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Knowledge graphs facilitate prediction of drug
response for acute myeloid leukemia

Guangrong Qin,1,5,* Yue Zhang,1 Jeffrey W. Tyner,2 Christopher J. Kemp,3 and Ilya Shmulevich1,4

SUMMARY

Acute myeloid leukemia (AML) is a highly aggressive and heterogeneous disease, underscoring the need
for improved therapeutic options and methods to optimally predict responses. With the wealth of avail-
able data resources, including clinical features, multiomics analysis, and ex vivo drug screening from AML
patients, development of drug response predictionmodels has become feasible. Knowledge graphs (KGs)
embed the relationships between different entities or features, allowing for explanation of a wide
breadth of drug sensitivity and resistance mechanisms. We designed AML drug response prediction
models guided by KGs. Our models included engineered features, relative gene expression between
marker genes for each drug and regulators (e.g., transcription factors). We identified relative gene
expression of FGD4-MIR4519, NPC2-GATA2, and BCL2-NFKB2 as predictive features for venetoclax
ex vivo drug response. The KG-guidedmodels provided high accuracy in independent test sets, overcame
potential platform batch effects, and provided candidate drug sensitivity biomarkers for further valida-
tion.

INTRODUCTION

Acutemyeloid leukemia (AML) is a highly aggressive form of cancer with a low 5-year overall survival rate, primarily due to relapse and primary

resistance to current standard therapeutic regimens.1–4 Therapeutic outcomes remain particularly dismal for relapsed or refractory and

older patients, who are often unfit for intensive therapies. There have been 10 U.S. Food and Drug Adminstration (FDA) approvals for new

single-agents or drug combinations over the past 6 years. While these new regimens have resulted in improved response rates, nearly uni-

versal resistance has been observed. These clinical results underscore the need for better understanding of mechanisms of drug sensitivity

and resistance coupled with methods to predict how a patient may respond to a given drug.

Numerous studies have yielded a wealth of data, encompassing clinical data from electronic medical records (e.g., clinical labs, treat-

ments, and outcomes), multiomics data (e.g., RNA sequencing [RNA-seq] and whole exome sequencing), and ex vivo drug screening for

patients with AML. These datasets include Beat AML,5,6 Functional PrecisionMedicine Tumor Board (FPMTB),7 and our previous study.8 Addi-

tionally, other data resources containing AML cell line data, such as Genomics of Drug Sensitivity in Cancer9 are also available.With the devel-

opment of machine learning models and artificial intelligence, it has become possible to develop more robust predictive models for drug

response prediction.

Various methods have been developed for predicting drug response, such as Logic Optimization for Binary Input to Continous Output

(LOBICO),9,10 random forest, LightGBM, and deep neural networks.11 Traditional machine learning approaches typically use measurements

from one sample as features to make predictions without considering existing knowledge or relationship among the features. A simulation

model has been proposed to predict response to inhibitors to the Bromodomain and Extra-Terminal (BET) family of proteins using the Beat

AML dataset.12 Explainable drug sensitivity prediction through cancer pathways enrichment has been implemented in PathDSP.13 AML spe-

cific drug responsemodels have been reported, including using ex vivodrug sensitivity profiling in predicting patient survival,14 and defining a

drug sensitivity score (DSS) threshold that suggests sensitivity/resistance to venetoclax.15,16 A cross-study analysis of drug response predic-

tion in cancer cell lines suggested that a limitation still exists for prediction models: the ability of the model to generalize across studies,11

which may be due to differences in viability assays or batch effects in the feature measurements. To overcome some of these challenges

and improve prediction accuracy and generalizability, several aspects should be considered, including the use of prior knowledge or inter-

actions among features, as well as defining features that canmitigate batch effects between training and test datasets. These challenges high-

light the need to carefully select features and constructmeasurable features that can reduce batch effects for furthermodel testing and clinical

applications.
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Knowledgegraphs (KGs) encodeextensive sets of associations amongmolecular, cellular, and clinical data and can correlate these features

with activity of potential therapeutic agents.Nodesof KGs represent entities such asdrugs, genes, clinicalmeasurements, biological functions,

and pathways, while edges represent known physical interactions, regulatory relationships between the entities, and statistical associations.

Both nodes andedges stem fromeither accumulated knowledgeor statistical inferencesdrawn fromdata.Consortiumefforts havebeenmade

to integrate existing biomedical datasets and translate those data into insights17 using a standardized way to represent KGs.18

Here we developed a novel approach to predict drug response for AML patient-derived samples using KG-guided feature engineering.

Our approach leverages KGs to develop predictionmodels that use features derived from the graph, thereby accounting for prior knowledge

and known interactions among the features. Additionally, we defined measurable features that can reduce batch effects for further model

testing or clinical applications. To validate our approach, we applied it to the Beat AML wave 1/2 datasets (sample size of 672)6 and tested

it on the Beat AML wave 3/4 datasets (sample size of 297).5 Our results demonstrate that the KG-guided feature engineering approach en-

hances the generalizability of the predictive models and provides robust features for drug sensitivity prediction.

