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Repetitio est mater studiorum [Repetition is the mother of 
learning]. 

—Latin proverb attributed to the Roman statesman  
and writer Cassiodorus (circa 485–585)

Medical research often involves study designs in 
which the same outcome variable is repeatedly 
observed or measured over time in the same study 

subjects (patients). Such repeatedly measured data are 
referred to as longitudinal data. Longitudinal data are typi-
cally collected when investigating changes in an outcome 
variable over time, so as to compare these changes among 
groups (eg, different treatment groups).1,2 From a statistical 

perspective, a longitudinal study usually increases the pre-
cision of the estimated treatment effect and increases the 
power to detect such an effect.2–4

Many commonly used statistical techniques assume 
independence of the observations or measurements.5 
However, values repeatedly measured in the same individ-
ual are usually more similar to each other than values from 
different individuals—and therefore are not independent.6 
Ignoring this positive correlation between repeated mea-
surements can result in biased estimates, as well as incor-
rect standard errors of the estimates, resulting in invalid P 
values and confidence intervals.7,8

Therefore, appropriate analysis of repeated-measures data 
requires specific statistical techniques.9 As part of the ongoing 
series in Anesthesia & Analgesia, this tutorial reviews statisti-
cal methods that account for such within-subject correlations.

Of note, while we focus here on data that arise from repeated 
measurements in the same subjects, the basic principles dis-
cussed also apply to other correlated data.10 Specifically, obser-
vations on subjects who share common characteristics (eg, 
subjects from the same family, or patients being treated in the 
same medical practices or hospitals in cluster randomized tri-
als) are likely more similar to each other than to observations 
of subjects from another cluster. Thus, the analysis of such data 
also needs to account for any within-cluster correlation.10

This tutorial builds on basic statistical concepts and ter-
minology that have been reviewed earlier in this series, in 
particular, different types of data (continuous, nominal, 
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and ordinal data),11 hypothesis tests and statistical sig-
nificance,12,13 correlation,14 as well as regression analysis, 
including analysis of variance (ANOVA).5

TECHNIQUES FOR ANALYZING REPEATED 
MEASURES: GENERAL OVERVIEW
In this tutorial, we broadly distinguish 3 classes of commonly 
used approaches for the analysis of repeatedly measured data:

	 •	� The first class uses summary statistics to condense 
the repeatedly measured information to a single 
number per subject.2

	 •	� The second class is historically prevalent and 
comprises the repeated-measures ANOVA type of 
analysis.6

	 •	� The third class comprises more modern and flex-
ible regression-based techniques that allow for 
correlated observations; these techniques can 
accommodate a wide range of outcome data, 
including continuous, categorical, and count data.1

Note that in studies that do not specifically aim to follow 
outcomes over time, multiple observations from the same 
subjects may instead be included in the analysis. In such non-
longitudinal studies, it is often more of convenience than sci-
entific interest that multiple measurements are obtained in the 
same subjects. For example, Rogge et al15 studied the agree-
ment between an invasive and a noninvasive blood pressure 
measurement technique in 29 patients undergoing bariatric 
operations, by analyzing a total of 6864 pairs of simultane-
ous invasive and noninvasive measurements. These repeated 
measurements clearly do not provide independent informa-
tion, so the analysis adjusted for the nonindependence.

However, such analyses are fundamentally different 
from the techniques described here, and previous tutori-
als in this series have discussed this issue in the context 
of correlation and agreement studies.14,16 Likewise, studies 
involving repetitive observations of subjects until a certain 
outcome (eg, death) occurs require yet other techniques, and 
the analysis of such “time-to-event” data will be addressed 
in a subsequent tutorial.

Before describing the specific techniques, it bears worth 
noting that the statistical terminology concerning “depen-
dent” and “independent” is somewhat confusing. The fac-
tors that are considered to have an effect on an outcome 
in a statistical model are commonly termed independent 
variables (or explanatory variables, predictor variables, or 
covariates), whereas the outcome variable is termed the 
dependent variable.5,11 This has nothing to do with depen-
dent or independent in the sense whether observations of 
the outcome variable have been made in the same individu-
als. Most statistical analysis techniques assume observed or 
measured values of the dependent variable to be indepen-
dent from each other,5 and this tutorial describes techniques 
that can be used when this key assumption is violated.

