
Glaucoma is characterized by cupping of the optic nerve 
head and loss of retinal ganglion cells and is a leading cause 
of irreversible blindness, affecting approximately 70 million 
people worldwide [1,2]. Although the endpoint pathology in 
glaucoma occurs as damage to the retinal ganglion cells and 
optic nerve, glaucoma typically involves tissues in the front 
of the eye. Ocular fluid is produced by the ciliary body and 
flows from front part of the eye, around the iris, and drains 
out through the outflow pathway. The main aqueous outflow 
pathway of the eye consists of a series of endothelial cell-lined 
channels in the angle of the anterior chamber: the trabecular 
meshwork (TM), Schlemm’s canal, the collector channels, 
and the episcleral venous system [3]. Disease often begins 
with a defect in this pathway, leading to reduced outflow 
facility, a subsequent rise in intraocular pressure (IOP), and 
followed by damage to the optic nerve. Changes in outflow 
facility can be due to physical closure of the angle (closed 

angle glaucoma) or as a result of malfunction without obvious 
anatomical changes (open angle glaucoma).

It has been hypothesized that in the case of open angle 
glaucoma, the pathological changes leading to aqueous 
outflow deficiency are the result of accumulated damage to 
the TM and Schlemm’s canal [4] that can involve chronic 
scarring and fibrosis of the TM. A known mediator of 
fibrosis, transforming growth factor beta (TGFβ), is present 
in the aqueous humor [5,6] and TGFβ levels have been 
elevated in patients with glaucoma [7-9]. In vitro studies 
involving perfused anterior segments [10,11] have also shown 
that following treatment with TGFβ2, outflow facility was 
decreased, IOP was increased, and expression of the extra-
cellular matrix (ECM)–related genes plasminogen activator 
inhibitor-1 and fibronectin was increased. TGFβ can also 
cause significant alterations in the normal anatomic archi-
tecture of the anterior segment [12-14]. For example, as our 
laboratory has shown, adenoviral gene transfer of TGFβ1 to 
the anterior segment of the rat eye results in ocular hyperten-
sion, accompanied by aberrant proliferation and migration of 
corneal endothelial cells and iridocorneal adhesions, remi-
niscent of peripheral anterior synechiae observed in human 
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patients with closed angle glaucoma [15]. TGFβ has also been 
shown to modulate the expression of proteins involved in the 
turnover of the ECM in the TM, in particular the matrix 
metalloproteinases (MMPs), which are known to influence 
outflow resistance [16].

MMPs, including MMP-2 and -9 among others, are 
elevated in the aqueous humor [17-19], optic nerve head 
[20,21], and chamber angle [19] of patients with glaucoma. 
Indeed, patients (and animals) undergoing trabeculotomy 
and filtering bleb [22-24] surgery also have increased levels 
of TGFβ and MMPs, suggesting that these molecules play 
a role in normal homeostatic responses in the eye. During 
normal wound healing, the ECM, both damaged and newly 
deposited, is remodeled by MMPs. When matrix remodeling 
becomes chronic, such as in the case of fibrosis, the levels 
of MMPs are often elevated, which may seem counterintui-
tive. However, elevated MMP activity is likely required to 
continually remodel the aberrant amount of matrix laid down 
during fibrosis. In fact, there is evidence that MMPs may 
enhance outflow facility in the short term [25]. With time, 
however, overexpression of MMPs can cause pathological 
tissue degradation and even fibrosis [26]. Moreover, since 
MMPs are now known to play additional roles, such as in 
activating cytokines and liberating growth factors from the 
matrix, MMPs may also function in stimulating the cascade 
of events involved in fibrosis of the outflow pathway, yet this 
is currently not well understood.

