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Abstract: Laser-induced breakdown spectroscopy (LIBS) was applied to perform a rapid 

elemental analysis and provenance study of Blumea balsamifera DC. Principal component 

analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were implemented 

to exploit the multivariate nature of the LIBS data. Scores and loadings of computed 

principal components visually illustrated the differing spectral data. The PLS-DA 

algorithm showed good classification performance. The PLS-DA model using complete 

spectra as input variables had similar discrimination performance to using selected spectral 

lines as input variables. The down-selection of spectral lines was specifically focused on 

the major elements of B. balsamifera samples. Results indicated that LIBS could be used to 

rapidly analyze elements and to perform provenance study of B. balsamifera. 
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1. Introduction 

Blumea balsamifera DC, a medicinal herb, is widely distributed in Eastern and Southeastern Asia.  

It has been used in folk medicine by Chinese minority groups for the treatment of septic wounds, 

respiratory infections, and stomach pains [1–3]. This herb is also useful for the treatment of  
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fever, lumbago, increasing appetite, skin diseases, wounds, liver cirrhosis, and kidney stones [4].  

B. balsamifera is the main plant source of natural borneol. The main provenances of B. balsamifera are 

Hainan and Guizhou provinces in China. Provenance study of herbal medicinal species is usually 

restricted to the detection of a few active components using high-performance liquid chromatography 

(HPLC) and gas chromatography-mass spectrometry (GC-MS), etc. Compared to the current fingerprint 

studies of organic compositions, fewer studies on inorganic elements have been reported. However, the 

quality and efficacy of herbal medicinal species are somewhat uneven due to disparities among 

conditions, such as soil and climate in different cultivation areas [5]. The elemental composition of a 

plant has a great impact on its quality, and depends on its provenance, therefore, a rapid and accurate 

elemental analysis method is necessary to study the provenance of medicinal herbs. 

Laser-induced breakdown spectroscopy (LIBS) is a versatile spectroscopic technique [6,7] that uses 

the light emitted from laser-induced microplasma to determine the elemental composition of samples.  

A high-power laser beam is focused on the surface of the sample. A small amount of the sample 

material is ablated and a luminous laser-induced plasma (LIP) is created. The LIP consists of atoms 

and ions from the ablated material. Molecules are created in the plasma during cooling. Spectral 

characteristics allow quantitative analysis under well specified conditions. Compared to other 

traditional techniques, i.e., flame atomic absorption spectrometry (FAAS), laser ablation inductively 

coupled plasma mass spectrometry (ICP-MS), and inductively coupled plasma atomic emission 

spectrometry (ICP-OES), LIBS has unique advantages, such as requiring no or little sample 

preparation, in situ and even remote element detection. These characteristics are particularly valuable 

in the analysis of chemical and hazardous samples [8,9]. Moreover, the significant capability of LIBS 

for material characteristics is chemical imaging with a high spatial resolution [10]. Recently, LIBS has 

emerged as a powerful technique for direct multi-element analysis of various samples in solid, liquid, and 

gaseous phase. Several books [11,12] and reviews [6,7,13,14] have been published about LIBS, 

ranging from fundamental theory to applied research. LIP spectra are characterized by a tremendous 

amount of spectral lines. Such spectra give information about the complex elemental composition of 

the sample, i.e., a “chemical fingerprint”. Thus, strong requirements are imposed on the efficient and 

effective handling a large amount of data. 

Multivariate analysis is able to reduce multi-dimensional data to lower dimension factors that 

describe the variance among samples. It is useful in identification, classification and quantitative 

analysis. For example, partial least squares discriminant analysis (PLS-DA), soft independent modeling 

of class analogy (SIMCA) and support vector machines (SVM) were all used to classify pharmaceutical 

samples [15]. Linear and rank correlation methods were employed to discriminate glass samples for 

forensic applications by LIBS [16]. In particular, PLS-DA is a more viable chemometric analysis for 

discrimination of heterogeneous residue samples with similar composition. Ollila et al. [17] compared 

two PLS-DA algorithms for identifying geological samples using the ChemCam LIBS instrument.  

