samples were processed following guidelines of
the Ethics Committee of the Istituto di Ricovero e Cura a Carattere
Scientifico (IRCCS), Policlinico San Matteo foundation of Pavia and
the principles of the Declaration of Helsinki. Five subjects were
selected from a cohort of patients with Bethlem myopathy or
UCMD who were followed at the Neuromuscular Center of the Uni-
versity of Padova. The study was conducted in accordance with the
ethics rules and guidelines issued by the local Ethics Committee
and the Declaration of Helsinki. Every patient provided written
informed consent. Mouse procedures were approved by the Italian
Ministry of Health (approvals #282-2017 and #877-2018).

Statistics

Data are expressed as mean 6 standard deviation (SD) or standard
error of the mean (SEM). A 2-tailed Student t test was used for
comparisons between 2 groups. For comparisons of 1 factor across
multiple groups, 1-way ANOVA was performed followed by the post
hoc Tukey test. GraphPad Prism 8 (GraphPad Software) was used
for statistical analyses and graphing. P values , .05 were consid-
ered statistically significant. All experiments were independently rep-
licated $3 times.

Results

Human and mouse Mks express collagen VI

To investigate collagen VI expression, human Mks were differenti-
ated from cord blood, whereas mouse Mks were derived from BM
progenitors. As shown in Figure 1, Mks of human and murine origin
expressed the 3 major collagen VI chains (a1, a2, a3) at RNA (Fig-
ure 1A) and protein (Figure 1B) levels. To confirm the specificity of
the protein bands, Mks were treated for 24 hours with the prolyl-4
hydroxylase inhibitor EDHB.45 This treatment reduced the synthesis
of collagen VI chains in human and murine Mk cultures with respect
to treatment with vehicle alone (Figure 1B). Mature murine Mks cul-
tured in the presence of ascorbic acid were able to secrete collagen
VI, which localized around the cell membrane and was also detect-
able in the culture medium by immunoblotting (Figure 1C-D).

Platelets from collagen VI–null mice are more

susceptible to activation

We studied the ex vivo functionality of platelets from WT and
Col6a12/2 mice. The absence of the collagen VI a1 chain in
Col6a12/2 Mks was confirmed by western blot analysis (supple-
mental Figure 1). Collagen VI–null platelets showed an increased
tendency toward activation and aggregation. Platelets from
Col6a12/2 mice exhibited increased levels of activated integrin
aIIbb3 and CD62P (P-selectin) exposure on the cell membrane
after stimulation with thrombin, ADP, or the GPVI collagen receptor
agonist convulxin (CVX) (Figure 2A). On the other hand, the expres-
sion levels of integrin aIIbb3, PAR-4, P2Y12, and GPVI were not
different between WT and Col6a12/2 platelets (supplemental
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Figure 2). Col6a12/2 platelets displayed more avidity for adhesion
to collagen I and fibrinogen than did WT platelets (supplemental
Figure 3). In vitro Col6a12/2 platelet stimulation with the platelet
agonists collagen, thrombin, or ADP plus adrenaline led to a robust
amplification of the aggregation, thus confirming their hyperreactive
behavior (Figure 2B).

Collagen VI–null platelets and Mks have increased

levels of SOCE effectors

Platelet activation is directly dependent on the increase in [Ca21]i
due to SOCE activation.21 To assess whether the alterations
observed in Col6a12/2 platelets may depend on changes in the
molecular components of SOCE, we analyzed the expression of
STIM1, the ER Ca21 sensor, and ORAI1, a plasma membrane
Ca21 channel, which detect any significant decrease in ER Ca21

levels and mediate the ensuing extracellular Ca21 entry, respec-
tively.19 The protein levels of both SOCE effectors were significantly
increased in circulating platelets from Col6a12/2 mice compared
with WT mice (Figure 3A). We exposed cells to thapsigargin to
evaluate the impact of increased STIM1 and ORAI1 expression on
SOCE function.46 Thapsigargin blocks the activity of Sarco/Endo-
plasmic Reticulum Ca21 ATPase (SERCA), thereby preventing
Ca21 sequestration into the stores and leading to their depletion,
with consequent SOCE activation.47 In Ca210 conditions, the Ca21

mobilization from intracellular stores induced by thapsigargin treat-
ment was similar between WT and Col6a12/2 platelets. The addi-
tion of extracellular Ca21 in the presence of thapsigargin resulted in
a massive Ca21 entry from the extracellular space, which was signif-
icantly higher in Col6a12/2 platelets (Figure 3B). To evaluate
whether these alterations were inherited from Mks or acquired by
platelets, we sorted BM Mks and analyzed the expression of STIM1
and ORAI1 transcripts. We found that the levels of both messenger
RNAs (mRNAs) were significantly increased in BM Mks from
Col6a12/2 mice compared with WT mice (Figure 3Ci). These data
were further supported by the analysis of STIM1 and ORAI1 protein