RESULTS
Overview of the graph-guided prediction models

The primary objective is to predict ex vivo drug sensitivity for the purpose of guiding personalized therapy using molecular measurements

from AML patients (Figure 1). Beyond using feature sets directly from molecular measurements, such as gene mutation, variant allele fre-

quencies grouped bymutation sites for specific genes, and gene expression, we also utilize prior knowledge encoded in a graph and perform

feature engineering based on the graph structure to generate relative gene expression features. This approach includes the following four

steps: (1) AML KG extraction and feature selection, (2) feature engineering, (3) model construction, and (4) model validation. Work progress

toward large biomedical KGs has been made in the Translator consortium.17–19 However, to reproduce the complexity of large KGs and

demonstrate this KG-derived feature engineering approach, we generated a minimal KG to make predictions.

We constructed AML-specific KGs from statistical approaches using public datasets or derived from public knowledge resources or liter-

ature. The statistical model derived KGs include (1) associations between gene expression and drug sensitivity derived from the Least Abso-

lute Shrinkage and Selection Operator (LASSO) regression approach using Beat AML wave 1/2 dataset6 (Table S1); (2) frequently mutated

genes in AML3,6,20; (3) regulations betweenmicroRNAs and target genes frommirTarBase21 andMSigDB22; and (4) regulations between tran-

scription factors and target genes from the literature.23 The regulatory effects between transcription factors/microRNAs and target genes in

AML were derived from LASSO regression models with negative coefficients based on the Beat AML wave 1/2 dataset (Table S2). The under-

lying assumption of selecting the negatively correlated regulators is that the balance of gene expression between the signature genes and

regulator genes will impact the state of cells, which further affect drug response.

For the feature engineering step, we calculated relative gene expression values between the genes that are associatedwith drug sensitivity

and their regulators such as transcription factors or microRNAs. We first selected gene signatures that are predictive for the drugs in the KG.

We next extended the graph by selecting regulators (transcription factors and miRNA) that may affect the expression of these drug-associ-

ated gene signatures. We then used the KG to facilitate feature engineering. We generated relative gene expression values as binarized

values by comparing the expression levels of the predictive features and their negative regulatory partners (Figure 1). We also used house-

keeping genes that show the lowest gene expression variance in different abundance levels to generate relative gene expression features by

comparing the expression of genes that are associated with drug sensitivity and the housekeeping genes (Figures S1 and 1). The rationale of

adding low variance housekeeping genes is to generate relative gene expression that may overcome batch effects. These steps define bi-

narized features for further prediction models. We then used these engineered features in the machine learning models (XGBoost classifier)

and used 90 percent of samples in Beat AML wave 1/2 as training sets, 10 percent of samples in Beat AML wave 1/2 as validation sets using a

10-fold cross validation approach, and used Beat AML wave 3/4 as independent test data.

Prediction of drug response using the features from the KGs

We used the gene mutations (Mut, see Table 1; Figure S2), variant allele frequency (VAF, see Table 1; Figure S2), and gene expression (RNA-

seq) data (Expr), relative gene expression defined from the KGs (RelativeExpr) and the combined feature sets of gene mutations, VAF and

relative gene expression from the gene pairs in the KG (Mut+VAF, Mut+RelativeExpr, Mut+VAF+RelativeExpr) to predict drug sensitivity.

We used classification models to predict whether a sample/patient would be sensitive or resistant to a drug based on its inhibitory concen-

tration (IC50) value from the ex vivo drug screening data in the Beat AMLwave 1/2 dataset.We assumed that samples with IC50 values below a

certain threshold indicated a sensitive response, while samples with IC50 values above that threshold indicated a resistant response. This

assumption gives some advantages for the prediction models especially when researchers commonly give a cutoff of the tested drug con-

centration (commonly 10 mM as the Beat AML dataset). We evaluated prediction models using various IC50 thresholds (Q25: 25th percentile

of IC50 in the Beat AML wave 1/2 dataset, Q50: median IC50 values, and Q75: 75th percentile if the threshold is smaller than 10 mM). We also

considered an additional threshold 1 mM if Q75 value is below 1 mM to label the sensitive group or resistant group.

For instance, for venetoclax, we employed two candidate thresholds: 0.02 mM (Q25) and 1.45 mM (Q50). We then compared prediction

results from XGboost classifier models using different feature sets and thresholds. Models with highest prediction accuracy in the indepen-

dent dataset Beat AMLwave 3/4were those trained using the relative gene expression features, achieving amedian balanced accuracy of 0.78

when classifying sensitive or resistant samples using the threshold of 1.45 mM (Figure 2A). TheWilcoxon test revealed no significant difference

in balance accuracy amongmodels trained with relative gene expression features with or without gene mutation or variant allele frequencies
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(Figure 2B). Models based on relative gene expression, defined through gene pairs from the KG, showed the best balanced accuracy and F1

score using a threshold of 1.45 mM in the independent testing set Beat AML wave 3/4 (Figures 2A and 2C). The gene pair based models ex-

hibited significant differences in balanced accuracy or F1 score compared to those based on gene mutation or expression (Figures 2B and

2D). Our results underscore the importance of considering relative gene expression for drug response prediction of venetoclax. For the pre-

diction of trametinib response, we found the models trained using the feature set combining mutation and relative gene expression yielded

the highest balanced accuracy (Figure 2E). Similar to venetoclax, models incorporating relative expression features significantly improved the

accuracy compared to those relying only on genemutation or expression (Figure 2F). Using F1 score as anothermeasurement of performance

also supports the same conclusion (Figures 2G and 2H).

