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Major depressive disorder (MDD), which is highly associated with non-alcoholic fatty liver

disease (NAFLD), has complex pathogenic mechanisms. However, a limited number

of studies have evaluated the mutual pathomechanisms involved in MDD and NAFLD

development. Chronic stress-mediated elevations in glucocorticoid (GC) levels play an

important role in the development of MDD-related NAFLD. Elevated GC levels can induce

the release of inflammatory factors and changes in gut permeability. Elevated levels

of inflammatory factors activate the hypothalamic–pituitary–adrenal (HPA) axis, which

further increases the release of GC. At the same time, changes in gut permeability

promote the release of inflammatory factors, which results in a vicious circle among

the three, causing disease outbreaks. Even though the specific role of the thyroid

hormone (TH) in this pathogenesis has not been fully established, it is highly correlated

with MDD and NAFLD. Therefore, changing lifestyles and reducing psychological stress

levels are necessary measures for preventing MDD-related NAFLD. Among them, GC

inhibitors and receptor antagonists may be key in the alleviation of early and mid-term

disease progression. However, combination medications may be important in late-stage

diseases, but they are associated with various side effects. Traditional Chinese medicines

have been shown to be potential therapeutic alternatives for such complex diseases.

Keywords: chronic stress, MD, NAFLD, GC, inflammatory factors, gut permeability, TH

INTRODUCTION

Major depressive disorder (MDD) is characterized by loss of interest, difficulty in paying attention,
decreased appetite, and suicidal ideation, among other abnormal cognitive, behavioral, and social
functions, with low mood as the main symptom (1). Chronic stress is highly correlated with the
onset of MDD (2). With societal developments and acceleration of the pace of life, stress due to
various life pressures has significantly increased, leading to annually increasing MDD incidences.
It is projected that by 2030, MDD will be the leading cause of the global disease burden (3). Long-
term psychological stress plays an important role in initiating and mediating the occurrence and
development of many major diseases (4–6). Non-alcoholic fatty liver (NAFL) disease (NAFLD), a
clinicopathologic syndrome, is characterized by diffuse hepatic alveolar steatosis and fat storage in
liver lobules, with the exception of alcohol and other definite liver-damaging factors, including
NAFL and non-alcoholic steatohepatitis (NASH) (7, 8). However, the natural history of this
disorder is unknown (9, 10). Studies have shown that NAFLD has the risk of progression to cirrhosis
and cancer (11, 12). Not only is NAFLD the world’s most common chronic liver disease, but it has
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also become a common cause of other liver diseases (8).
Unfortunately, NAFLD and MDD mediate and promote the
progression of each other (13, 14). Interactions between these
diseases increase the complexity of pathomechanisms involved in
the pathogenesis of these two kinds of diseases. By analyzing and
summarizing social, clinical, and scientific literature, we elucidate
on the relationship between MDD and NAFLD as well as the
potential common pathogenic mechanisms. This review provides
a basis for clinical prevention and treatment of NAFLD.

CORRELATIONS BETWEEN MAJOR
DEPRESSIVE DISORDER AND
NON-ALCOHOLIC FATTY LIVER DISEASE

Depressive States Mediate Non-alcoholic
Fatty Liver Disease Occurrence and
Development
In a large study of relationships between psychological stress
and NAFLD, elevated stress levels were associated with a high
prevalence of NAFLD (15). This finding was confirmed in an
assessment of U.S. adults from 2007 to 2016 by Kim et al.,
who found that MDD patients were 1.6 to 2.2 times more
likely to have NAFLD, relative to those without MDD (16).
In a study involving 567 biopsy-confirmed NAFLD patients,
after adjusting for potential confounding factors, Youssef et al.
found that there was a dose-dependent relationship between the
severity of depressive symptoms and the degree of hepatocyte
swelling. Compared with non-depressed patients, subclinical
MDD patients were 2.1 times more likely to exhibit hepatocyte
swelling, while clinical MDD patients were 3.6 times more likely
(17). Meanwhile, mentally and intellectually impaired youth
are at a greater risk of liver steatosis development (18), and
more significantly, there is a significant correlation between
psychological distress and liver disease-associated mortality. In
their survey of 166,631 people, Russ et al. found that the
risk of liver disease-associated mortality significantly increased
with increasing General Health Questionnaire (GHQ) (a health
questionnaire consisting of 12 items) score, and they divided the
GHQ score into 0 (no pain), 1–3, 4–6, and 7–12 points. After
adjustment for age and gender, the risk ratio for the 7–12 group
compared with the 0 group was 3.48, while after adjustment
of health behaviors, socioeconomic conditions, and so on, the
hazard ratio reduced to 2.59 (19). Due to the complexities of
human disease mechanisms and other uncontrollable factors, the
processes involved in depression-induced NAFLD occurrence
and development should be evaluated in animal experiments.
Donkelaar et al. orally administered corticosterone in mice
for a long time to simulate a physiological stress state. They
found that the mice gained weight, their insulin sensitivity
was decreased, and they also exhibited depressive-like behaviors
(20). Liu et al. established chronic stress models by subjecting
mice to electric foot shock and restraint stress. They found
that chronic stress caused increased triglyceride (TG) and
total cholesterol (TC) levels while decreasing body weight,
visceral fat mass, microvesicular steatosis, lobular inflammation,
and ballooning degeneration (21). These studies show that

depression plays an important role in NAFLD occurrence
and development.