In this study, we used a transgenic mouse model that 
overexpresses TGFβ1 in the lens and aqueous humor [13] to 
initially determine whether the anatomical changes observed 
in the anterior segment of these mice results in elevated IOP. 
Transgenic expression of TGFβ1 resulted in altered anterior 
segment morphology and an accompanying increase in IOP. 
Since increased MMP expression, and specifically the gela-
tinase MMP-9, is commonly associated with TGFβ-induced 
fibrosis, we bred the TGFβ1 transgenic mice onto an MMP-9 
null background to determine the role of MMP-9 in the initia-
tion and progression of the glaucomatous features associated 
with elevated levels of TGFβ. Surprisingly, TGFβ transgenic 
mice bred onto the MMP-9 null background exhibited a 
further increase in IOP. Interestingly, MMP-9 null mice, 
without the presence of the TGFβ1 transgene, also exhib-
ited elevated IOP levels compared to their wild-type litter-
mates. Unlike the TGFβ transgenic mice, the MMP-9 null 
mice did not exhibit any overt changes in anterior segment 
morphology. Thus, normal expression of MMP-9 may be 
required to maintain IOP.

METHODS

Animal treatment: Mice overexpressing constitutively active 
TGFβ1 under the αA-crystallin promoter were generated 
previously [13]. Mice lacking MMP-9 were purchased from 
Jackson Laboratories (Bar Harbor, ME). These mice were 
purchased on an FVBn background and backcrossed onto 
C57BL/6 for more than ten generations. To create parental 
strains, TGFβ transgenics (on C57BL/6 background) were 
crossed with MMP-9 knockout animals (C57BL/6 back-
ground) to give TGFβ positive (+)/ MMP-9 heterozygotes 
(+/−).The experimental animals were then created by breeding 
TGFβ+ /MMP-9+/− mice with TGFβ- /MMP-9+/− mice. Fifty 
percent of each litter were used as experimental animals, 
and 50% remained as breeders. All animals were treated in 
accordance with the guidelines of the Canadian Council on 
Animal Care and according to the Association for Research in 
Vision and Ophthalmology Statement for the Use of Animals 
in Ophthalmic and Vision Research. All animals were housed 
under specific pathogen-free conditions, and rodent labora-
tory food and water were provided ad libitum. All animal 
procedures were performed under inhalation anesthesia with 
isoflurane (MTC Pharmaceuticals, Cambridge, Canada). 
IOP readings were taken under isoflurane inhalation after 
one drop of 0.5% proparacaine solution (P4554; Oakville, 
Canada) was applied to each eye. All readings were taken 
at 1–2, 2–3, and 3–4 months of age and were performed at 
the same time of the day. Readings were acquired with the 

Figure 1. Intraocular pressure in mouse eyes over the course of 4 
months. Data were obtained using the TonoLab under isoflurane 
anesthesia and represented as the mean intraocular pressure (IOP) 
in mm Hg. Error bars indicate the standard error of the mean 
(SEM). Transforming growth factor beta (TGFβ) transgenic (TG) 
mice, matrix metalloproteinase-9 knockout (MMP-9KO)/TGFβ1 
transgenic mice, and MMP-9KO mice all exhibited elevated IOP 
compared to wild-type (WT) mice at all three time points exam-
ined. *** p<0.001; ** p<0.01 * p<0.05 (compared to WT).

http://www.molvis.org/molvis/v19/684


Molecular Vision 2013; 19:684-695 <http://www.molvis.org/molvis/v19/684> © 2013 Molecular Vision 

686

Tonolab rebound tonometer (Topcon Canada, Inc, Waterloo, 
Canada). Several studies [27-29] have examined the reliability 
of the TonoLab to give consistent readings across a range 
of experimentally altered IOPs [30]. An average of nine 
independent valid readings was performed for each animal. 
Animals were euthanized at 1–2, 2–3, and 3–4 months of 
age by cervical dislocation, and their eyes were enucleated. 
One-way analysis of variance (ANOVA) was used to deter-
mine statistically significant differences between groups.

Histology: After fixation in 10% neutral buffered formalin for 
48 h, tissues were embedded in paraffin by routine methods 
(sample size n=3 for each treatment and time point). Four-
micrometer-thick mid-sagittal sections were cut and stained 
with hematoxylin and eosin to visualize general tissue 
architecture.