Figure 1. The workflow of knowledge graph-guided machine learning model for predicting drug response in AML

The goal of the work is to construct predictive models for the prediction of ex vivo drug response using the molecular measurements from AML patient-derived

samples, which could provide therapeutic suggestions. We used the Beat AML wave 1/2 dataset as the training set, with 10-fold cross validation. Four types of

feature sets were used to build the model, namely, (1) gene mutations; (2) variant allele frequency for selected mutation sites; (3) gene expression; and (4)

engineered features from knowledge graphs. We also included combined features sets to make predictions, see Table 1. For the feature engineering step,

we first constructed AML knowledge graphs that capture the relationships among gene expression, drugs, transcription factors, microRNAs, and frequently

mutated genes in AML (white box on the left). We then performed feature engineering to generate binary features from knowledge graphs (white box on

the right). Here, G represents the expression of signature genes, while T, M, and H represent the expression levels of transcription factors, microRNA, and

housekeeping genes, respectively.
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Validation of the prediction features for venetoclax

The prediction models employing relative gene expression for the prediction of venetoclax ex vivo drug sensitivity show two gene pairs pre-

senting the highest importance scores, FGD4-MIR4519 and NPC2-GATA2 (Figure 3A). We also identified the relative gene expression be-

tween the drug target gene BCL2 and its regulators such asNFKB2 are among the top predictive features. The two groups of samples defined

by the relative gene expression between FGD4 and MIR4519 show significant differences of log-transformed IC50 values in Beat AML wave

1/2 and Beat AML wave 3/4 (Figures 3B and 3C). Comparing the log-transformed drug IC50 values between the samples defined by the rela-

tive gene expression of NPC2 and GATA2, significant differences between the two groups in both the Beat AML wave 1/2 dataset and Beat

AML wave 3/4 dataset have been observed (p < 0.001, Ranksum test) (Figures 3D and 3E). Using an independent dataset FPMTB,7 we also

validated that the two groups of samples defined by the relative expression of NPC2-GATA2 show differential sensitivity to venetoclax (Fig-

ure 3F). We also testedwhether other newly defined features are statistically associated with drug sensitivity using theWilcoxon sum rank test.

We found features such as the relative gene expression of BCL2-NFKB2 are associated with sensitivity to venetoclax in multiple datasets,

including Beat AML wave 1/2, Beat AML wave 3/4 and FPMTB (Figures 3G–3I). Some of these top predictive features can be explained by

Table 1. Features used for the machine learning models

Category of features Features Number of features

Highly frequently mutated genes (>3% of the

Beat AML samples)

(Feature set 1: Mut)

TET2(1:mutated/0: wild type), STAG2, RUNX1,

EZH2, JAK2, FLT3, SF3B1, GATA2, WT1,

CEBPA, NPM1, KRAS, IDH1, BCOR, TP53,

ASXL1, DNMT3A, U2AF1, PTPN11, SRSF2,

NRAS, and IDH2

22

Variant allele frequency of highly frequently

altered variant groups (altered in at least 1% of

the Beat AML samples)

(Feature set 2: VAF)

DNMT3A:p.R882 (DNMT3A:p.R882H/C),

ASXL1:p.G645-646 (ASXL1:p.G645Vfs,

ASXL1:p.G646Wfs, ASXL1:p.G645Wfs),

FLT3:p.835-839 (FLT3:p.D835E/H/N/V/Y,

FLT3.p.D839G, FLT3:p.I836del),

IDH1:p.R132 (IDH1:p.R132C/G/H/L/S),

IDH2:p.R140 (IDH2:p.R140L/Q/W),

IDH2:p.R172 (IDH2:p.R172K),

JAK2:p.V617 (JAK2:p.V617F),

KIT:p.D816 (KIT:p.D816H/V/Y),

KRAS:p.G12/13 (KRAS:p.G12A/C/D/R/V,

KRAS:p.G13R),

NPM1:p.W288-90(NPM1:p.W288Cfs*12,

NPM1:p.W290Cfs*10, NPM1:p.W290Rfs*10),

NRAS:p.G12/13(NRAS:p.G12A/C/D/R/S,

NRAS:p.G13C/D/R/V)

NRAS:p.Q61(NRAS:p.Q61H/K/L/P/R),

SF3B1:p.K700E

SF3B1:p.K666(SF3B1:p.K666E/M/N/Q/T),

SRSF2:p.94-95(SRSF2:P95 H/L/R,

SRSF2:P95_R102del, SRSF2:P94dup,

SRSF2:P95delinsRA),

U2AF1:p.S34(U2AF1:p.S34F/Y)

U2AF1:p.156-157(U2AF1:p.Q157P/R,

U2AF1:p.R156H)

