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Abstract

Withania somnifera extracts are known for their anti-cancerous, anti-inflammatory and anti-

oxidative properties. One of their mechanisms of actions is to modulate mitochondrial func-

tion through increasing oxidative stress. Recently ‘priming’ has been suggested as a

potential mechanism for enhancing cancer cell death. In this study we demonstrate that

‘priming’, in HT-29 colon cells, with W. somnifera root extract increased the potency of the

chemotherapeutic agent cisplatin. We have also showed the W. somnifera root extract

enhanced mitochondrial dysfunction and that the underlying mechanism of ‘priming’ was

selectively through increased ROS. Moreover, we showed that this effect was not seen in

non-cancerous cells.

Introduction

Cancer is one of the major causes of death around the globe, despite the progress observed in

surgery, radiation and chemotherapy [1–3]. Cancer progression relies on the ability of cancer

cells to exploit the normal physiological processes of the host [1]. This unfortunately means

that the cytotoxicity of chemotherapeutic drugs is not limited to cancer cells and can affect

non-cancer cells [1, 4]. Today the most common therapeutic strategy of chemotherapy drugs

is the use of two drugs in combination, however this is invariably associated with side effects

which include chemoresistance [5–7]. It is therefore essential to explore and enhance current

methods of chemotherapy to improve their efficacy while also reducing side effects. One such

approach is ‘priming’, whereby cancer cells are pre-treated with a ‘priming’ agent (curcumin,

quercetin, aspirin) prior to chemotherapy treatment [8–12]. The underlying mechanism

underpinning ‘priming’ appears to be the enhancement of cell death through mitochondrial

dysfunction [8, 9]. Mitochondrial dysfunction can alter ROS levels, ATP production and over-

all cell viability and is a novel key target in cancer treatment [9, 13, 14].

Withania somnifera is an Ayurvedic medicinal plant whose root and leaves extracts have

been used for its antioxidant and restorative properties as well as to reduce cancer growth
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[2, 6, 15]. W. somnifera extracts have been found to be effective in treating several types of can-

cer including skin, leukaemia, breast, colon and pancreas [15–21]. However, the mechanisms

of action have yet to be fully elucidated, but indications of involvement in mitochondrial mem-

brane permeability have been reported in several studies [1, 21–23]. Additionally, W. somni-
fera extracts have been shown to increase reactive oxygen species (ROS) [1, 19, 23]. The

mitochondria is an important regulator of cell survival and progression and is the main source

of ROS which is linked with mitochondrial function [24]. Cancer cells metabolism is known to

have an altered phenotype whereby they primarily respire through lactate production in a pro-

cess known as the ‘Warburg Effect’ [25–27]. This alteration in metabolism is a key hallmark of

cancer cell progression and has been linked to an alteration in mitochondria function [9, 25].

W. somnifera has been reported to induce mitochondrial dysfunction in human leukaemia

cells and also reduce mitochondrial function in breast cancer cells [1, 19]. Investigating this

mitochondrial alteration further could highlight the value of W. somnifera as an anti-tumour

agent.

Mitochondrial dysfunction can alter ROS levels, ATP production and overall cell viability

and is a novel key target in cancer treatment [9, 13, 14]. In this study we investigated the poten-

tial of W. somnifera as a ‘priming’ agent, and showed that ‘priming’ with this root extract

enhanced the efficacy of cisplatin through increased ROS in cancer cells while having no

detectable effect on non-cancer cells.

Materials and Methods

Extraction

The extraction method was performed according to the British Pharmacopeia. Withania som-
nifera root powder (1.0 g, Lot no. 6051SS/03, Pukka, UK), was shaken with 2 mL of dilute

ammonia R4. Methanol (20 mL) was added and the mixture was sonicated for 20 minutes. It

was then heated on the water bath for 3 minutes and filtered. The filtrate was evaporated to

dryness at 60˚C. A stock solution of 0.08335 g of dry extract /mL DMSO was prepared for bio-

logical studies.