Immunohistochemistry: Studies to f luorescently localize 
alpha smooth muscle actin employed a monoclonal antibody 
conjugated to fluorescein isothiocyanate (clone 1A4; Sigma-
Aldrich, Oakville, Canada; 1:200). In addition, sections were 
stained with polyclonal antibodies to collagen IV (Cedarlane 
Laboratories, Hornby, Canada; 1:200) and N-cadherin (Santa 
Cruz Biotechnologies, Santa Cruz, CA; 1:200). Secondary 
antibodies included goat anti-rabbit rhodamine and goat 
anti-rabbit f luorescein isothiocyanate (Bioshop Canada, 
Burlington, Canada; 1:500). All immunohistochemistry was 

performed as follows: After dehydration in a graded series 
of xylene and ethanol, paraffin sections were washed three 
times for 5 min with PBS (Sigma Aldrich, St Louis, MO; pH 
7.3), boiled for 20 min in 10 mM sodium citrate (pH 6.09) 
for antigen retrieval, and then washed an additional three 
times in PBS. Sections were then blocked with a solution of 
5% normal goat serum in PBS for 1 h at room temperature. 
After three washes of 5 min in PBS, the primary antibody 
was added to the sections in a volume of 100 µl and allowed 
to incubate overnight at 4 °C. After incubation, the sections 
were then washed three times for 5 min in PBS, and 100 µl 
of secondary antibody solution was added. The sections were 
incubated for 1 h at room temperature. After incubation, the 
sections were then washed three times for 5 min in PBS and 
then coverslipped with Vectashield mounting medium with 4’, 
6-diamidino-2-phenylindole (DAPI) as a nuclear counterstain 
(Vector Laboratories, Burlingame, CA). A sample size (n) of 
three was used for each treatment and time point.

Microscopy: Fluorescently labeled sections were visualized 
using a Leica DMRA2 fluorescence microscope (Leica 
Microsystems Canada Inc., Richmond Hill, Canada) fitted 
with a Q-Imaging RETIGA 1300i FAST digital camera 
(Q-Imaging, Surrey, Canada). Images were captured using 
OpenLab software (PerkinElmer LAS, Shelton, CT). Crop-
ping, rotating, and adding text to images were done using 

Figure 2. Hematoxyl in and 
eosin–stained sections from 1- to 
2-month-old mice. Adhesions 
between the iris (i) and corneal 
endothelium (ce) are easily visible 
in the transforming growth factor 
beta (TGFβ) transgenic (TG) 
and matrix metalloproteinase-9 
knockout (MMP-9KO)/TGFβ1 
transgenic mice but are absent in 
the wild-type (WT) and MMP-9KO 
mice. 5X, bar=200 µm.
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Adobe Photoshop 8 (Adobe Systems Canada, Ottawa, 
Canada).

RESULTS

Intraocular pressure was measured in mice that overex-
press constitutively active TGFβ1 under the αA-crystallin 
promoter in the lens (TG) at 1–2, 2–3, and 3–4 months of 
age and compared to measurements taken from their wild-
type littermates (WT; Figure 1). At 1–2 months of age, TG 
mice (n=27) demonstrated significantly higher IOP than WT 
mice (n=20; p<0.001). At 2–3 months of age, the IOP in the 
TG (n=10) and WT (n=13) animals had decreased somewhat. 
However, the IOP in the TG animals remained significantly 
higher (p<0.05) than in the WT group. At the 3- to 4-month 
time point, the IOP in the TG (n=10) group had increased 
again and remained significantly (p<0.01) higher than that in 
the WT (n=3) animals.

Mice expressing the TGFβ1 transgene (TG) were bred 
onto an MMP-9 null (KO) background to determine whether 
the loss of MMP-9 altered in any way the elevated IOP in 
this line of mice. At 1–2 months of age, the TGFβ transgenic/
MMP9-KO (TG/MMP-9KO; n=17) mice exhibited IOP levels 
that were significantly higher than those of their WT (n=20) 
littermates (on the same mixed background; p<0.01; Figure 

1). Importantly, the MMP-9 KO mice (n=16) without the 
TGFβ transgene also exhibited a significantly higher IOP 
than their WT littermates (p<0.05). The IOP levels in the 
MMP-9 KO and TG/MMP-9KO mice were not significantly 
different from each other at this age (p>0.05). At 2–3 months 
of age and 3–4 months of age, the MMP-9 KO (2–3 month 
[n=9]; 3–4 month [n=6]) and TG/MMP-9KO (2–3 month 
[n=10]; 3–4 month [n=17]) groups demonstrated signifi-
cantly higher IOP compared to the WT mice (MMP-9KO, 
p<0.001 and p<0.05, respectively; TG/MMP-9KO, p<0.001 
and p<0.001, respectively). Interestingly, the TG/MMP-9KO 
group of animals exhibited the highest IOP among all groups 
at 3–4 months of age. Together, these data suggest that loss 
of MMP-9 on its own results in higher IOP, and this increase 
is further increased with the TGFβ1 transgene.