TRADITIONAL APPROACHES OF COMPARING 
NONINDEPENDENT MEANS
Summary Statistic Approach
When the research question involves a comparison of a 
repeatedly measured continuous outcome across several 

groups, a simple summary statistic approach can be used.2,17 
The basic idea is to summarize each individual’s sequence 
of measurements with a single number (with a summary 
statistic).18 This eliminates the within-subject correla-
tion, allowing for a comparison of the summary statistics 
between the groups using standard statistical techniques 
that assume independent measurements.2

The summary statistic should have clear clinical or bio-
logical relevance.18 The mean of the repeated measurements 
may often be a reasonable choice, especially when the effect 
of the treatment is expected to occur instantly and is main-
tained quite steadily over time.17 In contrast, when the onset 
of the effect is more gradual and the outcome changes over 
time at a more or less constant rate (eg, growth curves), the 
slopes of the individual curves could be a useful summary 
statistic.17 The outcome variable could also rise to a peak 
and then return to baseline (eg, pharmacokinetic data), and 
such curves can be summarized using the area under the 
curve or the maximum peak concentration.18

A main advantage to this approach is that it is very sim-
ple but yet provides valid results, and the technique and 
results are easily understood by clinicians with a limited 
statistical background. Obviously, a major drawback is that 
a substantial amount of information is lost when all indi-
vidual measurements are condensed in a single number.

Repeated-Measures ANOVA
Repeated-measures ANOVA refers to a class of techniques 
that have traditionally been widely applied in assessing 
differences in nonindependent mean values.6 In the most 
simple case, there is only 1 within-subject factor (one-way 
repeated-measures ANOVA; see Figures  1 and 2 for the 
distinguishing within- versus between-subject factors).19 
In the situation where there are only 2 related means, the 
repeated-measures ANOVA provides identical results as the 
paired t test. As noted in a previous tutorial, the tested null 
hypothesis is that the mean of all the differences between 
the 2 related measurements is zero.20

One-way repeated-measures ANOVA can be used either 
(1) to compare means in which some outcome has been 
measured in the same subjects under different conditions 
(eg, different treatments) or (2) to assess differences in an 
outcome serially measured at different time points in the 
same subjects (Figure 1).19 The tested null hypothesis is that 
all related means are equal.19

Unfortunately, while ANOVA gives an overall P value, 
it does not identify which group means are equal or not. A 
common approach to answer this question is to perform post 
hoc tests, which are pairwise comparisons of either selected 
means of interest or all possible combinations of means.21 
Note that this involves testing of multiple null hypotheses, 
which leads to an inflated risk of a type I error—unless 
the significance criterion is adjusted accordingly. A more 
detailed discussion on multiple testing is found elsewhere.22

Commonly, researchers aim to compare 2 or more groups 
(eg, treatment groups) in which the outcome is repeatedly 
assessed over time. There are thus 2 factors of interest in 
the repeated-measures design (time and treatment).19 Such 
a study design is traditionally analyzed with two-way 
(two-factor) repeated-measures ANOVA (Figure  2).6,19 
This ANOVA model simultaneously tests several null 
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hypotheses: (1) all means at different time points are the 
same (referred to as “main effect of time”); (2) all means 
in different treatment groups are the same (referred to as 
“main effect of treatment”); and (3) there is no interaction 
between treatment and time (the treatment groups do not 
differ in their degree of change in the outcome variable over 
time).19 The interaction is often the primary interest when 
researchers aim to study whether treatments differentially 
affect outcomes over time.1

Repeated-measures ANOVA techniques make quite 
strong assumptions about the underlying data. One impor-
tant assumption is that the correlation between repeated 
measurements for the same subject is constant, irrespective 
how far apart in time the measurements are made (termed 
“compound symmetry correlation structure”).23 The closely 
related assumption of sphericity means that the variances of 
the differences between any 2 time points is the same, irre-
spective of how distant the measurements are.24 Violations 
of these assumptions are common because correlation 
between repeated data tend to be highest between adjacent 
time points and decrease with increasing time intervals, 
markedly increasing the risk of false-positive claims (type 