HPTLC

The dry extract was reconstituted in methanol and filtered. The methanolic extract was then

applied to a precoated silica gel 60 F254 high performance plate (Merck). CAMAG HPTLC Sys-

tem (Automatic TLC Sampler 4; ADC2 Automatic Developing Chamber; TLC Visualizer;

Chromatogram Immersion Device III; TLC Plate Heater III; VisionCats software) was used.

Application: 2 μL of reference and test solutions. Mobile phase: Toluene, ethyl acetate, formic

acid 10:3:1 (v/v/v). Derivatization: 5% sulphuric acid methanol. Dip (time 0, speed 5), heat at

110˚C for 2 min, detection at UV 366 nm.

HPLC

The methanolic root extract (0.3 mg/mL) was analysed using Waters ACQUTTY UPLC—

Synapt G2 QTOF (Waters, USA) and a BEH C18 (2.1×100 mm, 1.7 μm) column (Waters,

USA) at 40˚C to provide efficiency to the peaks. The mobile phase consisted of water (A) and

methanol (B), which were applied in the following gradient elution: from 60:40 (A:B) in 15

min to 20:80(A:B). The flow rate and sample volume were set to 0.3 mL/min. The sample vol-

ume was 10 μL. The ESI source was operated in positive (ESI+) ionization mode. The opti-

mized conditions to trigger maximum response of metabolites were listed as follows: capillary

voltage, +3 kV; sample cone, + 30 V; extraction cone, +4.0 V; source temperature, 120˚C;
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desolvation temperature, 350˚C; cone gas (nitrogen) flow, 50 L/h; and desolvation gas (nitro-

gen) flow, 600 L/h. Argon was used as collision gas. Leucine- enkephalin (2 ng/mL) was used

as the lock mass generating a reference ion at m/z of 556.2771 by a lockspray at 5 μL/min to

acquire accurate mass during analysis.

Cell culture

Human breast cancer cell line MDA-MB231 and HT-29 colon cancer cells were grown in

DMEM (Sigma, UK) with 10% FBS (Sigma), 2% L-Glutamine (Invitrogen, UK) and 2% Peni-

cillin/Streptomycin (P/S) solution (Invitrogen). MDA-MB231 cells were obtained from Dr. T.

Kalber (Medical Research Council Clinical Sciences Centre, London) and HT-29 cells were

donated by Dr. N. Haiji (Imperial College London). Human non-cancer breast epithelial

MCF10A cells were grown in DMEM:F12 (Life Sciences, UK) supplemented with 5% horse

serum (Sigma), 2% P/S, 20 ng/mL epidermal growth factor (Sigma), 0.5 mg/mL hydrocorti-

sone (Sigma), 100 ng/mL cholera toxin (Sigma), 10 μg/mL insulin (Sigma). MCF10A cells

were donated by Dr. N. Haiji (Imperial College London). All cells were maintained at 37˚C in

a humidified 5% CO2 atmosphere.

Treatment conditions

All cells were treated with W. somnifera extract (0 μg/mL -10 μg/mL) for 48 h prior to assess-

ment. Primed cells were treated with W. somnifera extract (0 μg/mL -10 μg/mL) for 48 h,

washed with PBS and incubated with 100 μM Cisplatin for a further 24 h. ‘Priming’ with quer-

cetin was carried out as follows with 24 h of 40 μM quercetin followed by 100 μM cisplatin for

24 h [11, 28].

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)

assay

Cell viability was determined using a colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-

tetrazolium bromide (MTT) assay (Sigma, UK). All cells were seeded in a 96-well plate at a

density between 1.5–3 x104 cells per well and were treated with the various treatment condi-

tions as described above. Cell viability was assayed according to the manufacturers’ protocol.

Absorbance was determined at 570 nm and normalised with 690 nm background with a micro

plate reader (Spectramax 340PC) after 3.25 h. The optical density was measured as a percent-

age of the control.