levels in BM Mks by flow cytometry (Figure 3Cii). The increase in
STIM1 and ORAI1 expression in Col6a12/2 Mks resulted in an ele-
vation in SOCE-dependent Ca21 signaling. In the absence of extra-
cellular Ca21, treatment of Mks with CPA, an inhibitor of SERCA
that is structurally unrelated to thapsigargin, induced mobilization of
Ca21 from the intracellular stores that was comparable between
WT and Col6a12/2 Mks. Conversely, the addition of extracellular
Ca21 in the presence of CPA elicited a significant increase in Ca21

entry from the extracellular space in Col6a12/2 Mks (Figure 3D),
thus confirming the increase in SOCE.

Altered mTORC1 signaling in collagen VI–null Mks

and platelets

It was demonstrated previously that the mTOR signaling axis regu-
lates Mk growth and platelet activation,29-31 as well as STIM1 and
ORAI1 expression.27,28 Based on this information, we investigated
the activation of Akt and the downstream effectors of the mTORC1
signaling complex, S6 and 4E-BP1, in mouse BM Mks and circulating
platelets. All of these proteins were significantly more phosphorylated
in BM Mks (Figure 4A; supplemental Figure 4) and resting platelets
(Figure 4B) derived from Col6a12/2 mice compared with WT mice.

Collagen VI–null Mks and platelets maintain SOCE

alterations after BM transplantation in WT

recipient mice

We investigated whether the alterations in SOCE expression and
function in Col6a12/2 Mks and platelets were due to the lack of
collagen VI in the BM environment or to the intrinsic absence of
self-produced collagen VI in Mks. Lin2 BM cells isolated from WT
and Col6a12/2 donor mice were transplanted into lethally irradiated
WT recipient mice. All mice except 1 survived the transplant and
recovered their body weight with no signs of clinical suffering. All
analyzed mice restored their white blood cell count, indicating a full
engraftment of transplanted cells. Mks were then sorted from BM

Table 1. Summary of the clinical features, genetic characterization, and International Society on Thrombosis and Hemostasis-Bleeding

Assessment Tool for patients with Bethlem myopathy or UCMD included in this study

Patient 1/F Patient 2/M Patient 3/M Patient 4/F Patient 5/F

Clinical phenotype BetMy AD UCMD intermediate BetMy BetMy AD BetMy AD

Onset

Age Adolescence Neonatal Neonatal Adolescence Childhood

Symptoms Difficulties in sport Hypotonia, respiratory
distress

Hypotonia, finger
contractures

Shoulder and knee
dislocation

Slower than peers

Last evaluation

Age 20 20 18 47 54

Best motor function Run WCB (8 y) Run Walk Walk

COL6A mutations COL6A3: c.5035G.T;
p.Gly1679Trp

COL6A1:
c.9301189C.T, intron 11

COL6A3: c.4859C.T,
p.Pro1620Leu

(pseudohomozygosity)

COL6A3: c.5035G.T;
p.Gly1679Trp

COL6A3: c.5035G.T;
p.Gly1679Trp

Platelet count (3109/L)* 251 269 212 267 237

Bleeding phenotype Menorrhagia, mild trauma-
related bruises

Not applicable Not applicable Menorrhagia, mild trauma-
related bruises, mild oral

cavity bleeding, postpartum
hemorrhage

Menorrhagia, mild trauma-
related bruises, mild oral

cavity bleeding

ISTH-BAT43 2 0 0 4 7

AD, autosomal dominant; BetMy, Bethlem myopathy; ISTH-BAT, International Society on Thrombosis and Hemostasis-Bleeding Assessment Tool; WCB, wheelchair bound.
*Normal value: 200 to 450 3109/L.
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and analyzed. Col6a12/2 Mks maintained increased expression of
STIM1 and ORAI1, as demonstrated by quantitative RT-PCR (qRT-
PCR) and flow cytometry (Figure 5A). These alterations were trans-
ferred to platelets, as indicated by western blot for STIM1 and
ORAI1 (Figure 5B). Also, platelets isolated from WT mice that were
transplanted with Col6a12/2 Lin2 BM cells showed increased lev-
els of phosphorylated (p)S6 and p4E-BP1 (supplemental Figure 5).
Platelets produced by Col6a12/2 Mks in a WT BM environment
maintained the increased susceptibility to activation, relative to WT
platelets, as demonstrated by aIIbb3 activation and CD62P

(P-selectin) exposure on the cell membrane after stimulation with
major agonists (thrombin, ADP, and CVX) (Figure 5C).