I error).1 Mauchly’s test can be used to test for sphericity,25 
and adjustments, such as the Greenhouse and Geisser cor-
rection, can be applied when the assumption of sphericity 
is violated.24

In studying the effects of therapeutic ultrasound and 
treadmill exercise in a rat model of neuropathic pain, 
Huang et al26 repeatedly measured mechanical and ther-
mal hypersensitivity as well as various cytokine levels. 
Outcomes were compared across 7 groups by repeated-
measured ANOVA. The sphericity assumption was tested 
using Mauchly’s test, and Greenhouse–Geisser–corrected 
P values were presented when applicable. The authors 
observed significant differences between the groups for all 
outcomes and used post hoc analyses for pairwise compari-
sons between groups.26

Multivariate ANOVA (MANOVA) does not assume a 
specific correlation structure or sphericity and is therefore 
a popular alternative to repeated-measures ANOVA.23 
Similarly to ANOVA, MANOVA also tests for main effects 
as well as for the interaction.6,24 However, MANOVA also 
shares many of the limitations of ANOVA described in 
the next paragraph. Note that the term “multivariate” is 

Figure 1. Schematic representation of 
a one-way repeated-measures ANOVA. 
An outcome is repeatedly measured or 
observed for each subject (here: sub-
jects A–D) at each time point or under 
each condition, allowing to assess 
how the outcome value changes within 
each subject. Therefore, a factor in 
which each subject’s outcome variable 
is repeatedly measured at each factor 
level (here: time point or condition), is 
referred to as a within-subject factor. 
One-way repeated-measures ANOVA 
compares the mean values of the out-
come variable between the factor levels. 
ANOVA indicates analysis of variance.

Figure 2. Schematic representation of a 
two-way (two-factor) mixed ANOVA. The 
model includes a within-subject factor 
(Figure  1), but also a between-subject 
factor. Factors that vary between sub-
jects are between-subject factors (here: 
a part of the subjects are assigned to 
treatment A, but other subjects are 
assigned to treatment B). A two-way 
mixed ANOVA tests for differences in 
the mean values of the outcome vari-
able between the factor levels of the 
within-subject factor, between the factor 
levels of the between-subject factor, as 
well as the interaction of the 2. ANOVA 
indicates analysis of variance.
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commonly misused in literature to describe models with 
multiple independent (predictor) variables. In reality, mul-
tivariate means that there are multiple (correlated) out-
comes—like an outcome repeatedly measured over time.

Despite its appeal and popularity, ANOVA has several 
shortcomings or limitations:

	 •	� The outcome must be continuous and should gen-
erally be normally distributed around the mean 
value at each factor level (unless the sample size is 
reasonably large).1,7

	 •	� The within- and between-subject factors are cat-
egorical variables, and standard ANOVA models 
do not accommodate for continuous covariates.

	 •	� ANOVA cannot handle covariates that vary over 
time.7

	 •	� ANOVA assumes each individual to be mea-
sured at the same time points and does not allow 
for unequally spaced time intervals in different 
subjects.

	 •	� Measurements must be available for each subject 
at each time point, thus excluding the entire sub-
ject from the analysis when a single observation is 
missing.1,23 Missing observations are quite common 
in repeated-measures designs (eg, due to logistic 
reasons, withdrawal, or loss to follow-up).27

	 •	� ANOVA tests for “significance,” but does not 
allow inferences on how the outcome is expected 
to change as the predictor variable(s) change.

Nonparametric alternatives to the paired t test (Wilcoxon 
signed-rank test) and repeated-measures ANOVA (Friedman 
test) are available when the assumption of normally distrib-
uted residuals is violated.28 However, these techniques do 
not address many of the other above limitations.

The following section deals with more modern and 
flexible but rather complex approaches that can (1) model 
a broad range of outcome data, including continuous, cat-
egorical, and count data; (2) accommodate categorical and 
continuous covariates; and (3) make use of all available 
information for each subject, even when measurements are 
unequally spaced or when a portion of the outcome data 
are missing. This remaining section is admittedly not basic 
material but is included for completeness sake.