ZNF687:p.R939Pfs*36

18

RNA expression (genes with expression value

[log(RPKM)] greater than 0 in at least 50%)

(Feature set 3: Expr)

Expression of individual genes 17,691

Relative gene expression features from graph

structure (Feature set 4: RelativeExpr)

Each drug has a different feature set Vary among drugs

Combined feature set Mut+VAF Feature Set 1 + Feature Set 2 40

Combined feature set Mut+RelativeExpr Feature Set 1 + Feature Set 4 Vary among drugs

Combined feature set

Mut+VAF+RelativeExpr

Feature Set 1 + Feature Set 2 + Feature Set 4 Vary among drugs
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existing literature. For example, our model predicts the relative gene expression between BCL2-NFKB2 are predictive of venetoclax sensi-

tivity, as BCL2 is the known target protein for venetoclax, patients with higher expression of BCL2 would be expected to show higher sensi-

tivity to venetoclax. For samples with NPC2 expression significantly higher than GATA2, IC50 of venetoclax is higher than samples with NPC2

expression lower than GATA2. This result suggests higher GATA2 expression indicates increased venetoclax sensitivity. GATA2 is suggested

to act as a critical regulator of normal and leukemic stem cells. Ablation of GATA2 enforces a leukemic stem cell specific programof enhanced

apoptosis, exemplified by attenuation of anti-apoptotic factor BCL2, and re-instigation of myeloid differentiation.24 This suggests lower

GATA2 may be associated with lower BCL2 expression and resistance to venetoclax. These results demonstrate the selected binarized fea-

tures could be used as robust features to predict venetoclax ex vivo drug response.

Models based on relative gene expression provide higher accuracy in independent test datasets

We then extended our models to predict the ex vivo response for other drugs. Drugs or chemicals included in ourmodels are those that show

sensitivity in AML samples with a threshold of IC50 less than 50 nM in greater than ten samples in the Beat AMLwave 1/2 dataset andwhich are

also measured in Beat AML wave 3/4 dataset, resulting in 70 drugs. The top sensitive drugs include elesclomol (mitochondria), trametinib

(Mitogen-activated protein kinase kinase [MEK] inhibitor), ponatinib (target BCR-ABL and multi-tyrosine kinase inhibitor), INK-128 (mTOR in-

hibitor), dasatinib (KIT inhibitor), panobinostat (HDAC inhibitor), JNJ-28312141 (receptor tyrosine kinase inhibitor), rapamycin (mTOR inhib-

itor), foretinib (multi-kinase inhibitor), quizartinib (FLT3 inhibitor), venetoclax (BCL2 inhibitor), sunitinib (tyrosine kinase inhibitor), dovitinib

(multi-kinase; fibroblast growth factor receptor [FGFR] inhibitor), doramapimod (p38 mitogen-activated protein kinase [MAPK] inhibitor),

and others. We then applied the XGBoost classifier approach to generate models to predict drug response using different feature sets,

namely gene mutations, VAF, gene expression, and relative gene expression guided from the KG and three sets of combined feature sets

as defined in Table 1. Our result shows most of the drugs show the best model accuracy based on the feature sets that include the relative

gene expression guided by the KG in the independent test dataset Beat AML wave 3/4 as shown in Figure 4A. The threshold of IC50 that is

used to define sensitive or resistant samples and the feature sets used for the best performing models are shown in Table S3. The drugs that

show the best prediction accuracy based on gene mutation or gene expression are shown in Figure 4B, and drugs that show improved ac-

curacy based on relative gene expression are shown in Figure 4C. Our results highlight those models based on either the relative gene

Figure 2. Prediction accuracy of the XGBoost classification models for the prediction of drug response of venetoclax and trametinib using different

binarization thresholds and feature sets

(A, C, E, and G) Balanced accuracy and F1 scores of the XGBoost models using different feature sets to predict the ex vivo drug response of venetoclax and

trametinib with different thresholds as cutoffs to define sensitive or resistant groups. The threshold used in the figures are the IC50 of the 25th percentile,

50th percentile or 1 mm. The feature sets used are defined in Table 1. The balanced accuracy and F1 scores shown here are based on the test dataset Beat

AML wave 3/4.

(B, D, F, and H) Significance of difference (p value) of balanced accuracy and F1 scores between models based on different feature sets tested by Wilcoxon test.
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Figure 3. Top predictive features for venetoclax

(A) Features that are predictive to venetoclax with top importance scores in the XGBoost model.

(B and C) Violin plot of log-transformed IC50 values in the two groups of samples defined by the relative gene expression of FGD4 andMIR4519 in Beat AMLwave

1/2 and wave 3/4. Rank-sum test was used to test the significance of difference between the two groups.

(D–F) Violin plot of log-transformed IC50 values in the two groups of samples defined by the relative gene expression of NPC2 and GATA2 in the Beat AML wave

1/2, Beat AML wave 3/4 and, FPMTB dataset.