ROS assay

Cellular ROS was measured using a 2’,7’–dichlorofluorescein diacetate (DCFDA) Assay

(Abcam, UK). The fluorescence was detected on a fluorescent plate reader (FLUOstar Omega,

BMG Labtech, UK) with an excitation of 495 nm and emission of 529 nm. Cells were seeded at

2 x104 in 96-well black bottom plate. DCFDA incubation was carried out according to the pro-

tocol. Cells were treated using the various treatment conditions previously described. The opti-

cal density was measured as a percentage of the control and normalised to cell count.

ATP production, proton leak and mitochondrial respiration

ATP, proton leak and mitochondrial/non-mitochondrial respiration was measured using a

Seahorse Bioanalyser (Seahorse Biosciences, USA). MDA-MB231, HT-29 and MCF10A cells

were seeded 1–2.5 x104 cells per well in a specific Seahorse Bioanalyser 24 well plate and

treated appropriately as previously described. The protocol was carried out as specified by the
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manufacturer’s instructions. Oligomycin (1 μg), carbonyl cyanide-4-(trifluoromethoxy)phe-

nylhydrazone (FCCP) (0.2 μM: MDA-MB231, 0.4 μM: MCF10A, 0.6 μM: HT-29) and antimy-

cin/rotenone (0.25 μM) were added to the sensor plate in the appropriate dilutions directly

prior to the commencement of the calibration and assay. Calculations were normalised to pro-

tein level using a standard Bradford assay (Biorad).

Assessment of drug-drug interactions

To assess the effects of the combination of W. somnifera and cisplatin synergy or antagonism

was calculated according to the methods described by Prichard and Shipman [29]. The raw

data of 5 experiments was analysed at the 95% confidence interval using the MacSynergy II

software developed by Prichard and Shipman. The program calculates the synergy or antago-

nism of the drug interactions by calculating theoretical additive interactions from the dose-

response surface.

Statistical analysis

Statistical analysis was carried out using a one-way ANOVA with Tukey correction and one

sample t-test on Graphpad, Prism Software. Results are presented as mean ± SEM. Significance

taken when p<0.05.

Results

Cell viability assessment of W. somnifera root extract

The direct effect of treating cancer cells with W. somnifera root extract was examined using an

MTT assay. Cancer and non-cancer cells were treated with a titration of 1 μg/mL, 5 μg/mL and

10 μg/mL W. somnifera for 48 h. A significant reduction of cell viability was observed in breast

(MDA-MB231) cancer cells compared to non-treatment in a dose dependant manner

(p<0.01) (Fig 1A). Similar effect was observed in HT-29 colon cancer cells (p<0.05) (Fig 1B).

However, in non-cancer cells (MCF10A) there was no reduction in cell viability compared to

non-treatment (Fig 1C).

The effect of W. somnifera extract on oxidative stress

Oxidative stress is an important marker of cellular response and can indicate early signs of cell

death. There were no changes in ROS levels following treatment with W. somnifera alone in

Fig 1. Assessing cell viability of W. somnifera root extract on cancer and non-cancer cells. Cells were treated with increasing

concentrations (1 μg/mL -10 μg/mL) of W. somnifera root extract for 48 h in (A) MDA-MB231, (B) HT-29 and (C) MCF10A cells. Data

represent the average of 5 independent experiments ± SEM. *p<0.05, **p<0.01 vs non-treatment (0).

doi:10.1371/journal.pone.0170917.g001
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MDA-MB231 cancer cells or MCF10A non-cancer cells (Fig 2A and 2C). However, in HT-29

cancer cells there was a significant increase in ROS levels compared to the control following 48

h of treatment with 5 μg/mL and 10 μg/mL of W. somnifera root extract (p<0.05) (Fig 2B).

Mitochondrial function following W. somnifera treatment

Mitochondrial basal respiration of MDA-MB231 cells was reduced following 48 h of treatment

with 10 μg/mL W. somnifera root extract (p<0.05) (Fig 3A). The cell’s ATP production levels

(p<0.01) and proton leak (p<0.05) were also reduced (Fig 3B, 3C and 3D). However, there

was no change in maximal respiration. Interestingly in HT-29 cells this reduction in mito-

chondrial function was more pronounced for basal respiration (p<0.001), ATP production

levels (p<0.01), proton leak (p<0.01) and maximal respiration (p<0.01) (Fig 3E, 3F, 3G and

3H). The mitochondrial function in non-cancer MCF10A cells was unchanged following W.

somnifera root extract treatment (Fig 3I, 3J, 3K and 3L).