MODERN APPROACHES OF COMPARING 
NONINDEPENDENT MEANS FOR LONGITUDINAL 
DATA
Regression Techniques for Correlated Data: 
Background
Linear regression allows one to model a continuous depen-
dent (outcome) variable as a linear function of ≥1 indepen-
dent variables.5 While ANOVA models can be expressed in 
terms of linear regression, regression is more flexible as it 
can include multiple categorical and/or continuous inde-
pendent variables at the discretion of the investigator—for 
example, because they are of specific scientific interest or to 
adjust for confounding.5 Linear regression can also model 
nonlinear relationships—for example, by including the 
squared values of a predictor variable.5 Moreover, the con-
cept can be generalized from continuous outcomes to other 

distributions including count data (Poisson regression) or 
binary outcomes (logistic regression).5 However, regression 
models generally assume measurements to be independent 
from each other.5 As detailed above, repeated measure-
ments clearly violate this assumption.

There are 2 commonly used modern approaches that 
make use of the flexibility of regression models while 
accounting for nonindependent measurements.

The first approach focuses on specifying the mean 
response of the outcome (thus called a marginal approach 
or population-average approach), while using a technique to 
estimate the regression parameters that is valid in the pres-
ence of correlated measurements.1,7 A generalized estimating 
equation (GEE) is commonly used to estimate the parameters 
in a marginal model, in combination with so-called robust 
standard errors to quantify the precision of the estimate.2

The second approach is not limited to the mean response 
but fully specifies the distribution of the outcome by using 
random intercepts and/or slopes.29 Such subject-specific 
models have also variously been termed mixed-effect mod-
els, multilevel models, hierarchical models, or random-
effects models.30

Choosing which approach to apply partly depends on 
the aim of the research and the desired interpretation of the 
estimated effects (population-average versus subject-spe-
cific interpretation).

Marginal Models: GEEs
A GEE can be used to estimate the regression parameters for 
the expected (mean) response of an outcome given a set of 
explanatory variables while accounting for repeated measure-
ments on same subjects.2,31 To account for nonindependence, 
the analyst needs to specify a working correlation structure, 
which represents the assumed correlation of the repeated 
measurements.7 Figure 3 shows a schematic representation of 
a selection of different working correlation structures.

The exchangeable structure (also termed “compound 
symmetry”) assumes all correlations to be equal. The 
autoregressive structure assumes correlations to decrease as 
the time interval between the measurements increases. An 
unstructured correlation makes no assumptions about the 
structure and allows each correlation to be different.7 The 
GEE procedure, using robust standard errors, has the desir-
able property that its estimates are rather robust against 
misspecifications of the working correlation structure, and 
it will often still produce valid results, especially when the 
sample size is reasonably large.2,7

As the marginal approach models the mean response, 
the interpretation refers to population-average effects of the 
predictor variables.7 The regression parameters thus allow 
inferences on how the mean outcome, averaged over the 
whole population, is expected to change relative to changes 
in the independent variable(s).7

Limitations of marginal models include that they only 
account for 1 source of nonindependence at a time (eg, 
repeated measurements in individuals). However, there 
may be other sources of nonindependence—for example, 
if the individuals in whom repeated measurements were 
made are also organized in other clusters, such as families, 
clinics, or hospitals. Mixed-effect models, described below, 
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can accommodate several sources of nonindependence at 
once and allow for subject-specific conclusions.9

In studying whether a single-injection lumbar plexus block 
(LPB) would reduce postoperative pain after hip arthros-
copy, YaDeau et al32 randomly assigned patients to receive 
either LPB or not. Postoperative pain scores (on a Numeric 
Rating Scale) were repeatedly assessed in the first 24 hours 
after surgery. Using the GEE approach with an autoregres-
sive working correlation structure and adjusting for multiple 
covariates, LPB was associated with a mean pain reduction of 
0.9 points (95% confidence interval, 0.1–1.7; P = .037).32