To determine morphological changes that may have 
led to the higher IOP observed in the TG and MMP-9KO 
mice, anterior segment morphology was examined using 
routine histological methods (Figure 2). At 1–2 months of 
age, all mice with the TGFβ1 transgene, the TG and TG/
MMP-9KO groups, exhibited thicker corneas than the WT 
mice. The ciliary bodies in the TG and TG/MMP-9KO 
groups also appeared underdeveloped. Closer examination 
of the ciliary body (Figure 3) revealed that the pigmented 
and nonpigmented ciliary epithelial layers were present, and 

Figure 3. Hematoxyl in and 
eosin–stained sections from 1- to 
2-month-old mice. Altered devel-
opment of the ciliary body (cb) is 
apparent in mice overexpressing 
transforming growth factor beta 
(TGFβ); however, these features 
were absent in wild-type (WT) 
and matrix metalloproteinase-9 
knockout (MMP-9KO) mice. 20X, 
bar=100 µm.
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Figure 4. Hematoxyl in and 
eosin–stained sections from 1- to 
2-month-old mice. Adhesions seen 
in transforming growth factor beta 
(TGFβ) transgenic (TG) and matrix 
metalloproteinase-9 knockout 
(MMP-9KO)/TGFβ1 transgenic 
mice clearly demonstrate a change 
in the corneal endothelium (ce) 
and a hypercellularity of the iris 
(i) epithelium. These features were 
absent in the wild-type (WT) and 
MMP-9KO mice. 40X, bar=50 µm.

Figure 5. Immunolocalization of 
collagen IV (ColIV) in the ciliary 
body and angle of 1- to 2-month-
old mice. Organized expression of 
ColIV can be seen in the trabecular 
meshwork (tm; region designated 
by the yellow arrowheads) and 
throughout the rays of the ciliary 
body (cb) in the open angles (yellow 
dashed line) of the wild-type (WT) 
and matrix metalloproteinase-9 
knockout (MMP-9KO) mice. In the 
transgenic (TG) and TG/MMP-9KO 
mice, ColIV expression appears 
less organized. 40X, bar=50 µm.

http://www.molvis.org/molvis/v19/684


Molecular Vision 2013; 19:684-695 <http://www.molvis.org/molvis/v19/684> © 2013 Molecular Vision 

689

the lack of ciliary folds appeared concomitant with a striking 
deficiency in the ciliary process stroma. Additionally, the 
pars plana appeared to be lengthened (not shown), which was 
likely due to the lack of ciliary folds. These features were not 
evident in the WT mice or the MMP-9 KO mice, mice that did 
not express the TGFβ1 transgene. In addition, iridocorneal 
adhesions were evident and appeared to involve only the iris 
stromal layer as evidenced by the hyperproliferation of cells 
in this area, a feature absent in the anterior and posterior 
pigmented epithelia (Figure 4). Similar histological findings 
were found for the 3- to 4-month-old mice (data not shown).

In a previous study, we found that administering adeno-
viral-delivered TGFβ1 (AdTGFβ1) to the anterior chamber 
of the rat eye resulted in anterior segment changes that were 
similar to those described for the TGFβ1 transgenic mice, 
including corneal thickening and iridocorneal adhesions [15]. 
Altered expression in various fibroproliferative markers was 
also discovered in the AdTGFβ1 rat model. Thus, we exam-
ined the expression of these proteins in the TG and MMP-9KO 
groups at 1–2 months (Figures 5, Figure 6, Figure 7, and 
Figure 8) and 3–4 months (data not shown) of age. In the 
TM, collagen IV expression was observed in parallel bundles 
extending into the fold of the ciliary body in the WT and 
MMP-9 KO animals (Figure 5). In contrast, the TG and TG/
MMP-9KO groups (all examined) demonstrated disorganized 

