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Objective. To identify key microRNAs (miRNAs) and their regulatory networks in prostate cancer. Methods. Four miRNA and three
gene expression microarray datasets were downloaded for analysis from Gene Expression Omnibus database. The differentially
expressed miRNA and genes were accessed by a GEO2R. Functional and pathway enrichment analyses were performed using the
DAVID program. Protein-protein interaction (PPI) and miRNA-mRNA regulatory networks were constructed using the STRING
and Cytoscape tool. Moreover, the results and clinical significance were validated in TCGA data. Results. We identified 26 significant
DEMs, 633 upregulated DEGs, and 261 downregulated DEGs. Functional enrichment analysis indicated that significant DEGs were
related to TGF-beta signaling pathway and TNF signaling pathway in PCa. Key DEGs such as HSPA8, PPP2R1A, CTNNBIL, ADCYS5,
ANXAL and COL9A2 were found as hub genes in PPI networks. TCGA data supported our results and the miRNAs were correlated
with clinical stages and overall survival. Conclusions. We identified 26 miRNAs that may take part in key pathways like TGF-beta
and TNF pathways in prostate cancer regulatory networks. MicroRNAs like miR-23b, miR-95, miR-143, and miR-183 can be utilized
in assisting the diagnosis and prognosis of prostate cancer as biomarkers. Further experimental studies are required to validate our

results.

1. Introduction

Prostate cancer (PCa) is a major cancer bothering men
worldwide. With an estimated 19% new cancer incidence in
men, PCa continues to hold the highest morbidity among all
cancer types in the United States [1]. During the past decades,
urologists have made great progress in the diagnosis and
treatment of PCa [2]. Currently, the new types of biomarkers
such as liquid biopsy and imaging biomarker start to make
contributions to clinical decision making [3-5]. However,
PCa is a heterogeneous cancer with individual disparity;
therefore, genomic and molecular resources still play an
important role in discriminating aggressive cases and aiding
prognosis prediction [6].

MicroRNA (miRNA), also known as short noncoding
RNA, is a group of single-stranded RNA molecules that act as

posttranscriptional gene regulation [7]. MiRNAs are involved
in many cellular biological processes such as proliferation,
migration, apoptosis, invasion, and epithelial-mesenchymal
transition (EMT). Accumulating evidence shows that miR-
NAs can functionally act as oncogene or tumor suppressors
[8]. In addition, circulating miRNA can be detected without
invasion like biopsy [9]. Hence, miRNAs can be applied to
help diagnosis and prognosis. Multiple studies of miRNA-
PCa have been performed, but they often had the disadvan-
tages of heterogeneous design, small sample size, and less
clinical information.

To the best of our knowledge, there are few studies
integrating microarray datasets to access key molecules and
investigate miRNA-mRNA regulatory networks. The objec-
tive of this study is to find the key miRNAs and their potential
regulatory mechanisms in PCa by bioinformatic approaches.
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TaBLE 1: Characteristics of the microarray datasets from GEO database.

Accession/ID PMID

Platform Number of prostate cancer tissues Number of normal prostate tissues (control) Gene/microRNA

GSE26367 24713434 GPL11350 n=173
GSE64333 26089375 GPL8227 n=27
GSE21036 20579941 GPL8227 n=113
GSE54516 25485837 (GPL18234 n=>51

GSE55945 19737960  GPL570 n=13

GSE60329 27384993 (GPL14450 n=>54
GSE103512 29133367 GPL13158 n=60

n=I11 microRNA
n=27 microRNA
n=28 microRNA
n=48 microRNA
n=8 Gene
n=14 Gene
n=7 Gene

2. Materials and Methods

2.1. Microarray Data. Three gene expression profiles
(GSE55945, GSE60329, and GSE103512) and four miRNA
expression profiles (GSE26367, GSE64333, GSE21036, and
GSE54516) were obtained from the Gene Expression Omnibus
(GEO, http://www.ncbinlm.nih.gov/geo). The profiles based
on PCa cell lines or xenograft models were excluded; thus,
only PCa patients and healthy controls were preserved in
this study. Every included dataset contains more than ten
PCa samples and normal prostate tissues. The characteristics
of these profiles are shown in Table 1.