Xia et al. [18] investigated the potential of the technique for classification of waste materials in 

concrete recycling and found that PLS-DA achieved full discrimination. Schröder et al. [19] 

demonstrated that PLS-DA was a suitable analytical technique for the investigation of salts and frozen 

salt solutions by LIBS under martian atmospheric conditions. Based on the elemental “fingerprint”  

and multivariate analysis, LIBS technique was able to discriminate geological materials [20].  

Akpovo et al. [21] used principal components analysis (PCA), discriminant function analysis (DFA), 
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and hierarchical cluster analysis (HCA) to discriminate the geographical origin of oysters.  

Alvey et al. [22] applied a PLS-DA algorithm for classification of garnet samples based on 

geochemical fingerprinting via LIBS. 

Numerous studies of the LIBS technique have been performed in plants [23–25]. Trevizan et al. 

investigated the micro- and macronutrients of plant materials by means of LIBS [26,27].  

Krystofova et al. [28] reported the distribution of lead in sunflower plants using the LIBS technique.  

Galiová et al. [29] demonstrated the feasibility of mapping the distribution of silver and copper in plant 

samples (leaves of Helianthus annuus L.) by LIBS. Additionally, molecular bands can be used for 

analysis of biomaterials in LIBS experiments. Singh et al. [30] reported the prospects for using LIBS 

in biomedical applications. However, the application of LIBS for analysis of medicinal herbs has not 

been well studied yet [13,31]. Moreover, there is an increasing interest in the use of medical herbs 

throughout the Western Hemisphere. More than 500 kinds of Chinese herbs are found in the Chinese 

Pharmacopoeia [32]. Provenance or geoherbalism is a critical determination of quality in medical herbs. 

This study investigated the feasibility of LIBS for rapid analysis of medical herbs composition and their 

provenance. Specifically, the aim of this work was to improve the recognition capacity for classifying 

similar B. balsamifera samples. PCA was employed to assess the data structure in the multivariate space. 

PLS-DA was selected because it can significantly improve the identification capability without 

considerably increasing the difficulty of implementation. The variables contributing to the classification in 

the PLS-DA model was explored through examining the variable importance in projection (VIP) scores. 

2. Materials and Methods 

2.1. Materials 

Dried aerial parts including leaves and stems of B. balsamifera (Ai-na-xiang) samples were 

provided by the Tropical Crops Genetic Resources Institute (Chinese Academy of Tropical 

Agricultural Sciences, Beijing, China), as shown in Table 1. These materials were mainly collected 

from two geographical regions in P.R. China and were identified by Dr. Fu-Lai Yu (Tropical Crops 

Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences). A voucher 

specimen (No. GT022) was kept at the Key Laboratory of TCM-Information Engineering of the State 

Administration of TCM, Beijing University of Chinese Medicine. 

Table 1. Blumea balsamifera DC samples from different geographical regions in China. 

Sample ID Origins Sample ID Origins 

1~4, 25~31, 38~40 Luodian, Guizhou 13~18 Anlong, Guizhou 
5~7 Wuzhishan, Hainan 19~21 Ceheng, Guizhou 

8 Xingyi, Guizhou 22~24 Wangmo, Guizhou 
9~12 Baisha, Hainnan 32~37, 41~95 Danzhou, Hainan 

The homogeneity of samples is critical to the reproducibility of LIBS analysis. Grinding was used to 

reduce particle size and ensure the homogeneity of the sample surface for micro-analysis [33]. Before LIBS 

measurement, samples were finely ground (typical grain size, <150 μm). The ground powder was pressed 

into pellets (13 mm diameter and 4 mm thick) using a hydraulic pellet press with 10 tons of pressure. 
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2.2. Equipment and Parameter Conditions 

A commercially available LIBS instrument with a spectrometer (ChemRevealTM-3764, TSI Inc.,  

St Paul, MN, USA) was employed to detect a total of 95 B. balsamifera samples. The experimental 

setup is schematically shown in Figure 1. A Q-switched Nd:YAG laser (New Wave Research, 