(G–I) Violin plot of log-transformed IC50 or EC50 in the two groups defined by the relative gene expression of BCL2 and NFKB2 in the Beat AML wave 1/2, Beat

AML wave 3/4, and FPMTB dataset.

ll
OPEN ACCESS

6 iScience 27, 110755, September 20, 2024

iScience
Article



expression-based feature sets or combined relative gene expression feature set and genemutations provide higher accuracy in the indepen-

dent datasets. The pairwise Wilcoxon test reveals a significant difference in model accuracy between those utilizing relative gene expression

and those utilizing gene expression alone, as well as a significant difference between the models using relative gene expression and those

incorporating gene mutations.

In addition to using classification models to predict drug sensitivity (using an IC50 threshold to binarize the output), we also used regres-

sion analysis to predict drug sensitivity (area under the curve, or AUC) using the same sets of features as the classification. We used a number

of regression methods, including XGBoost regression, LASSO regression, and kernel ridge regression. We used kernel ridge regression

because kernel ridge regression on gene expression data was one of the best-performingmethods for predicting drug response in a previous

study,25 and the best performing on gene expression alone. Selecting only the drugs that had an average R-squared value on the indepen-

dent test set of above 0.1, we found that the best-performing feature sets varied substantially by drug and regression method (Figure S3). For

the XGBoost regression models, we observed most drugs perform better based on the feature sets with relative gene expression, which is

consistent with the XGBoost classifiers as shown in Figure 4. For venetoclax, 17-AAG (tanespimycin), and axitinib, the relative expression fea-

tures had the highest performance across all methods. In rapamycin and trametinib, gene expression features on LASSO and kernel ridge

Figure 4. Prediction accuracy of models using different feature sets

(A) The number of drugs with XGBoost classifier models that show highest balanced accuracy in the independent test dataset (Beat AML wave 3/4) with each

feature set.

(B) Balanced accuracy score in the independent test dataset Beat AML wave 3/4 for drugs with highest model accuracy using feature sets of Mut, VAF, Mut+VAF,

or Expr.

(C) Balanced accuracy score in the independent test set Beat AML wave 3/4 for drugs showing highest model accuracy using feature sets with relative gene

expression. The drugs shown in (B) and (C) are with median balanced model accuracy score grater than 0.6 using at least one feature set. The models are

based on selected IC50 thresholds that show best accuracy in the test dataset.
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regression had the highest performance. For the other drugs, the best-performing feature was inconclusive. In general, R-squared value was

low (below 0.2) for most drugs other than venetoclax in the regression models.

We compared the predictive accuracy of our models with existing published models trained on cancer cell line data.26 The previous pre-

diction models are generally inaccurate when applied to the Beat AML dataset, using the same thresholds described earlier. The balanced

accuracy was approximately 0.5 for all drugs that overlapped between the Beat AML dataset and the drugs in the pre-trained model.

Biomarkers associated with drug sensitivity or resistance for different drugs or chemicals in AML

We further extracted features that contribute to the predictivemodels for the response of different drugs. To explore which features would be

associated with sensitivity or resistance to specific drugs, we selected the XGBoost classifiersmodels based on the feature set of relative gene

expressionwith or without genemutations or VAF that have predictive balanced accuracy of at least 0.7 in the independent dataset (Beat AML

wave 3/4), then extracted the features with feature importance score greater than 0, and ranked the features by the average importance score.

Features with an average importance score greater than 0.01 are shown in Table S4. The relative expression of the gene pairs BCL2-NFKB2

and NPC2-GATA2 are highly predictive of venetoclax sensitivity in the Beat AML dataset (Figures 5A, 5B, and 3D–3I). We also found the rela-

tive gene expression between LGALS2 and FNTA are predictive to both axitinib and foretinib drug response. FNTA is a housekeeping gene

with low expression variance in the Beat AML dataset (Figure 5C), while the expression of LGALS2 shows a much higher variance. An analysis

Figure 5. Highlighted predictive features

(A and B) Scatterplot of the gene expression of selected gene pairs that are predictive to drug response of venetoclax. The expression of the gene pairs shows

negative correlations. x axis and y axis represent the log-transformed gene-level RNA-seq counts in the Beat AML wave 3/4 dataset. Each dot represents one

sample (patient), colored by log(IC50) values. Yellow color indicates higher resistance, darker color indicates higher sensitivity.

(C and D) Scatterplot of the gene expression of selected gene pairs LGALS2-FNTA and CD300E-COX6A1 that are predictive to the response of axitinib and

selumetinib respectively.