2.2. Data Processing. We performed the comparison on the
two groups of samples (PCa versus normal prostate tissues)
in each GEO dataset to identify differentially expressed genes
(DEGs) and differentially expressed miRNAs (DEMs). The
comparison was launched by a limma R package based
online program, GEO2R (http://www.ncbi.nlm.nih.gov/geo/
geo2r/). The adjusted P value (adj. P value) from the
Benjamini-Hochberg method could correct the false positive
results. So we chose the “adj. P value<0.05” and “|logFC[>1"
as a primary cut-off criteria to interpret the results. Among
the DEMs from the four datasets, only those appeared in two
or more datasets were considered as the significant DEMs.

2.3. Identification of miRNA Targets. The MiRWalk 2.0
database provides a large collection of predicted and exper-
imentally verified miRNAs-targets binding sites information
[10]. We downloaded the significant DEMs-mRNA intersec-
tion data from the MiRWalk 2.0-validated-target miRNA-
gene retrieval system, which contains all literature-reported
miRNA-target genes. However, the validated target genes
were from various diseases models, so the expression of those
genes in PCa might not be consistent with other diseases.
We subsequently selected the genes from the intersection
between the significant DEMs-mRNA intersection data and
the DEGs from the three GEO datasets. These genes were
defined as the significant DEGs.

2.4. Functional Enrichment Analysis. The Database for Anno-
tation, Visualization, and Integrated Discovery (DAVID)
is an online program that offers functional annotation of
enormous quantity of genes derived from various genomic
resources [11]. We used the DAVID database to perform
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis on significant DEGs. The

species was limited to Homo sapiens and the “P value <0.05”
was considered statistically significant.

2.5. Interaction and Regulatory Network Establishment.
Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING) was used to construct protein-protein interaction
(PPI) network. The STRING database collects and predicts
interaction information from genomic context predictions,
high-throughput lab experiments, coexpression, automated
text-mining, and previous knowledge in databases [12].
To access more objective and reliable results, we restricted
the sources as high-throughput lab experiments and
previous knowledge in databases. In addition, the minimum
interaction score was set at high confidence (0.700).

The miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) is
a miRNA intersection database based on validation from
experiments such as assay, microarray, sequencing quantita-
tive PCR, and western blot. The miRanda algorithm from the
“microRNA.org-Targets and Expression” was freely available
and can be applied to the whole genome sequences using
identified miRNA sequences [13]. The two programs above
were used to predict target mRNAs of the significant DEMs.
When two miRNAs shared a common target mRNA; they
might exist in a similar regulatory pathway. The miRNA-
mRNA regulatory network was visualized by Cytoscape 3.6.0
[14].

2.6. Validation and Survival Analysis. The Cancer Genome
Atlas (TCGA) database provides abundant clinical informa-
tion from huge sample size. Therefore, the dataset “TCGA-
PRAD” was used to find if the significant DEMs were cor-
related with survival outcome. The dataset “TCGA-PRAD”
consists of 498 PCa samples with 52 normal prostate sam-
ples. Among the 494 clinical outcome events available, 484
patients were living and 10 were dead when the follow-
up ended. We examined the significant DEMs expression,
relationship with PCa stages, and survival. The “t-test” was
applied to check expression level, while the chi-square test
was used on different stages. The Kaplan-Meier plots were
constructed by OncomiR [15]. The “P value <0.05” was
considered statistically significant.