Fremont, CA, USA) with a laser power of 90 mJ/pulse and 1‒3 ns pulse duration (FWHM) at 1064 nm 

was used in the experiment. The spectral range of this system was ~167–984 nm with an approximate 

resolution of 0.1 nm. The laser beam passed through a pierced parabolic mirror and was focused 

vertically onto the sample. The sample surface was expanded by a telescope (LMH-5X-1064, Thorlabs 

Inc., Newton, NJ, USA). The size of laser spot was about 100 μm diameter. Plasma light was collected 

by a 50 mm focal length lens. The radiation was then introduced on the entrance slit of a spectrometer 

(3764 XRF, Scientific Ltd., Osborne Park, WA, Australia) via a small lens and optical fibers. The 

emission spectrum was recorded with a high-resolution seven channel-charge-coupled device (CCD) 

camera. A x-y-z translation stage was used to ensure movement of the sample to a fresh spot. 

Experiments were performed in ambient air with a gate width of 1 ms and a detector delay of 1 μs. 

 

Figure 1. Schematic diagram of LIBS system. 

2.3. Data Acquisition 

LIPs were produced on the surface of B. balsamifera samples. Radiation of luminous LIP was collected, 

spectrally resolved and used for further spectroscopic analysis. For each sample, five positions were 

randomly selected and each position consisted of nine laser pulses (3 × 3 matrix~100 μm × 100 μm). As a 

result, a total of 45 LIBS spectra per sample were acquired. To minimize the influence from sample 

heterogeneity and other fluctuation factors, in our measurements the measured spectra were averaged 

per sample. 

2.4. Multivariate Analysis 

It was chosen to do no further data pretreatment other than mean-centering [17,34]. Since the 

underlying background structure contains inherent features of spectra and should therefore be useful 
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for discrimination and identification of different samples. PCA and PLS-DA were performed by 

PLS_toolbox version 6.21 under Matlab version R2009a (MathWorks Inc., Natick, MA, USA). 

PCA is an unsupervised technique that can be used in the first instance to detect outliers of different 

classes [35,36]. It is commonly utilized for data exploration to reveal hidden patterns and major trends. 

Similarities and differences can be found and variables responsible for these are unveiled. PCA 

transforms variables (the data in matrix X), such as the intensity into linear combinations called principal 

components (PC) that describe the variance within the data. The coordinates among the independent 

PC scores can help to visualize similarities of spectra. If intra-class variance equals or exceeds  

inter-class variance then classification performance of PCA becomes suboptimal. 

PLS-DA is a supervised classification algorithm [18,21]. The input variables were complete spectra 

and selected spectral lines. Pre-treated datasets were then divided into training and test sets by using 

the classic Kennard-Stone (KS) algorithm [37]. Leave-one-out (LOO) cross-validation paradigm was 

applied. PLS-DA decomposes the spectra as linear combinations of components, and the scores are 

correlated to both intra-class variance and inter-class variance [21,38,39]. Two input matrices are used 

to construct the PLS-DA model. The X block contains input matrix (complete spectra or selected 

spectral lines) for modeling. The Y block contains the class information of each spectrum (positive for 

one class, negative for the other class). The output of the PLS-DA models is the Y predictor block, 

which estimates the probability of class affiliation. In this case, one class was Hainan and the other 

class was Guizhou. To obtain good discrimination while avoiding model overfitting, the number of 

LVs was determined by 10-fold cross-validation. The optimal number of latent variables (LVs) was 

selected based on the first minimum classification error [22,26]. Subsequently, the test set was used to 

evaluation performance. The spectra were assigned to the class with the highest probability. 

2.5. Evaluation of Classification Performance 

Sensitivity and specificity are two basic parameters for measuring the accuracy of a diagnostic  

test [34,38]. Sensitivity is called the true positive rate (TPR). Specificity is defined as the proportion of 

correctly identified, fault-free recognitions. The values of both metrics (sensitivity and specificity) are 

indispensable in evaluating a screening process, as neither one can properly evaluate the process alone. 