‘Priming’ with W. somnifera root extract enhances chemotherapy

Cisplatin treatment reduced cancer cell growth in MDA-MB231 cells (p<0.01), HT-29

(p<0.01) and MCF10A cells (p<0.05) (Fig 4). The drug combinations of cisplatin and W. som-
nifera were assessed to observe if their activities were synergistic or antagonistic following the

Prichard and Shipman equation [29]. The drug-drug interactions were analysed at a 95% con-

fidence limit and displayed as peaks above (synergy) and below (antagonism) a predicted addi-

tive plane in a 3-D graph (S3 Fig). MDA-MB231, HT-29 and MCF10A cells were antagonistic

following combination of cisplatin and W. somnifera.

‘Priming’ with W. somnifera (treatment: 48 h prior to 100 μM cisplatin) showed there was

no added effect in MDA-MB231 cells (Fig 4A). However, in HT-29 colon cancer cells ‘priming’

with 1 μg/mL of W. somnifera root extract showed an added effect compared to cisplatin treat-

ment alone (p<0.05) (Fig 4B). This enhanced effect increased with increasing W. somnifera
root extract concentration (p<0.001). There was no enhanced effect of ‘priming’ in non-can-

cer MCF10A cells (Fig 4C). Indeed, there was a slight trend to increased cell viability compared

to cisplatin treatment though this did not reach significance.

As a positive control of ‘priming’ the cells were treated with quercetin, an agent that has

been shown to enhance chemotherapy following this ‘priming’ method [11, 28]. Following the

same incubation conditions MDA-MB231 showed a reduction in cell viability following

Fig 2. Oxidative stress alteration following treatment with W. somnifera in cancer and non-cancer cells. ROS levels were measured

using a DCFDA assay following 48 h treatment with 1 μg/mL, 5 μg/mL and 10 μg/mL of W. somnifera root extract in (A) MDA-MB231, (B)

HT-29 and (C) MCF10A cells. The bold line in each graph represents control treatment levels for the experiment. Data represent the average

of 5 independent experiments ± SEM. *p<0.05 vs non-treatment.

doi:10.1371/journal.pone.0170917.g002
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Fig 3. Mitochondrial functional analysis following 48 h of W. somnifera root extract treatment in MDA-MB231, HT-29 and MCF10A

cells. Mitochondrial function was assessed using a Seahorse Bioanalyser following 48 h of 1 μg/mL and 10 μg/mL W. somnifera root extract

treatment. Alterations in MDA-MB231 cancer cells (A) basal respiration, (B) ATP production, (C) proton leak and (D) maximal respiration

was investigated following treatment. The same functional alterations were observed in HT-29 cells (E–H) and in MCF10A cells (I-L). Data

represents the average of 3 independent experiments ± SEM. *p<0.05, ** p<0.01, *** p<0.001 vs non-treatment.

doi:10.1371/journal.pone.0170917.g003

Fig 4. The effect of ‘priming’ with W. somnifera root extract prior to cisplatin treatment on cell viability. Cell viability was assessed

following ‘priming’ with W. somnifera root extract (1 μg/mL, 5 μg/mL and 10 μg/mL) for 48 h prior to 100 μM cisplatin treatment. (A)

MDA-MB231, (B) HT-29 and (C) MCF10A cell viability following ‘priming’ with W. somnifera root extract and 100 μM cisplatin treatment

alone. Data represents the average of 5 independent experiments ± SEM. *p<0.05, ** p<0.01, *** p<0.001 vs non-treatment, # p<0.05,

### p<0.001 vs cisplatin.

doi:10.1371/journal.pone.0170917.g004
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‘priming’ with quercetin though this was not enhanced compared to cisplatin treated alone

(Fig A in S4 Fig). This effect was also observed with HT-29 and MCF10A cells (Figs B and C in

S4 Fig).