3. Results

3.1. DEGs/DEMs Identification. After being compared with
normal prostate tissues, the results of GEO2R analysis
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FIGURE I: Venn diagram of DEM/DEG selection in different datasets. (a) DEMs; (b) upregulated DEGs; and (c) downregulated DEGs.

showed that there were totally 2333 upregulated DEGs (Fig-
ure 1(b)), 1188 downregulated DEGs (Figure 1(c)), and 193
DEMs (Figure 1(a)) in PCa samples. Among them, 26 DEMs
appeared in the results of two datasets at least, so they were
identified as significant DEMs. Additionally, miR-183 was the
only DEM in all four datasets simultaneously. The following
DEMs were found in three datasets: miR-96, miR-375, miR-
143, miR-1, and miR-145.

By MiRWalk 2.0-validated-target miRNA-gene retrieval
system, we got 4475 candidate genes of the 26 significant
DEM:s. The intersection number of these candidate genes and
the upregulated DEGs was 633. For the downregulated DEGs,
261 genes were intersected with the 4475 candidate genes.
Therefore, the 633 upregulated and the 261 downregulated
genes were identified as the final sets of significant DEGs.

3.2. GO and Pathway Enrichment. The GO ontology contains
three terms: cellular component (CC), molecular function
(MF), and biological process (BP). The results demonstrated
that the most significant GO terms for upregulated significant
DEGs were “protein binding (MF)”, “nucleoplasm (CC)”, and

“poly(A) RNA binding (MF)”, whereas for the downregulated
significant DEGs, “extracellular matrix (CC)”, “cell surface
(CC)”, and “protein binding (MF)” turned to be important
(Table 2).

Furthermore, the KEGG pathway analysis indicated that
“prostate cancer”, “TGF-beta signaling pathway”, “INF sig-
naling pathway”, and “focal adhesion” pathways played an

essential role in PCa pathogenesis (Table 2).

3.3. PPI Network. PPI networks were established separately
by significant upregulated DEGs (Figure 2(a)) and significant
downregulated DEGs (Figure 2(b)). In respect of the former,
294 nodes and 926 edges in total constituted the PPI network.
In regard to the latter, the network was composed of 93 nodes
and 153 edges.

In a PPI network, the more edges a gene has, the more
important role it plays (like a seed). We used the parameter
“degree” to calculate edge counts of every single gene in a
PPI network. The top 5% degree genes were listed in Table 3,
which were assessed as hub genes.
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TABLE 2: Results of top 10 gene ontology (GO) categories and the top 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis.

Category Term Description Gene counts P-value

Up-regulated gene
GO:0005515 MF protein binding 416 1.40E-20
GO:0005654 CcC nucleoplasm 164 5.20E-14
GO0:0044822 MF poly(A) RNA binding 88 1.80E-12
G0O:0005829 CC cytosol 180 3.00E-12
GO0:0005913 CcC cell-cell adherens junction 40 3.20E-12
GO0:0098641 MF cadherin binding involved in cell-cell adhesion 37 4.00E-11
G0:0070062 CC extracellular exosome 153 2.50E-10
GO:0005634 CC nucleus 252 3.10E-10
GO0:0098609 BP cell-cell adhesion 33 1.40E-09
GO:0005737 CC cytoplasm 237 1.90E-08
hsa05215 KEGG Prostate cancer 14 4.10E-05
hsa04350 KEGG TGE-beta signaling pathway 11 1.80E-03
hsa05202 KEGG Transcriptional misregulation in cancer 16 2.80E-03
hsa05210 KEGG Colorectal cancer 9 3.00E-03
hsa04910 KEGG Insulin signaling pathway 14 3.30E-03