Mixed-Effect Models
Mixed-effect models use a conceptually different approach 
than marginal models to account for nonindependence of 
repeated measurements. While marginal models focus on 
the mean outcome, mixed-effect models provide a fully 
specified model for the multivariate distribution of the 
repeatedly measured outcome.29

There are 2 main types of comparative research studies 
involving longitudinal data, both of which often use mixed-
effects models. First, researchers may simply want to compare 

treatments on the mean of the outcome while accounting for 
the repeated measurements over time (with time as a cat-
egorical variable), collapsing the data over time if there is no 
group-by-time interaction, but comparing groups over time if 
the effect differs over time. This could be accomplished with 
a GEE model, but also with a mixed-effects model, which can 
incorporate random effects to account for within-subject or 
within-unit clustering, while still allowing all of the within-
subject correlation modeling as in a GEE model.

Second, researchers may be interested in comparing 
groups on the trends over time in the outcome, and thus 
include time as a continuous variable. In a mixed-effect 
model, each subject’s deviation from the mean slope and the 
beginning point (the intercept) can be modeled using a ran-
dom intercept and random slope model, as detailed below.

Thus, in a mixed-effects model, one can (1) model the 
within-subject correlation in which one specifies the cor-
relation structure for the repeated measurements within 
a subject (eg, autoregressive or unstructured) and/or (2) 
control for differences between individuals by allowing 
each individual to have its own regression line (Figure 4).6 
By accounting for the fact that some individuals have 

A B C D

Figure 3. Schematic representation of 4 working correlation structures commonly used in GEE estimation (A–D). The numbers 1–5 represent 
repetitive measurements, and the shade of the box represents the correlation between the 2 measurements, with a darker shade represent-
ing a stronger correlation. For example, the box on the cut-point between first row and third column (or vice versa) represents the correlation 
between the first and third measurements. While the correlation of a value with itself is always 1 (represented by the black boxes on the 
diagonal line), the off-diagonal correlations differ between the correlation structures. A, The independent correlation structure assumes uncor-
related measurements. B, Compound symmetry assumes all off-diagonal correlations to be equal. C, The autoregressive structure assumes 
decreasing correlations as the time interval increases. D, Unstructured correlation makes no assumptions and allows all correlations to differ. 
GEE indicates generalized estimating equation.

A B

Figure 4. Simple example with only 1 explanatory variable (time as continuous covariate) to illustrate how linear regression assuming inde-
pendent measurements differs from a mixed linear model. A, All data points are assumed to be independent. The solid line represents the 
regression line of the relationship between time and a hypothetical outcome measure. The difference (vertical distance) between each point 
and the regression line is termed residual, and the assumption of independence that we have rather informally stated in the text actually 
refers to independence of the residuals. As can be seen, the line does not seem to fit the data points very well, and the variance of the residu-
als seems to increase over time, violating a key assumption of linear regression. B, It can be see that the different data points in (A) are not 
independent but actually come from 4 subjects (represented by 4 different symbols and colors), measured at hourly intervals. The black line 
still represents the mean change in the dataset. However, by allowing each subject to have its own intercept and slope, the between-subject 
variability is now accounted for. The residuals are now much smaller as they represent the within-subject variability, ie, the difference of each 
data point from the regression line of the same subject. This allows for a more precise estimate of the subject-specific effect of time.
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consistently higher (or lower) values than others—by allow-
ing for an individual intercept—a mixed-effect model con-
trols for this source of variation. Likewise, individual slopes 
can be included in the model to control for the fact that indi-
vidual responses over time differ among subjects (Figure 4).

Since the individuals are usually a random sample from 
all possible individuals of a population, their individual 
slopes and intercepts are usually of no specific interest. The 
aim is simply to control for the variation coming from dif-
ferent subjects, which can be achieved by modeling subject 
effects as if they randomly came from a probability distribu-
tion (random effects).33 In contrast to these random effects, 
effects of covariates that are of specific scientific interest and 
that comprise all levels, or the whole range of values, about 
which inferences are to be made (eg, treatment groups, 
age, sex) are referred to as fixed effects.33 The name mixed-
effect models arises from the fact that they include both 
fixed and random effects.6 Of note, when fitting a random 
slope model, one also includes the fixed effect for time. The 
fixed effect of time (as continuous variable) then estimates 
the average change over time, or average slope, across the 
subjects.