Accuracy is another main parameter of a recognition procedure, expressed as the fraction of correctly 

classified samples in the total amount of samples [35]. More detailed description of these metrics is 

provided in [35,40]. Sensitivity, specificity, and total accuracy of a detection system are calculated 

according to Equations (1)–(3): sensitivity = TP/(TP + FN) (1)specificity = TN/(TN + FP) (2)Total	accuracy = (TN + TP)/(TP + FN + TN + FP) (3)

where TP is true positive classification, FP is false positive classification, TN is true negative 

classification and FN is false negative classification. 
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3. Results and Discussion 

3.1. LIBS Spectra 

Figure 2 shows the LIBS average spectra of B. balsamifera from Hainan and Guizhou provinces.  

The identification of the atomic, ionic transitions and molecular bands were performed by using the 

NIST atomic lines database and relative references. The 48 selected spectral lines including  

13 elements and two molecular bands are shown in Table 2. In the spectral region, atomic and ionic 

emission lines of the major mineral elements (Ca, K, Na and Mg) as well as Al were observed. All 

spectra showed strong emission lines from Calcium (Ca(II) 393.375 nm, Ca(II) 396.816 nm and Ca(I) 

445.441 nm), sodium (Na(I) 588.952 nm), hydrogen (H(I) 656.315 nm), potassium (K(I) 766.523 nm, K(I) 

769.959 nm), to nitrogen (N(I) 746.918 nm) and oxygen (O(I) 777.212 nm, O(I) 777.492 nm).  
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Figure 2. Normalized LIBS spectra of the B. balsamifera samples from Hainan and 

Guizhou provinces. 

Table 2. Selected spectral lines and molecular bands of LIBS Spectra. 

Elements Wavelength (nm) Ref. 

C I 192.77; 247.725 [41] 

Mg II 279.418; 280.123 [41] 

Mg I 285.08; 383.825 [21] 

Si I 288.031 [21] 

Ca II 315.863; 317.92; 393.375 [41] 

Ca II 370.627 [42] 

Ca II 396.816 [43] 

C-N 386.105; 387.08; 388.296 [41] 

Al I 394.417; 396.097 [19] 

Ca I 422.64; 558.842 [43] 

Ca I 612.715; 616.231; 643.965 [41] 

Ca I 646.214; 649.4; 714.856 [41] 

Ca I 720.267 [41] 
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Table 2. Cont. 

Sr II 407.789 [44] 

Ca I 430.228; 442.64; 443.498 [41] 

Ca I 445.441 [41] 

Ba II 455.38; 493.388 [44] 

C-C 516.672 [41] 

Na I 588.952; 589.554 [19] 

H I 656.315 [28] 

Li I 670.754 [44] 

N I 742.388; 746.918 [43] 

N I 870.256; 871.046; 938.372 [43] 

N I 744.306 [41] 

K I 766.523; 769.959 [41] 

O I 777.212; 777.492 [41] 

The molecular emission bands of CN violet bands were indicated in Figure 2. As many of the same 

emission lines were observed, it was difficult to visually discriminate differences between the spectra. 

3.2. PCA Model 

PCA provides a visual representation of relationships between samples and samples as well as 

between samples and variables. For visual clarity, the PCs were calculated using complete spectra 

(mean-centering pretreatment). The output of PCA resulted in three uncorrelated and orthogonal PCs 

that accounted for 90.76% of the total variability among samples. Figure 3 shows the PCA scores 

along the first two principal components (PC), which represented 84.22% of the total variability. The 

dispersion and local overlapping groups of data points in the PC score plots may be ascribed to the 

large chemical and mineralogical variability within each provenance. Outliers are detectable since they 

are relatively far from other spectra. Clearly, one spectrum lied apart from other spectra of its class (as 

shown in Figure 3). Consequently, the spectrum was eliminated from the Guizhou training set. 
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Figure 3. Principal components analysis of spectra from the 95 samples (projection on the 

first two principal components). 
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3.3. PLS-DA Model 

PLS-DA considers the VIP scores for discrimination of LIBS spectra. One PLS-DA model was 

constructed using complete spectra (mean-centering pretreatment) and was called PLS-DA model 1#.  

A second PLS-DA model was constructed using selected spectral lines and was called PLS-DA model 2#. 

The previously identified outlier was removed from the calibration set, which then had 94 spectra. The 

results of two PLS-DA models are shown in Figure 4.  