Down-regulated gene
GO0:0031012 CcC extracellular matrix 23 2.20E-10
GO:0009986 CcC cell surface 28 1.30E-08
GO0:0005515 MF protein binding 170 1.00E-07
G0:0005925 CC focal adhesion 22 1.70E-07
GO:0030198 BP extracellular matrix organization 16 2.30E-07
GO0:0005578 CcC proteinaceous extracellular matrix 17 1.30E-06
GO0:0007155 BP cell adhesion 22 4.80E-06
GO0:0045944 BP positive regulation of transcription from RNA polymerase II promoter 34 8.30E-06
G0:0008201 MF heparin binding 12 2.40E-05
GO0:0030574 BP collagen catabolic process 8 4.30E-05
hsa04668 KEGG TNF signaling pathway 12 3.30E-06
hsa04510 KEGG Focal adhesion 16 4.80E-06
hsa05205 KEGG Proteoglycans in cancer 15 1.60E-05
hsa05144 KEGG Malaria 2.50E-04
hsa04064 KEGG NF-kappa B signaling pathway 8 1.00E-03

BP: biological process; CC: cellular component; MF: molecular function

3.4. MiRNA-mRNA Regulatory Network. As demonstrated
in Figure 3, the target genes were predicted by miRanda
and miRTarbase, among which two or more miRNA might
target the same mRNA. For instance, miR-1, miR-145, miR-
143, miR-205, and miR-31 all had interactions with cyclin
dependent kinase 4 (CDK4). There were 21 mRNA nodes
which might interact with more than two miRNAs.

3.5. Validation and Kaplan-Meier Curves. After comparing
the expression level of miRNAs in the TCGA dataset, we
found that 23 among the 26 significant DEMs were in
accordance with the results in GEO databases. However,
the expression of miR-1, miR-519b, and miR-572 was not
significantly different between PCa samples and normal
control prostate tissues. The relationship of miRNAs between
the clinical TNM stages was also tested in the TCGA dataset
using chi-square analysis. The results of the significant DEMs
were shown in Table 4.

We subsequently drew Kaplan-Meier plots (Figure 4)
based on the TCGA survival data. Four significant DEMs,
miR-95, miR-23b, miR-143, and miR-183 were found related
to overall survival (OS) in PCa patients. The higher expres-
sion of these miRNAs meant poor OS in patients with PCa.

4. Discussion

In the present study, we identified 26 significant DEMs,
633 upregulated DEGs, and 261 downregulated DEGs. The
results of functional enrichment analysis indicated that the
significant DEGs were related to TGF-beta signaling pathway
and TNF signaling pathway in PCa. The key DEGs such as
HSPAS, PPP2R1A, CTNNB1, ADCY5, ANXAL and COL9A2
were found as hub genes in PPI networks. Importantly, some
of the DEMs were validated and found correlated with tumor
stages and survival, which meant the miRNAs could not only
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FIGURE 2: PPI network of DEGs. (a) Upregulated DEGs and (b) downregulated DEGs.
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TaBLE 3: The top 5% hub genes in the protein-protein interaction (PPI) networks.

Entrez Gene ID Gene symbol Full gene name Degree

Up-regulated gene
3312 HSPAS8 heat shock protein family A (Hsp70) member 8 40
5518 PPP2RIA protein phosphatase 2 scaffold subunit Aalpha 32
1499 CTNNBI catenin beta 1 25
8334 HISTIH2AC histone cluster 1 H2A family member ¢ 24
10921 RNPS1 RNA binding protein with serine rich domain 1 23
85236 HISTIH2BK histone cluster 1 H2B family member k 22
8970 HISTIH2B] histone cluster 1 H2B family member j 22
5878 RAB5C RAB5C, member RAS oncogene family 22
595 CCND1 cyclin D1 21
8301 PICALM phosphatidylinositol binding clathrin assembly protein 21
25977 NECAP1 NECAP endocytosis associated 1 21
51429 SNX9 sorting nexin 9 21
8349 HIST2H2BE histone cluster 2 H2B family member e 20
1026 CDKNIA cyclin dependent kinase inhibitor 1A 20

Down-regulated gene
111 ADCY5 adenylate cyclase 5 12
301 ANXAL1 annexin Al 1
1298 COL9A2 collagen type IX alpha 2 chain 10
1277 COLIA1 collagen type I alpha 1 chain 9

TABLE 4: Results of the significant DEMs expression validation and the relationship with PCa clinical stages in TCGA data.