Building a mixed-effect model requires informed choices 
not only on which fixed effects to include but also on 
whether to include random intercepts or slopes, or both. 
Mixed-effect models can also accommodate multiple levels 
of nonindependence by including additional random effects 
(eg, not only for participants, but also for ≥1 other clusters) 
to the model.9 As an additional complexity, random inter-
cepts and random slopes are often correlated with each 
other, and this correlation also needs to be accounted for.29

The various possibilities and choices in building a mixed-
effect model are major strengths because they provide great 
flexibility and allow modeling subject-specific trajectories 
over time, as well as modeling the correlation between 
measurements within subject. Nevertheless, this can also be 
a limitation as misspecifications of the model can lead to 
biased estimates and wrong inferences.

Effects estimated by mixed-effect models basically have 
a subject-specific interpretation, in the sense that they rep-
resent the expected change in the dependent variable for a 
particular individual or cluster of individuals.34 However, 
it is also possible to derive population-average estimates in 
mixed-effect models. While subject-specific and population-
averaged estimates are identical in linear mixed models for 
normally distributed outcome data, the distinction is rele-
vant for noncontinuous outcomes (eg, mixed logistic model 
for binary outcomes).35 The relative merits of the mixed-
effect model approach and the marginal approach com-
pared to each other, as well as differences in interpretation 
of the results, have been extensively debated elsewhere.34–38

Upton et al39 studied the “Analgesia Nociception Index” 
(ANI), a noninvasive measure of the nociceptive level 
of a given patient, to guide administration of analgesics 
in patients undergoing general anesthesia. The authors 
hypothesized that intraoperative ANI-guided fentanyl 
administration would reduce pain in the recovery room 
when compared to standard practice. They repeatedly 
recorded Numerical Rating Scale pain scores at 5-minute 
intervals in the recovery room from 0 to 90 minutes. A linear 

mixed-effect model was used for the analysis of the pri-
mary outcome, with ANI guidance being the fixed effect, 
and patients modeled as the random effect. ANI-guided 
fentanyl administration was associated with a significant 
reduction of postoperative pain scores (mean reduction in 
1.3 units; P = .01).39

POWER AND SAMPLE SIZE CONSIDERATIONS
As for an any study, a priori estimation of the required 
sample size requires researchers to make choices concern-
ing the planned data analysis strategy and primary hypoth-
esis that is to be tested, the acceptable type I error rate, the 
desired power, and the minimum important difference to be 
detected.40 However, sample size calculations for repeated 
measurement designs also require specifications of the 
assumed variance and correlation pattern between repeated 
measurements.41 Full details are beyond the scope of this 
primer, and we refer to previous publications on sample 
size and power considerations for longitudinal designs.40–42

CONCLUSIONS
Longitudinal study designs are common when investigat-
ing changes in an outcome over time. Their proper data 
analysis needs to account for the correlation among repeat-
edly measured data. A simple and intuitive approach 
involves calculation of a summary statistic to summarize 
the repeatedly measured data in each subject with a single 
number. This removes the correlation among the measure-
ments and allows for a straightforward comparison of 
groups using standard, conventional statistical hypothesis 
tests. Repeated-measures ANOVA approaches have tradi-
tionally been used to analyze longitudinal data. However, 
strong data assumptions and minimal flexibility limit the 
usefulness. Modern approaches are becoming more accessi-
ble to statisticians and thus researchers and are increasingly 
superseding the more traditional methods. GEEs allow 
valid estimations of regression parameters for the mean 
response of the outcome in the presence of nonindependent 
measurements. Mixed-effect models provide a fully speci-
fied model of the distribution of the outcome, can be used to 
estimate the between-subject variation, and are more appro-
priate when the research focuses on within-subject change. 
With the above specific examples of studies published in 
Anesthesia & Analgesia, we show how these techniques are 
successfully applied in practice. E
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