ROS is key in establishing the effect of ‘priming’ with W. somnifera root

extract

When treated with cisplatin there was an increase in ROS levels in MDA-MB231 (p<0.001)

HT-29 (p<0.01) and MCF10A (p<0.01) cells (Fig 5).

Interestingly ‘priming’ with W. somnifera reduced the effect cisplatin had on ROS levels in

MDA-MB231 cancer cells (p<0.001), bringing it to a sustainable level (Fig 5A). However, in

HT-29 cells an increase in ROS levels were observed following ‘priming’ compared to cisplatin

treatment alone (p<0.05). In non-cancer MCF10A cells following ‘priming’, a reduction of

ROS levels was observed compared to cisplatin treatment (p<0.001) (Fig 5C).

‘Priming’ with W. somnifera root extract increases mitochondrial

dysfunction

There was no effect of cisplatin treatment on mitochondrial function in MDA-MB231 cells

only a slight trend to decrease in basal respiration, ATP production and maximal respiration

(Fig 6A, 6B, 6C and 6D). However, the HT-29 cells basal mitochondrial respiration was

decreased following cisplatin treatment (p<0.001) along with ATP production levels

(p<0.001), proton leak (p<0.001) and maximal respiration (p<0.001) (Fig 6F, 6G, 6H and 6I).

Interestingly MCF10A cells also had a reduction in basal respiration following cisplatin treat-

ment (p<0.001) (Fig 6K). There was also a reduced change in proton leak (p<0.001) and max-

imal respiration (p<0.05) (Fig 6M and 6N), but not in ATP levels.

‘Priming’ in MDA-MB231 reduced basal respiration rate (p<0.001), ATP production

(p<0.001), proton leak (p<0.001) and maximal respiration rate (p<0.001) (Fig 6A, 6B, 6C and

6D). Similarly, HT-29 cells following ‘priming’ decreased basal respiration (p<0.001), ATP

production levels (p<0.001), proton leak (p<0.001) and maximal respiration (p<0.001) (Fig

6F, 6G, 6H and 6I). However, the reduction observed following ‘priming’ in HT-29 cells was

not as reduced as cisplatin treatment alone and the differences observed were significantly dif-

ferent; basal respiration (p<0.001), ATP production (p<0.001), proton leak (p<0.001) and

Fig 5. Oxidative stress response following ‘priming’ with W. somnifera root extract. The alteration to oxidative stress levels was

assessed following ‘priming’ with W. somnifera from 1 μg/mL to 10 μg/mL 48 h prior to 100 μM cisplatin treatment in (A) MDA-MB231, (B)

HT-29 and (C) MCF10A cells. The bold line in each graph represents control treatment levels for the experiment Data represents the

average of 5 independent experiments ± SEM. *p<0.05, **p<0.01, ***p<0.001 vs non-treatment, # p<0.05, ## p<0.01, ### p<0.001 vs

cisplatin.

doi:10.1371/journal.pone.0170917.g005
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maximal respiration (p<0.01). ‘priming’ reversed the effects of cisplatin on MCF10A cells

mitochondrial function (Fig 6K, 6L, 6M and 6N).

Discussion

This study has shown that ‘priming’ with W. somnifera root extract leads to enhanced cell

death in HT-29 colon cancer cells but not in MDA-MB231 cells or MCF10A non-cancer cells.

We propose that the ‘priming’ effect of W. somnifera root extract was exclusive to HT-29 can-

cer cells due to increased ROS production and reduced mitochondrial function.

W. somnifera has many positive medicinal properties which include antitumour, antioxida-

tive and anti-inflammatory effects [1, 19, 20, 30]. The efficacy of Withaferin A in W. somnifera
has been shown to have an effect on killing breast cancer cells from 1 μM to 5 μM (17,29).