MiRNA ID

Up-regulated in

P-value (t-test)

Clinical stages

P-value (chi-square)

hsa-miR-133a-3p
hsa-miR-133b
hsa-miR-143-3p
hsa-miR-145-3p
hsa-miR-148a-3p
hsa-miR-148a-5p
hsa-miR-153-3p
hsa-miR-182-5p
hsa-miR-183-5p
hsa-miR-187-3p
hsa-miR-204-5p
hsa-miR-205-5p
hsa-miR-221-3p
hsa-miR-221-5p
hsa-miR-222-3p
hsa-miR-222-5p
hsa-miR-224-5p
hsa-miR-23b-3p
hsa-miR-31-3p
hsa-miR-32-3p
hsa-miR-363-3p
hsa-miR-375
hsa-miR-550a-5p
hsa-miR-7-5p
hsa-miR-95-3p
hsa-miR-96-5p

normal
normal
normal
normal
tumor
tumor
tumor
tumor
tumor
normal
normal
normal
normal
normal
normal
normal
normal
normal
normal
tumor
tumor
tumor
tumor
tumor
tumor
tumor

8.93E-03
9.53E-07
1.10E-13
1.65E-07
7.67E-13
4.66E-10
4.12E-20
7.57E-16
1.56E-15
1.52E-10
2.62E-06
1.39E-02
6.18E-10
1.44E-05
5.76E-07
1.17E-04
2.31E-02
8.14E-03
3.97E-02
2.96E-03
1.18E-08
8.87E-13
1.08E-04
1.70E-03
8.29E-06
1.65E-15

pathologic T/ N status
pathologic T/ N status
clinical T/ M status
pathologic T/ N status
pathologic T status
pathologic T status
clinical T/ M status
pathologic T status/Clinical M Status
pathologic T/ N status
pathologic T status
pathologic T/ N status
pathologic T/ N status
pathologic T/ N status
pathologic T status/Clinical M Status
pathologic T status
pathologic T/ N status
pathologic T/ N status
pathologic N status

pathologic T/ N status
pathologic T status
pathologic N status/Clinical M Status

9.50e-09/ 1.32e-04
7.96e-07/ 8.83e-05
5.04e-03/3.70e-03
7.86e-07/ 1.49e-04
2.10e-03
4.30e-02
4.23e-03/ 3.06e-02
7.85e-03/ 1.25e-03
2.44e-03/ 1.77e-02
1.17e-02
4.10e-07/ 3.70e-04
5.69e-03/ 5.19¢-03
4.71e-09/ 2.77e-04
1.37e-03/ 4.81e-02
5.62e-04
9.60e-03/ 3.24e-02
3.29e-03/ 3.81e-02
2.92e-02

4.28e-02/ 2.03e-03
7.17e-03
4.72e-02/ 5.81e-03




BioMed Research International

7"31 hsa-miR-

hsamiRf148a-Bp

W
hsa- mlm\
~ CDKNTA

|R@£‘
hsa-miR-187-3p

BCL2L1

R-32-5

hsa—mlR—1

hsa-miR-375

PAK4

PN

AD

6
é\ /1L1 hsa;miR-95
-—‘__-'_'-—.-__

DKN1B

: CT -
hsa-miR4224-5p “
1 CHUK,
T5

hsa*miR-550a-5p

1825p
VASF
-

hsajmiR-31-5p

hsa-miR-96-5p

hsa7§-204-5p

RAB40B

FAM3C CFTR

Round nodes: miRNA, square nodes: mRNA, green line: from mirTARbase, blue line: from miRanda prediction.

FIGURE 3: The miRNA-mRNA regulatory network.

regulate cellular process but also be of high value in clinical
practice.