expression of this molecule. In the iris and cornea (Figure 
6), the WT animals showed normal distribution of collagen 
IV in the iris epithelia and surrounding the blood vessels. 
The MMP-9 KO animals appeared to demonstrate increased 
expression in this area. The TG and TG/MMP-9KO groups 
demonstrated abundant expression in the iridocorneal adhe-
sions. Moreover, those animals in the TG/MMP-9KO group 
appeared to have increased collagen IV expression in this 
area compared to the TG animals. Similar findings were 
obtained for animals at 3–4 months of age (data not shown).

N-cadherin was next immunolocalized (Figure 7). The 
WT and MMP-9KO groups at 1–2 months of age showed 
typical expression of N-cadherin in the corneal endothelium, 
with minimal expression in the iris epithelium. In contrast, 
the TGFβ1 transgenic groups examined, TG and TG/
MMP-9KO, demonstrated abundant expression of N-cadherin 
in the hypercellular region within the iridocorneal adhesions, 
similar to what we observed in the past in the AdTGFβ1-
treated rats. Similar findings were obtained for the animals 
at 3–4 months of age (data not shown).

All of the groups at 1–2 months of age showed typical 
expression of alpha smooth muscle actin (αSMA) in the pupil-
lary dilator muscle of the iris (Figure 8). However, in all of 
the TG and TG/MMP-9KO groups, αSMA expression was 

Figure 6. Immunolocalization of 
collagen IV (ColIV) in the iris 
of 1- to 2-month-old mice. Posi-
tive expression can be seen in the 
lens capsule (lc) in all groups of 
mice. Expression in the iris (i) 
and Descemet’s membrane (dm) is 
organized in the wild-type (WT) 
and matrix metalloproteinase-9 
knockout (MMP-9KO) mice. 
Expression is also apparent in the 
transgenic (TG) and TG/MMP-9KO 
mice. However, it is distorted, 
consistent with the tissue distortion 
in these animals. 20X, bar=100 µm.
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also observed in the area of the iridocorneal adhesions. In the 
TM, the WT animals demonstrated typical, abundant expres-
sion of αSMA (Figure 9). However, the TG and MMP-9 KO 
animals showed somewhat less αSMA expression in this area, 
with animals in the TG/MMP-9KO group exhibiting the least 
expression of αSMA in the TM region. Similar findings were 
obtained for animals at 3–4 months of age (data not shown).

DISCUSSION

Maintaining IOP is critical for retinal health and normal 
vision. Discovery of the mechanisms that contribute to ocular 
hypertension is therefore critical for developing effective 
preventative and/or therapeutic treatments. In this study, we 
examined the contributions of TGFβ1 and MMP-9, two genes 
known to regulate the dynamics of the ECM and suspected 
of controlling aqueous outflow. Initially, we examined the 
effect of TGFβ1 overexpression on IOP using a previously 
developed transgenic mouse line in which active TGFβ1 is 
chronically expressed from the lens, under control of the 
αA-crystallin promoter [13]. As reported previously, we 
found that these mice exhibited several defects in the anterior 
segment of the eye, including anterior subcapsular cataracts 

and iridocorneal adhesions resembling peripheral anterior 
synechiae formation in humans [13]. Importantly, we demon-
strated that along with the dysmorphic changes in the anterior 
segment, the TGFβ1 transgenic mice exhibited significantly 
higher IOP than that of their wild-type littermates. The IOP 
levels in the TGFβ1 transgenic mice exhibited a decrease at 
the 2–3 month time point. However, this decrease was also 
observed in their wild-type littermates, and likely reflected 
a change in eye size in the mice as they were developing 
with age. The increased IOP in the TGFβ1 transgenic mice 
concurs with results of a previous study from our laboratory 
involving AdTGFβ1 to the anterior chamber of the rat eye 
in which similar changes in anterior segment morphology 
were observed and an accompanying increase in IOP [15]. 
Interestingly, a study using intracameral delivery of active 
AdTGFβ2 in rats also reported an induction in ocular hyper-
tension [31]. However, these rats did not exhibit the anterior 
segment changes reported for the AdTGFβ1-injected rats. 
The authors further demonstrated that delivery of AdTGFβ2 
reduced aqueous humor outflow facility in mice. Together, 
these findings indicate that overexpression of these TGFβ 
isoforms (in active form) can induce changes that resemble 