The y-axis represents the class prediction (Hainan or Guizhou) and the x-axis is simply the sample 

index. A detection threshold (0) was established by the model based on the 94 samples. Figure 4 

illustrates the probability that a sample belongs to Hainan or Guizhou class for PLS-DA model 1# 

(Figure 4a) as well PLS-DA model 2# (Figure 4b). 
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Figure 4. (Color online) Graphical representations of the cross-validation PLS-DA 

performed on datasets. (a) PLS-DA model 1# (complete spectra); and (b) PLS-DA model 2# 

(selected spectral lines). 

The optimal numbers of LVs were 8 and 6 in the two PLS-DA models, respectively (Figure 5a,b).  
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Figure 5. The plots of cross-validation classification error versus the number of LVs.  

(a) PLS-DA model 1# (complete spectra); and (b) PLS-DA model 2# (selected spectral lines). 
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For the training set, PLS-DA model 1# showed similar performance to PLS-DA model 2#. 

Specificity, sensitivity and total accuracy were 100%, 86.67%, and 90.32% for PLS-DA model 1#, and 

were 86.67%, 88.24%, and 87.10% for PLS-DA model 2#, respectively. For the test set, PLS-DA 

model 2# had slightly better performance than PLS-DA model 1#. Specificity, sensitivity, and total 

accuracy were 100%, 91.30%, and 93.75% in PLS-DA model 1#, and were all 100% in PLS-DA 

model 2#, respectively, indicating excellent diagnostic accuracy (with all the three values in the  

range 0.9–1.0). In summary, the PLS-DA algorithm was effective in provenance classification of  

B. balsamifera. 

Since the goal is to separate one provenance from another, the data set can be down-selected  

a priori, in this case from complete spectra to selected spectral lines. The VIP scores of each class 

were used to determine how much each variable in the model contributed to the classification. In 

Figure 6, the selected spectral lines are compared to the VIP scores from PLS-DA model 2#. The 

selected spectral lines with higher VIP values are shown in Table 3. Higher VIP values showed greater 

importance among the classification results. VIP values between 0 and 1 were data that were not 

important in correct identification [45]. 
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Figure 6. (Color online) The selected spectral lines and VIP scores of PLS-DA model 2#. 

Table 3. VIP scores for the selected spectral lines in PLS-DA calculations. 

Elements VIPs Elements VIPs 

Ca II 393.375 2.377 Ca I 616.231 1.383 
Al I 396.097 1.438 K I 766.523 2.386 
Ca II 396.816 1.965 K I 769.959 1.905 
Ca I 422.64 1.590 O I 777.212 1.439 

Na I 588.952 1.872 N I 870.256 1.386 

Elements such as Ca, K, Al, Na, and O played a significant role in provenance classification of  

B. balsamifera samples. The majority of the variables of complete spectra contributed significantly to 

the difference between classes. Some of the variables which did contribute to the model were due to 
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the elemental composition of the samples suggesting that the natural environment affected the 

elemental composition of the plants. 

4. Conclusions 

In this study, multivariate analysis techniques were implemented to analyze LIBS spectra, focusing 

on discrimination of provenance of the herbal medicine B. balsamifera. All spectral data were 

pretreated by mean-centering prior to multivariate analysis. 

PLS-DA was an effective method to discriminate the provenance of B. balsamifera. The two  

PLS-DA models using complete spectra and selected spectral lines as input variables provided a similar 

classification performance in this investigation. The down-selection of the dataset was specifically 

focused on the major elements (Ca, K, Al, Na and O) of B. balsamifera. Because the natural 

environment affects the growth and secondary metabolism of plants, the provenance of B. balsamifera 

can be classified via matrix elements. 

Further research of LIBS technique for provenance study is underway. In order to further 

investigate the effects and obtain higher accuracy classification by LIBS technique, a large and diverse 

training dataset is needed. More measurement locations are required to obtain enough spectral 

information about composition variability. In addition, other multivariate analysis algorithms, such as 

support vector machines (SVM) or independent components analysis (ICA) [15] should be tested for 

their ability of provenance study. The results demonstrated the viability of LIBS for B. balsamifera 

provenance study. LIBS is a potential technique for future application in geoherbalism studies of 

medicinal herbs. 
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