Rapamycin treatment normalizes STIM1 and ORAI1

expression and SOCE

To test whether the increased expression of SOCE effectors
was directly dependent on mTORC1 signaling, we cultured
flushed BM cells from WT and Col6a12/2 mice in the presence
of thrombopoietin to induce Mk differentiation and treated them
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with the mTOR inhibitor rapamycin or with vehicle alone. Mks
were purified by gradient sedimentation and lysed. Western blot
analysis confirmed higher protein levels of STIM1 and ORAI1 in
Col6a12/2 Mks (Figure 6A). Rapamycin treatment induced a
significant reduction in STIM1 and ORAI1 levels (Figure 6A),
with a consequent reduction in CPA-induced SOCE activation
(Figure 6B) that was similar in WT and Col6a12/2 Mks follow-
ing rapamycin treatment. mTOR signaling was assessed in vivo
by injecting mice with rapamycin or vehicle. In vivo, rapamycin
treatment resulted in a significant reduction in pS6 and p4E-
BP1 in Col6a12/2 platelets to a level comparable to WT plate-
lets under resting conditions and after stimulation with thrombin
(supplemental Figure 6). In vivo, rapamycin administration also
resulted in a normalization of STIM1 and ORAI1 protein expres-
sion in Col6a12/2 BM Mks (Figure 6C; supplemental Figure 7)
and platelets (Figure 6D). The reduction in the expression of
SOCE effectors resulted in a significant decrease in platelet
activation upon thrombin stimulation, detected by active integrin
aIIbb3, to a level comparable to WT platelets (Figure 6E). Rapa-
mycin treatment also normalized the peripheral blood platelet
count of Col6a12/2 mice, which showed a mild thrombocytope-
nia (Figure 6F).

Platelets derived from patients harboring collagen

VI mutations show increased levels of

SOCE effectors

We analyzed peripheral blood platelets derived from healthy sub-
jects and patients affected by Bethlem myopathy and UCMD of
intermediate severity (Table 1). The phosphorylation of S6 ribosomal
protein and of 4E-BP1 appeared significantly increased in platelets
isolated from patients, relative to those isolated from healthy sub-
jects (Figure 7A). Further, the amounts of STIM1 and ORAI1 pro-
teins were increased in patient platelets compared with healthy
subjects (Figure 7B). Additionally, when we tested platelet activation
in response to thrombin stimulation, we observed increased activa-
tion of integrin aIIbb3 in patients compared with healthy subjects
(Figure 7C).

Discussion

The release of functional platelets from Mks is regulated by environ-
mental and autocrine factors.17,20,48-50 In previous studies, we dem-
onstrated that Mks express different extracellular matrix components
that regulate platelet production.37,51 Here, we demonstrated that
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human and mouse Mks express collagen VI, as confirmed by 3
recent studies.52-54 In this study, we took advantage of a collagen
VI–null mouse model and found that Col6a12/2 platelets display a
hyperactivation tendency, as revealed by different in vitro tests that
we conducted. Based on our results, this phenotype is due to an
intrinsic platelet defect because the platelet function tests were per-
formed on washed platelets that were devoid of extrinsic factors
involved in platelet activation and aggregation (eg, plasma, interac-
tion with other cells, blood flow rate). Platelet activation and aggre-
gation are directly dependent on an increase in [Ca21]i. The SOCE
mechanism has a major role in regulating intracellular Ca21 content
in platelets through the coordinated action of its main effectors
STIM1 and ORAI1.20,21 Contrary to platelets derived from mice with
a constitutive activation of Stim1,15 in Col6a12/2 platelets we
observed a normal basal level of cytosolic calcium. Also, the level of
Ca21 released by the ER, upon SERCA inhibition, in Col6a12/2

platelets was normal. In collagen VI–null platelets, the increased
expression of STIM1 and ORAI1 resulted in a higher level of cyto-
solic Ca21 influx from the extracellular space upon SOCE activation.
The consequent increase in [Ca21]i leads to increased platelet
reactivity.15,55,56

We previously proved that Mks express STIM1 and ORAI1 and that
an increase in [Ca21]i prompted by SOCE activation is crucial to

promote proplatelet extension and platelet release.16,57 In this study,
we found overexpression of STIM1 and ORAI1 and increased
SOCE in Col6a12/2 Mks, indicating that the defects displayed in
collagen VI–null platelets may originate from Mks.