Figure 7. Immunolocalization 
of N-cadherin in eyes of 1- to 
2-month-old mice. Expression 
of N-cadherin is detectable in 
the corneal endothelium (ce) and 
the iris (i) of wild-type (WT) 
and matrix metalloproteinase-9 
knockout (MMP-9KO) mice. 
Increased expression is seen in 
the adhesion between the corneal 
endothelium and the iris epithelium 
in the transgenic (TG) and TG/
MMP-9KO mice. 40X, bar=50 µm.
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open and closed angle forms of glaucoma, and this results in 
elevated IOP.

The TGFβ1 transgenic mice, as well as those bred onto 
the MMP-9 null background (TG/MMP-9KO), also exhib-
ited thickened corneas. Previous detailed investigation of 
the corneal phenotype of lens-specific TGFβ1 transgenic 
mice demonstrated that the change in corneal thickness is 
due to an increase in the thickness of the corneal stroma 
[13]. Thickened corneas were also reported for rats injected 
with AdTGFβ1 [15] and AdTGFβ2 [31]. To address whether 
a thickened cornea affects tonometry readings, investiga-
tions were performed by Shepard and colleagues in which 
IOP readings obtained from cannulation were compared 
with those taken using the tonometer [31]. The findings from 
these studies revealed that the tonometer-generated readings 
correlated well with the actual IOP readings in uninjected 
eyes and eyes injected with active AdTGFβ2. Thus, although 
the animals overexpressing TGFβ have thickened corneas, 
this is not likely to impact the accuracy of the tonometer 
readings [31].

In addition to the gross changes in the anterior chamber 
observed in the TGFβ1 transgenic mice, reduced expression 
of αSMA was observed in the TM compared to the wild-type 
littermates. This finding agrees with the decreased expression 

of αSMA previously reported by our laboratory in the TM of 
AdTGFβ1-treated rat eyes [15]. αSMA, a contractile protein, 
is expressed in the normal TM of humans and other species 
[32-39]. This suggests αSMA may play a role in modulating 
the outflow facility of the aqueous humor [40]. The fact that 
αSMA expression was decreased in the TM of TGFβ1 trans-
genic mice and AdTGFβ1-treated rats, both of which have 
accompanying ocular hypertension, supports this notion. 
Interestingly, in glaucomatous dogs, as ocular hypertension 
progresses, there is a loss of αSMA expression in the outer 
uveal and inner corneoscleral TM cells [32]. These in vivo 
results are, however, in contrast to several in vitro studies 
that show that TM cells, when exposed to TGFβ, express a 
higher level of αSMA [41]. Indeed TGFβ is a well-known 
regulator of αSMA [42]. As we have proposed previously [15], 
one possibility for the different findings may be related to the 
amount and duration of TGFβ elevation. For example, ante-
rior segment tissues in vivo may show a different response to 
chronically elevated TGFβ compared to in vitro stimulation, 
which is often shorter. Additionally, the environmental cues 
in vitro are absent, which could alter the responsiveness of a 
given cell type to TGFβ stimulation.

Matrix metalloproteinases (MMPs) are elevated in the 
aqueous humor [17,18] and chamber angle [19] of patients with 
glaucoma, and MMPs are thought to control regulation of the 