(E–L) Boxplots of the log10 transformed IC50 values for the samples defined by the relative gene expression features. Rank-Sum test was used to test the

difference of each two groups.

ll
OPEN ACCESS

8 iScience 27, 110755, September 20, 2024

iScience
Article



from a hierarchical differentiation tree of normal hematopoiesis with AMLs through BloodSpot27 suggests LGALS2 is highly expressed in

monocytes and FNTA does not show strong preference in cell types. This result indicates samples with higher proportions of monocytes

may show higher sensitivity to axitinib and foretinib. We also found that the relative expression levels of CD300E and COX6A1 are predictive

of sensitivity to multiple drugs, including selumetinib, trametinib, axitinib, dasatinib, tanespimycin, and JNJ-28312141 (Table S4; Figures 5D

and 5G–5L). The expression of CD300E shows high variance and the expression of COX6A1 shows low variance (Figure 5D). Rank Sum tests on

the log10-transformed IC50 values between the two groups, defined by the relative gene expression of CD300E and COX6A1

(CD300E > COX6A1 or CD300E % COX6A1), show a significant difference in drug response (Figures 5G–5L). More specifically, higher

CD300E expression is associated with higher sensitivity with these drugs. CD300E shows high correlation with CD14, which is also highly ex-

pressed with monotypes as suggested by BloodSpot.27 These results suggest drugs such as selumetinib, trametinib, axitinib, dasatinib, ta-

nespimycin, and JNJ-28312141 may perform better in monocytic AML; this is consistent with the observation that RAS mutation was corre-

lated with monocyte-like state in the Beat AML dataset.5 For the RAF/MEK/ERK inhibitor selumetinib (AZD6244), we found that NRAS

mutation is among the top predictors for response prediction. More specifically, we have observed the VAF of gene mutation at

NRAS.Q61 is among the top important features to predict drug response of selumetinib. This observation is consistent with our previous

study, which suggests that RAS mutations are predictors for the MEK inhibitors such as selumetinib and trametinib,8 using an independent

cohort. With improved model accuracy by considering relative gene expression values guided by KGs, our results can help to identify robust

biomarkers for drug response prediction beyond the features of gene mutations and variant allele frequencies.

DISCUSSION

Drug response prediction is a critical component of precision medicine, particularly for diseases that exhibit varied responses to therapeutic

agents. Predictive signatures for drug response could provide guidance for clinical applications.

Our approach demonstrates the use of KGs for feature engineering in drug response prediction. By generating engineered features from

the KG, we enhanced ex vivo drug sensitivity prediction. The engineered binarized gene expression features derived from individual patients

help mitigate batch effects, reduce feature space, and produce highly accurate drug response prediction models. Using this approach, we

built machine learning models for venetoclax that outperform the gene expression-based models especially for independent datasets. Our

results highlight features such as the relative expression betweenNPC2 andGATA2 and the relative expression betweenBCL2 andNFKB2 are

highly predictive of venetoclax drug response. This relationship has been confirmed using Beat AMLwave 1/2, Beat AMLwave 3/4 and FPMTB

datasets. Applying this approach to other drugs, we also identified features that are predictive of ex vivo drug response. These features iden-

tified in our study could provide guidance for further development of biomarker assays to guide drug selection. Before applying to clinical

practice, further validation using the clinical response at the patient level is still essential.

KGs encode existing knowledge or known relationships in a machine-readable format, allowing us to leverage them for downstream ap-

plications.18 The KG can guide the selection of features and feature engineering to feed machine learning models. The selection of features

will be depending on the context, which needs careful selection. For this method, two types of inputs are required: the selection of features

based on existing knowledge and the selection of data for training the model. The selection of the features will be based on the biological

hypothesis. For example, in our model, we hypothesize that relative gene expression between the transcription factors and down-stream

target genes shapes the transcriptional states of the cells or sample, which may respond differently to certain drugs. The selection of

gene expression data can reflect the transcriptional regulations that match the biological rationale. Our result demonstrates that KG-guided

feature engineering provides a useful way to improvemachinemodel accuracy, and provide predictive features for drug response prediction.

With a consortiumwide effort for KG development,17 we expect the KG-facilitatedmachine learning to be applicable inmany other use cases.

Our approach connects well-established biological KGs and empirical findings frommulti-omics data and drug screening data from large

AML datasets. We have designed two-layer models to select the drug sensitivity or resistance-associated features from the graph, and we

have built prediction models using newly designed testable features of gene pairs. The model provides higher accuracy than the traditional

machine learningmodels with only gene expression values as input, and provides a smaller list of features for testing. Furthermore, narrowing

down the list of features can facilitate the design and development of assays for drug sensitivity testing.

Our models defined predictors of ex vivo drug sensitivity. For further clinical application, the ultimate aim will be to predict how patients

responded to a given treatment. Beyond using drug sensitivity testing as a way of clinical diagnostics, our proposal would be that no diag-

nostic is sufficient as a standalone platform and that fine-tuning of omic analyses, such as with these KG-based gene expression ratios, would

be useful to supplement all other clinical diagnostic tools, inclusive of CBCs, cytogenetics, morphological/cytochemical analysis, flow cytom-

etry, DNA sequencing, and ex vivo drug sensitivity testing.