Interestingly, in this study using a lower dose of 1 μg/mL W. somnifera root extract for 48 h

showed a reduction in breast cancer cells and colon cancer cells but had no effect on non-can-

cer cells. This suggests that lowering the concentration but prolonging the treatment period

could have an even greater effect on cancer cell inhibition without effecting normal cells. It has

been reported that using 2.5 μM Withaferin A for 6 h can increase oxidative stress in

MDA-MB231 cells [19]. However, using W. somnifera root extract for 48 h had no effect on

oxidative stress in MDA-MB231 cells. There was an increase in oxidative stress in HT-29 cells

Fig 6. ‘Priming’ with W. somnifera root extract alters mitochondrial function. Mitochondrial function was analysed using the Seahorse

Bioanalyser to observe if there was any change following ‘priming’. MDA-MB231 (A) basal respiration, (B) ATP production, (C) proton leak

and (D) maximal respiration was analysed following ‘priming’ with W. somnifera root extract. (E) A representative graph of the experiment

shows the experimental procedure and injection set up with the first arrow representing oligomycin, second arrow FCCP and third arrow

representing antimycin and rotenone. HT-29 cells (F-J) and MCF10A cells (K-O) were also assessed. Data represents the average of 3

independent experiments ± SEM. *p<0.05, ** p<0.01, *** p<0.001 vs non-treatment, # p<0.05, ## p<0.01, ### p<0.001 vs cisplatin.

doi:10.1371/journal.pone.0170917.g006
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which proposes that breast cancer cells are able to protect themselves from W. somnifera treat-

ment over a prolonged period.

Although the use of chemotherapeutic agents in killing cancer cells is a very effective treat-

ment, it can lead to several side effects which include chemoresistance [31–33]. An emerging

new method of cancer treatment is ‘priming’ which sensitizes cells to chemotherapy treatment

[8–10, 28]. This technique has most potential when looking at aggressive tumours such as tri-

ple negative breast cancer, MDA-MB231, which have the worst outcome after chemotherapy

than any other breast cancer subtype [34, 35]. Triple negative breast cancers account for 20–

25% of all breast cancer cases [36]. The response of this subgroup of breast cancer to treatment

relies heavily on chemotherapy as they do not respond to endocrine therapy or trastuzumab

[35, 36]. Another tumour that is difficult to treat is the clinically diverse colon cancer which is

difficult to treat due to its heterogeneity [37]. Along with its heterogeneity is its poor response

to drug treatments which could be in part due to underlying molecular changes altering its

genetic stability [38, 39] One such study identified, BRAF inhibition by the small-molecule

drug PLX4032 is extremely effective in melanoma treatment but colon cancer cells with the

same BRAF lesions do not respond to the same drug [39]. This poor response to drug treat-

ments highlights the importance of developing novel therapeutic treatments. Using this new

approach, we showed that ‘priming’ with W. somnifera root extract enhanced the therapeutic

effect of cisplatin in HT-29 cells. Furthermore, we showed that there was no added effect in

non-cancer cells.

A key characteristic of cancer cells is an alteration in metabolism to a process known as the

‘Warburg Effect’ [27, 40]. In this process, cancer cells respiration is primarily anaerobic being

driven through lactate production rather than through the aerobic citric acid cycle. One key

mechanism of ‘priming’ is mitochondrial dysfunction whereby mitochondrial respiration is

reduced due to increased VDAC1 activity and increased oxidative stress [4, 8, 9, 41, 42]. ROS

are important constitutively expressed regulators that control both cell survival and cell death

[24, 43, 44]. The main source of cellular ROS is from the mitochondria which is also a prime

target when excessive ROS is expressed [19, 24, 43, 45, 46]. Uncontrolled levels of ROS can

increase cell death through mitochondrial dysfunction [24, 43, 45, 46]. ‘Priming’ with W. som-
nifera root extract in HT-29 cells increased ROS levels compared to control while also enhanc-

ing cell death compared to cisplatin treatment alone. Furthermore, in HT-29 cells there was a

reduction in basal mitochondrial respiration, ATP production and maximal respiration sug-

gesting reduced mitochondrial function. The interaction between ATP production and ROS is

tightly linked and abnormal activity can lead to TCA cycle damage [14, 23].This mitochondrial