Figure 8. Immunolocalization 
of alpha smooth muscle actin in 
anterior chamber angles of 1- to 
2-month-old mice. Expression 
of alpha smooth muscle actin 
(αSMA) is normal in wild-type 
(WT) mice, demonstrating a 
well-developed scleral spur (ss) 
and positive staining within the 
pupillary muscles (pm). Expression 
appears decreased in these areas 
in the matrix metalloproteinase-9 
knockout (MMP-9KO) and trans-
genic (TG) mice. (The trabecular 
meshwork region is designated 
by the yellow arrowheads.) This 
decrease is exacerbated in the TG/
MMP-9KO mice. An open chamber 
angle (red dashed line) can readily 
be seen in the WT and KO mice but 
not in TG and MMP-9KO/TG mice. 
40X, bar=50 µm.
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aqueous outflow pathway. However, since MMPs have anti- 
and profibrotic functions, it was not clear what role MMPs 
may have in regulating IOP in vivo. Our laboratory has 
shown that MMP inhibition can suppress TGFβ-stimulated 
fibrosis in the lens. For example, using a TGFβ-induced 
model of anterior subcapsular cataracts in rats, we demon-
strated that cotreatment with the MMP-2/9 specific inhibitor 
effectively prevented anterior subcapsular cataract forma-
tion and the associated deposition of matrix [43]. In addi-
tion, MMP inhibition has also been shown to prevent matrix 
deposition in injury-induced tissue remodeling [44,45]. We 
therefore hypothesized that MMP, and in particular MMP-9, 
deficiency, may attenuate the ocular phenotype and IOP 
levels observed in the TGFβ1 transgenic mice. We found the 
contrary; the TGFβ1 transgenic mice bred onto the MMP-9 
null background exhibited the same fibrotic changes in the 
anterior segment as the TGFβ1 mice on the MMP-9 wild-type 
background. These findings demonstrate that MMP-9 does 
not play a role in mediating the fibroproliferative response in 
the anterior chamber of TGFβ1 transgenic mice.

Ocular hypertension was further elevated in the TG/
MMP-9KO mice compared to the TG/MMP-9 WT mice. 
Furthermore, the MMP-9 KO mice, in the absence of the 
TGFβ1 transgene, exhibited increased IOP levels compared to 

their wild-type littermates. This occurred without the altera-
tions in anterior segment morphology that were detected in 
the TGFβ1 transgenic mice. These findings suggest that a 
mechanism independent of that induced by TGFβ1 is respon-
sible for the elevated IOP in the MMP-9 KO mice. MMPs 
have been shown, in human eye perfusion models, to play a 
role in regulating trabecular outflow, which directly impacts 
IOP [46,47]. For example, increasing activity of MMP-2, 
MMP-9, and MMP-3 in culture media of anterior segment 
tissue resulted in increasing the outflow rate by 160% [47]. 
Furthermore, inhibiting MMP activity significantly reduced 
the outflow rate [47]. These findings suggest that MMPs 
participate in ECM turnover in the TM, and when their 
activity levels are reduced, ECM accumulates, impeding 
outflow. However, demonstration of this mechanism in vivo 
and in glaucomatous eyes has not been reported. We did not 
observe any overt changes in ECM deposition in the TM 
of the MMP-9 KO mice. The mouse and human TM have 
similar structures. However, the TM in the mouse is much 
reduced in size compared to that in humans. Thus, detailed 
ultrastructural studies are required to rule out subtle changes 
in matrix deposition that may affect outflow. Finally, although 
MMPs are principally known for their ability to remodel the 
ECM, they have also been shown to participate in numerous 
signaling events, mediated by the cleaving of cytokine 

Figure 9. Immunolocalization of 
alpha smooth muscle actin in the 
iris and cornea of 1- to 2-month-old 
mice. The pupillary muscle (pm) 
is positively stained and easily 
discerned in the wild-type (WT) 
and matrix metalloproteinase-9 
knockout (MMP-9KO) mice. The 
altered structure of the iris and 
adhesions (ad) between the anterior 
iris and the corneal endothelium 
resulted in aberrant expression of 
alpha smooth muscle actin (αSMA) 
in the transgenic (TG) and TG/
MMP-9KO mice. 40X, bar=50 µm.
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receptors or cell adhesion molecules and the activation of 
other MMPs. Thus, the loss of MMP-9 expression in the TM 
may alter cell signaling and thereby affect outflow and IOP.

In conclusion, we have demonstrated that alterations 
in expression levels of the extracellular matrix remodeling 
molecules, TGFβ and MMP-9, can impact the regulation of 
IOP. In particular, the loss of MMP-9 expression resulted in 
increased IOP levels, in the absence of any overt morpho-
logical changes. Further detailed analysis of the TM structure 
and aqueous outflow facility of the MMP-9 KO mice will 
help to further understand the how this enzyme contributes 
to regulating IOP.
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