Several factors may affect the accuracy of drug response predictionmodels. Determining the sensitivity-resistance group by cutoff of IC50

values could be arbitrary due to variations in drug efficacy based on their pharmacological features. This complexity led us to establish

different thresholds for the same drug. Our objective is to develop models that enhance accuracy, so we selected the best performing

models. Even when we aggregate prediction accuracy across all the different thresholds, the models based on relative gene expression fea-

tures still show a higher overall accuracy than other feature sets. Beyond the definition of the objective, the selection of models, features, and

data are also key factors that contribute to model accuracy. However, the selection of features and data could be still be biased, and it may

work well for some drugs but not be so effective for others drugs. Based on the mechanism of action for each drug, different features may be

required for improving the prediction accuracy of drug response prediction. For example, for FLT3 inhibitors, the mutation status of FLT3 is

important to take into consideration. For venetoclax, the relative gene expression from related genes provides informative features for
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predictions. Other datasets and KGs such as protein expression and cell signaling profiles could be considered. In this paper we emphasized

on the selection of molecular measurement features for better drug response prediction based on their molecular measurement, such as mu-

tations, variant allele frequencies, and gene expression. Other features could be considered such as the proportion of cell types, and other

clinical features could be useful for improving the performance of the drug response prediction models.
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KEY RESOURCES TABLE

METHOD DETAILS

Data cumulation and processing

Beat AML wave 1/2: Mutation data, RNASeq (RPKM) data, drug IC50 values, and drug response data for area under the curve (AUC) were

downloaded from the Supplementary table from Beat AML study.6 The consequences of the selected variants include frameshift variants,

inframe deletions/insertions, internal tandem duplications, missense variants, protein altering variants, splice acceptor/donor variants, start

loss, and stop gain/loss. Features extracted from the mutation data include the following: 1) whether one gene has variants with these

selected functional alteration consequences; and 2) Variant allele frequency (VAF) for each variant. Two variant calling methods have been

used in the Beat AML wave 1/2: Mutect and varscan. The VAF from the two approaches are similar. To assign one VAF for individual variants,

we used the following procedure. If one variant was called from both approaches, we used the VAF from the Mutect call. If one variant was

called from only one approach, we use the VAF from that approach. 3333 genes with selected variants were included in Beat AML wave 1/2.

Among them, we selected genes withmutation in at least 3% samples as features, which includes 22 highly frequentlymutated genes (Feature

set 1 in Table 1). We used the VAF for variants that mutated in at least 1% of the samples for the model, and grouped them into 18 variant

groups Feature set 2 in Table 1.We also considered the expression of genes with expression level (log(RPKM)) greater than 0 in at least 50% as

features for the prediction models. We consider it as feature set 3. We used the Beat AML wave 3/4 dataset as an independent testing set,6

and the processing of Beat AML wave 3/4 is the same as wave 1/2.

Graph construction

Selection of housekeeping genes to define relative gene expression features

Housekeeping genes were downloaded from a previous publication.28 Uniport identifiers were converted to gene symbols. We initially

selected genes that are expressed in the blood samples from GTEx dataset29 and AML samples from Beat AML wave 1/2, resulting in a

set of 205 housekeeping genes. To further narrowdown the number of housekeeping genes, we then selectedgenes with expression variance

smaller than 1 in both the GTEx dataset and Beat AML dataset [Figures S1A and S1B]. Among the low variance housekeeping genes, we

selected representative genes for different expression levels using an interval of 1 for the mean log(RPKM) values [Figures S1C and S1D].

The final selected housekeeping genes are RPS10, FNTA, COX6A1, BECN1, SF3B2, PSMB2, AUP1, SRP14, HNRNPK, CCNI, RHOA,

PABPC1, RPS11, TPT1, and FTL [Figure S1D]. These selected genes were then used for relative gene expression feature construction.

Gene expression to drug sensitivity KG construction

LASSO regression models were used to find the predictive features for gene expression to drug associations, offering a robust way to select

gene expression features that are predictive for drug response. The models were trained using the Sklearn python package. The area under

the curve (AUC) for each drug was predicted using gene expression data from the Beat AML wave 1/2. Genes with an expression value

(log(RPKM)) greater than 0 in at least 50% of the samples were used as features for regression models. Each feature was normalized using

z-score transformation ((Expression - mean)/STD), and the drug response data AUC was also normalized using z-score transformation before

modeling. Features with non-zero regression coefficients were selected for knowledge graph construction. This step provides a graph that

connects drugs and gene signatures which are potentially predictable to drug response.

Gene expression vs transcriptional regulatory KG construction

Transcription factors (TFs) andmiRNAs are two important types of gene regulators.30We usedmicroRNA and TFs annotated for each gene as

potential features, and selected regulatory factors for each target gene in the context of AML using the Beat AML dataset wave 1/2. Common

miRNA and target genes were extracted from miRTarBase21 and MSigDB(v7.4).31 Total of 770,183 microRNA and target pairs are included.

When filtering the microRNA using the measured RNASeq data, only 55 microRNAs are overlapped and used in this study [Figure S4]. We

selected TF-target gene pairs from a public resource, which presented an integrated TFs and target gene interactions with different types

of evidence and confidences.23 LASSO regression models were used to select the regulatory factors for each target gene using the Beat

AML wave 1/2 dataset. Alpha is set to 0.1 to avoid overfitting of the model, and provide most relevant features to the expression of target

genes. Before fitting to the model, both gene expression values and AUC values are z-score normalized. miRNA and TFs with non-zero co-

efficient were selected for knowledge graph construction. This step provides the regulatory KGs that connect the gene signatures and their

upstream regulators (Table S2).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Code This manuscript https://doi.org/10.5281/zenodo.12773035
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Feature engineering