profile was replicated with MDA-MB231 cells however there was no change in ROS suggesting

that even though the mitochondrial function is reduced there was no added oxidative stress

enhancing the effect of cisplatin. There is no added generation of ROS from the mitochondria

in the MDA-MB231 cells following ‘priming’ which is key in opening the mitochondrial mem-

brane and activating cell death [14, 47]. More importantly there was no evidence of added cell

death with non-cancer cells, no added ROS concentrations and no alteration to mitochondrial

respiration. There was a slight trend to increase in cell viability and maximal respiration rate

suggesting the non-cancer cells were increasing their cell growth in response to ‘priming’ with

W. somnifera root extract.

Interestingly, both MDA-MB231 and HT-29 cells have mutant p53 (42). However, the

mutation present in HT-29 cells, R273H, has been identified to increase drug resistance, prolif-

eration and avoidance of cell death (43). This dominant-negative mutation is one of the most

prevalent p53 mutations and is not evident in MDA-MB231 cells (44). This mutation can

mask wild-type p53 in the cell to abrogate its function which is crucial in oxidative phosphory-

lation (27, T44). The reduction in mitochondrial function following ‘priming’ in

’Priming’ with Withania somnifera
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MDA-MB231 cells was more enhanced than cisplatin alone. This effect was not as pronounced

in HT-29 cells which could be due to the restoration of the wild-type p53, leading to increased

cell death from ‘priming’ (45). This could explain the difference in mitochondrial function

observed between MDA-MB231 and HT-29 cells whereby an effect in cell death was observed

in the latter cell type.

To conclude, W. somnifera root extract enhances the effect of cisplatin in killing HT-29

cells through increasing ROS and mitochondrial dysfunction. This effect appears to be mainly

through increased oxidative stress as there was no ‘priming’ effect in MDA-MB231 cancer

cells. It has been suggested that mitochondria are the gatekeepers to chemotherapy and are

ideal therapeutic targets for cancer therapy, therefore the impact of W. somnifera in enhancing

chemotherapy through mitochondrial dysfunction may prove an important new approach.

Further studies are required to examine the molecular mechanism of ‘priming’ with W. somni-
fera root extract.

Supporting Information

S1 Fig. HPTLC. HPTLC image graphs of the extract samples. Graph A is measured at the

wavelength 366 nm and B is the same graph under white RT light. BP means the extraction

method is followed by British Pharmacopoeia. Two replications of each extract samples. The

Rf value represents 0.09 (Withaferin A), 0.014 (Standard/Withanolide A) 0.24 (Withanolide

B),0.6 (β-sitosteol).

(PDF)

S2 Fig. HPLC-MS/MS data. (A) Ashwagandha root extract total ion chromatogram, (B) Ash-

wagandha root extract 471 [M+H]+ ion chromatogram, (C) Withanolide, peak 1 mass spec-

trum, (D) Withanolide, peak 2 mass spectrum, (E) Withanolide, peak 3 mass spectrum.

(PDF)

S3 Fig. Evaluating the drug-drug interactions upon combining treatments of W. somnifera
and cisplatin. The interactions of W. somnifera and cisplatin was assessed by the methods

described in Prichard and Shipman (29). Cell viability was examined following treatment with

W. somnifera root extract (0 μg/mL -10 μg/mL) in combination with cisplatin (0 μM -150 μM).

(A) MDA-MB231, (B) HT-29 (C) MCF10A 3D models and data table sets represent the antag-

onist effect of the drug-drug interactions. Data represents the average of 5 independent experi-

ments.

(PDF)

S4 Fig. The Effect of ‘priming’ with Quercetin prior to cisplatin treatment on cell viability.

Cell viability was examined following treatment with quercetin (40 μM), cisplatin (100 μM)

and ‘priming’ with quercetin prior to cisplatin treatment. (A) MDA-MB231, (B) HT-29 (C)

MCF10A cell viability following treatments. Data represents the average of 3 independent

experiments ± SEM. �� p<0.01 vs non-treatment, ¢ p<0.05 vs Quercetin.

(PDF)
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