It was demonstrated previously that STIM1 and ORAI1 expression is
under the control of the mTOR pathway.27,28 A distinctive signaling
defect found in Col6a12/2 tissues is the hyperactivation of the Akt/
mTOR pathway, which, in turn, results in autophagy deregula-
tion.10,58,59 mTOR includes 2 complexes: mTORC1 and
mTORC2.60 mTORC1 activation, through the PI3K/Akt/mTOR-medi-
ated phosphorylation of 4E-BP1 and S6, regulates protein synthe-
sis.61 The mTOR pathway was proven to positively regulate platelet
activation and aggregation, as well as thrombus formation and plate-
let aggregate stability, by regulating protein synthesis.32,62,63

Constitutive mTOR activation stimulates mitochondrial biogenesis
and function and, consequently, reactive oxygen species (ROS) pro-
duction.64 Higher levels of platelet ROS are associated with
increased platelet activation, and ROS scavenger administration
reduces platelet activation in aged mice, which are characterized by
increased mTOR signaling activity.65 In addition, a reciprocal inter-
play between SOCE and mitochondria has been reported because
cytosolic calcium oscillations are decoded in the mitochondria.66

Thus, the increase in cytosolic calcium upon SOCE activation, as
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observed in Col6a12/2 Mks and platelets, might result in an imbal-
ance in intracellular Ca21 dynamics between organelles deputed to
Ca21 handling. Future studies will unravel whether STIM1 and
ORAI1 overexpression may interfere with the mitochondrial function
in Col6a12/2 Mks.

To understand whether the endogenous Mk self-produced collagen
VI was the principal regulator of functional platelet production, we

produced radiation chimeras by transplanting BM Lin2 cells from
Col6a12/2 mice into WT recipients. At 7 to 8 weeks posttransplant,
when peripheral blood count was recovered, BM sorted Col6a12/2

Mks showed increased expression of STIM1 and ORAI1, despite
having undergone differentiation in the presence of collagen VI in
the BM environment. As in Col6a12/2 mice, STIM1 and ORAI1
overexpression in Mks resulted in the production of platelets with
increased susceptibility to activation and overexpressing pS6 and
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p4E-BP1. These results proved that the Mk self-produced collagen
VI plays a significant role in the production of functional platelets,
despite the composition of the BM extracellular matrix environment.

mTOR may have an immediate effect on thrombus formation and
stability through a mechanism independent from mRNA transla-
tion.31 Our data show that in vitro and in vivo inhibition of the
mTOR signaling by rapamycin treatment restores STIM1 and
ORAI1 expression and SOCE in Col6a12/2 Mks, leading to a nor-
malization of the platelet activation response. Platelet function abnor-
malities have been described in patients affected by connective
tissue disorders, such as collagenopathies; however, the mecha-
nisms underlying these defects remain unknown.11,12,67,68 We
revealed that peripheral blood platelets of patients affected by colla-
gen VI–related diseases express higher levels of STIM1 and ORAI1,
resulting in a hyperactivation state. Interestingly, platelet count was
normal in all of the analyzed patients.

No platelet alterations were previously reported for Bethlem
myopathy or UCMD. On the other hand, platelet abnormalities
are well known in patients harboring gain-of-function mutations

in ORAI1 or STIM1 and displaying a multisystemic clinical phe-
notype that is characterized by muscle weakness, with a clinical
spectrum ranging from isolated tubular aggregate myopathy to
the more complex Stormorken syndrome (STRMK) or York syn-
drome.69 A characteristic feature of STRMK is a mild to pro-
nounced thrombocytopenia and thrombocytopathy. Platelets
from patients with STRMK were found to be in an activated
state, with increased levels of CD63 and CD62P, whereas other
aspects of platelet function are impaired.69,70 Despite platelet
activation and increased SOCE, no thrombotic episodes were
observed in patients with STRMK, with only 1 patient presenting
with pulmonary embolism and thrombosis.71 While, it has been
observed a rather common bleeding tendency, possibly related
to thrombocytopenia and abnormal platelet function. Patients
with STRMK or with collagen VI–related diseases showed
increased platelet activation, which may suggest an increased
thrombotic predisposition. A mild bleeding tendency, which is
well established in STRMK, may also be present in patients
affected by collagen VI–related myopathies (Table 1). Consis-
tent with this hypothesis, we observed a significantly prolonged
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bleeding time in Col6a12/2 mice with respect to WT mice in a
tail bleeding assay (supplemental Figure 8). This apparent para-
dox could be explained, in part, by considering the documented
key role of collagen VI on platelet adhesion and aggregation
under low and high shear conditions. By linking the subendothe-
lial basement membrane to the interstitial collagen network, col-
lagen VI microfilaments play a pivotal role in the hemostatic
process that is triggered upon the damage of blood ves-
sels.72,73 Additional and further studies in larger patient popula-
tions are needed to establish whether and to what extent
patients affected by collagen VI–related disorders have a risk
for bleeding.15,74 Nevertheless, these data suggest that muta-
tions in different genes resulting in deregulation of Ca21 entry
may underlie a shared pathophysiological mechanism involving
muscle and platelets.

In conclusion, our data provide a fundamental step toward under-
standing the interaction between self-produced collagen VI and
Ca21 signaling in the regulation of Mk function and production of
functional platelets. These data represent clinically relevant evidence
to be taken into account for the long-term management of patients
affected by collagen VI–related diseases, including Bethlem myopa-
thy and UCMD.
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