The graphs constructed above provide the biological rationale of selecting and constructing features for drug sensitivity prediction, as it

provides paths that connect miRNA/TFs to the target genes, then to the association of drug sensitivity. Two types of relative expression

features were derived from the gene expression profile using the graph structure. The first one is the relative gene expression between

the gene signatures (Gs) that are associated with sensitivity or resistance of drug response derived from the LASSO regression models

(the first neighbors of a drug) and their regulators (Gr, the second neighbors of a drug). If Gs > Gr, we set the new feature Gs�Gr = 1,

otherwise 0. Only regulators which suggest negative regulatory effects are selected for analysis. The second relative gene expression

feature is the relative gene expression between drug response associated gene signatures (Gs) and the house keep genes (Gh). If

Gs > Gh, we set Gs�Gh = 1, otherwise 0. The engineered features provide an opportunity to overcome batch effects since we expect

the relative gene expression will be more robust than the absolute value of gene expression which may be altered by the measuring

platforms or batches.

XGboost classifiers to predict drug sensitivity or resistance

XGboost classifier was used to classify whether a patient will show sensitivity or resistance to a drug defined by the IC50 threshold. XGBoost

is an ensemble learning approach that combines the predictions of multiple base estimators to improve the model’s performance. It also

provides feature importance for further exploration. We used the Beat AML wave 1/2 dataset as the training set (90%), and validation set

(10%),6 and the Beat AML wave 3/4 dataset was used as the test dataset.5 We first labeled the samples into the sensitive group if the IC50 is

smaller than a threshold, and resistant group otherwise. The selection of IC50 might be arbitrary since the tolerance of drug dosage might

be different in patients. We select several cutoff points including the 25th percentile, 50th percentile and 75th percentile if they are smaller

than 10 mM. If the selected cutoff points are smaller than 1 mM, we also add 1 mM as a threshold. We then classify samples to the sensitive

group or resistant group according to the selected threshold. The features were then generated as described above and are listed in Ta-

ble 1. We used a stratified approach to split the samples to make sure both the training set and validation set have equitant proportions of

sensitive samples and resistant samples. Ten-fold cross validation was used to validate the prediction model. We then tested the accuracy

in the validation set and the independent testing set using balanced accuracy scores and F1 scores. The balanced accuracy is measured

using the function of (sensitivity + specificity)/2. F1 score is calculated using the f1_score in the sklearn.metrics library. The F1 score and

balanced accuracy metrics were used because they are standard metrics for evaluating classification quality when there is a class imbal-

ance, as in our case.

Selection of biomarkers for the prediction models

Each XGBoost model provides a list of features with importance scores. From the models for each drug, we then selected the models

which show balanced accuracy (ACC) in the validation set greater than 0.7, and aggregated the features by average the feature importance

from the high-accuracy models. Features with average feature importance greater than 0.01 were selected for further visualization and

analysis.

Regression models to predict the area under the curve

Regression models for predicting AUC (area under the dosage response curve) were trained using Beat AML wave 1/2 data and tested

using Beat AML wave 3/4 data. We used a variety of models, including XGBoost regression, the LassoCV model (LASSO regression with

internal cross-validation to determine the regularization parameter) from the scikit-learn python library, and kernel ridge regression

(KernelRidge from scikit-learn), the last of which has been reported to be one of the best-performing methods for predicting drug

response in a previous publication.25 We used AUC as the independent value for the prediction task. AUC is a standard approach

for evaluating dose response curve metrics. There are a variety of ways of handling AUC data such as drug sensitivity score (DSS).15

We have used our AUC which has been used in numerous prior studies.6,32–36 With 10-fold cross-validation, we trained ten different

models on 90-10 splits of the Wave 1/2 patient data, and tested each model on the Wave 3/4 data. The data were processed and

normalized in the same way as the classification predictions, with the same feature sets. To compare results across different feature

sets and drugs, we used the R^2 score (coefficient of determination) for the observed versus predicted AUC, calculated with the sci-

kit-learn metrics.r2_score function.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparison of drug response defined by groups of samples based on predictive features

Rank Sum test from the scipy.stats python library was used to test the significance of difference between the gene expression of one gene

between the drug resistant group and sensitive group. Spearman correlation from scipy.stats library was used to calculate the correlation

coefficient and P-value between the gene expression and drug IC50 values. The resulting P-value was adjusted using multitest.multipletest

from the statsmodels.stats python library. Benjamini/Hochbergmethod used for adjustment of P-values. We considered the adjusted P-value

smaller than 0.05 from multiple tests as a threshold value of significance. Pearson correlations were calculated between the expression of

different genes using the Pandas python package.
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Statistical comparisons of predictive performance for different feature sets

In order to compare the relative performance of different feature sets, we used the Wilcoxon signed-rank test to compare the balanced ac-

curacies across different feature sets. For every drug, we calculated a p-value using theWilcoxon signed-rank test for every pair of feature sets,

where each sample is the balanced accuracy on the independent test set of a cross-validation run. This gives us 6 distinct p-values per drug.

We then performed an FDR correction using the Benjamini-Hochberg procedure.
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