In fact, prostate cancer shares a plenty of pathways
with other cancers such as TNF, TGF-beta pathways. Some
unique signal pathways like the androgen receptor (AR)
and transmembrane protease serine 2 (TMPRSS2) relevant
pathways also play a crucial role in PCa. In these compli-
cated processes, miRNAs nearly take part in all key cellular
pathways considering that one miRNA can interact with
many mRNAs and one mRNA can also interact with many
miRNAs. Interestingly, miR-183 was the only one significant
DEM expressed in all four different datasets. We assumed
that ethnics and sample size may cause this heterogeneity.
In accordance with our result, miR-183 has been testified
overexpression in PCa serum, tissue, and cell line [16]. Ueno
reported that miR-183 could target Dkk-3 and SAMAD4
and has an oncogenic biological behavior [17]. Due to the
paralogous property of miR-183, miR-96, and miR-182, these
three miRNAs have been studied as miR-183 cluster, which
could regulate zinc levels and carcinogenic pathways in
prostate cells [18]. MiR-96 was also reported enhancing

PCa cell proliferation through FOXOI1 [19], which could be
speculated in the PPI network (Figure 2(a)). Except for the
previously reported miRNAs, there are also some miRNAs
not reported in PCa before like miR-95. We found that
higher miR-95 expression indicated poor survival based on
494 patients in TCGA. However, we do not know if miR-95
is related to the survival of patients from other regions or
countries. The mechanisms and in-depth pathways of miR-
95 should also be investigated by experiments in the future.
By constructing the PPI network, we can recognize
the key genes that miRNAs may interact with. Since the
genes were filtered by the 26 significant DEMs potential
targets, there were still 633 upregulated and 261 down-
regulated. Therefore, when it comes to all the 197 DEMs,
the enormous and complicated miRNA-mRNA regulatory
network can be imaginable. The hub genes of a network are
always important like “seeds”, which connect different signal
pathways. In the present study, we identified several hub
genes. The regulating mechanisms HSPA8 were reported in
malignancies like glioblastoma and myeloid leukaemia [20,
21]. The PPP2R1A mutation in uterine cancer was reported
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FIGURE 4: The Kaplan-Meier plots of patients from TCGA data.

acting through a dominant-negative mechanism to promote
cancer cell growth [22]. Besides, emerging evidence points
out that the histone cluster is contributed to various kinds
of cancers [23]. As a phospholipid-dependent, membrane-
binding protein, the ANXAI1 upregulation can enhance drug-
resistance of PCa therapy [24]. In our predicted miRNA-
mRNA network, the key mRNAs like CDKNIA,B,C and
CDK4 are cell-cycle related modulators [25]. To sum up, the
miRNA regulatory network may provide potential targets
for new drug development and treatment. By exploiting the
bioinformatic analysis on miRNAs and regulatory pathways,
we can discover important and novel potential targets in the
tumor-genesis, diagnosis, prognosis, and key mechanisms in

different cancers such as lung cancer [26], gastric cancer [27],
colorectal cancer [28], and thyroid cancer [29].

Although this study firstly investigated miRNAs’ regula-
tory role in PCa by integrating multiple microarray datasets,
we still need to clarify some limitations. Firstly, the stages and
aggressiveness of PCa were not restricted. We only researched
the PCa versus normal prostate. Key miRNAs and genes in
different periods like metastatic castration-resistant PCa call
for deeper exploration. Secondly, the source of microarray
is only tissues. Body fluid like serum, urine, and prostatic
fluid may contain circulating miRNAs, which are more likely
to be accepted for clinical application. Thirdly, though we
validated our results in TCGA data, the microarray results
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were not validated by experiments like qRT-PCR, functional
experiments in vitro. Further studies are needed to validate
our results by experiments on large samples.

5. Conclusions

We identified 26 miRNAs that may take part in key pathways
like TGF-beta, TNF pathways in prostate cancer regulatory
networks. MicroRNAs like miR-23b, miR-95, miR-143, and
miR-183 can be utilized in assisting the diagnosis and prog-
nosis of prostate cancer as biomarkers. Further experimental
studies are required to validate our results.
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