Non-alcoholic Fatty Liver Disease
Aggravates Depression
Depressive states mediate NAFLD occurrence and development,
while NAFLD aggravates depressive states. For example, in
a study of a large primary care team in Germany, Labenz
et al. found that NAFLD patients were more likely to suffer
from MDD than the control group without NAFLD. Therefore,
they considered NAFLD to be an independent risk factor for
MDD and anxiety (22). Weinstein et al. reported that NAFLD
patients had a significantly higher prevalence of depressive
disorders (27.2%) than controls (2%−5%) (23). These findings
have been validated by many studies. Filipović et al. found
that compared with those of healthy patients, NAFLD patients’
volumes of the brain, white, and graymatter reduced while lateral
ventricles increased. Moreover, the risk of cognitive decline,
cognitive impairment, and cognitive deficits was four times
higher in patients without NAFLD (24). In their assessment of
the relationship between MDDs, generalized anxiety disorders
(GADs), and NASH, Elwing et al. found that MDD and
GADs were more highly expressed in NASH patients than
in the control group. Moreover, the degree of steatosis in
MDD patients and inflammation grade as well as fibrosis
stage in GAD patients were higher than those of patients
without a diagnosis of mental illness (13). The hypothesis
that NAFLD aggravates depression has been verified in animal
experiments. To elucidate on the impact of liver disease onMDD,
Higarza et al. conducted preclinical evaluations in NASH animal
models to verify whether there were behavioral and emotional
changes. One of the studies used a forced swimming test to
evaluate depression-like rat behaviors; they found that NASH
rat models exhibited a lack of escape struggle compared with
the normal group, implying that NASH induces neurobehavioral
dysfunctions (25).

MUTUAL MEDIATION MECHANISMS
BETWEEN MAJOR DEPRESSIVE
DISORDER AND NON-ALCOHOLIC FATTY
LIVER DISEASE

Elevated Glucocorticoid Levels
The hypothalamic–pituitary–adrenal (HPA) axis is a
neuroendocrine axis composed of the hypothalamus, pituitary
gland, and adrenal gland. It plays a key role in regulating the
response of organisms to environmental changes (26). Stress
impulses are transmitted from the nerves to the brain and then
to the hypothalamus of the central nervous system (CNS).
They mainly act on the corticotropin-releasing factor (CRF)
in the paraventricular nucleus (PVN) of the hypothalamus.
CRF is synthesized by neurons dividing small cells in PVN
(27). As the main neurohormone that regulates the HPA axis, it
plays an important role in psychological stress (26). Synthetic
CRF enters the anterior pituitary through the pituitary portal
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system (28), whereby it binds the CRF1 receptor and initiates
signal transduction of protein kinase A (PKA) and protein
kinase C (PKC) to promote the synthesis and secretion of the
adrenocorticotropic hormone (ACTH) (26). ACTH stimulates
the adrenal cortex to secrete cortisol and release it into the blood
(28). Under normal physiological conditions, cortisol acts on the
hippocampus, PVN, and anterior pituitary gland; then, through
a negative feedback loop mediated by the glucocorticoid (GC)
receptor (GR), it inhibits the HPA axis, thereby suppressing
the synthesis and secretion of CRF as well as ACTH (29).
However, long-term psychological stress can lead to continuous
hyperactivity of the HPA axis and increases GC levels (30, 31).
Excess GC can damage cortisol receptors in the hippocampus
at the high position of the HPA axis, causing the HPA axis to
lose negative feedback regulation and, ultimately, leading to
a hyperactivated HPA axis that leads to abnormally high GC
levels (27).

Glucocorticoid and Major Depressive Disorder
Monoamine hypothesis, the most common hypothesis in
pathophysiology, describes the molecular mechanisms of
MDD. Most commonly used antidepressants have been
developed according to the monoamine hypothesis. This
hypothesis describes changes in 5-hydroxytryptamine (5-HT),
norepinephrine (NE), and dopamine (DA) in the synaptic cleft
(32). However, the current antidepressants developed on the
basis of this hypothesis have not achieved the desired results
(33). Therefore, the inflammatory mediator hypothesis (34) and
a series of neural-related hypotheses, such as the neuroplasticity
hypothesis/neurogenesis hypothesis (32), the neurotrophic factor
(NF) hypothesis (35), the neuron regeneration hypothesis (36),
and the neurosynaptic hypothesis, have been developed (37).
These hypotheses describe the complexity and heterogeneity
of MDD mechanisms. GC may be key to proving the existing
types of hypotheses and an important target for MDD treatment
(29, 38, 39).

GC exerts both anti-inflammatory and proinflammatory
actions. Body responses to GC depend on GC concentrations,
physiological states of the body’s immune systems, and
duration of stimulation (acute or chronic), among others
(40). GC regulates interleukin-1β (IL-1β), interleukin-6 (IL-
6), interleukin-6 (IL-8), nucleotide-binding oligomerization
domain-like receptor protein 3 (NLRP3), tumor necrosis factor-
α (TNF-α) and other inflammatory factors through the c-
Jun N-terminal kinase (c-JNK), extracellular-regulated protein
kinases (ERKs), phosphatidylinositol 3-kinase (PI3K), IκB kinase
(IκK), nuclear factor kappa-B (NF-κB), and signal transducers
and activators of transcription (STAT) pathways (41, 42).
Meanwhile, elevated GC levels can suppress 5-HT synthesis
by inhibiting the expressions of central tryptophan hydroxylase
2 (TPH2) (43) and can reduce NE synthesis (44). The HPA
axis, GC, and hippocampal volumes have been shown to
form a vicious circle in MDD patients: stress increases GC
levels, and increased GC reduces the hippocampal volume by
exerting negative effects on neuromorphologies (neuroplasticity
hypothesis) and/or neurogenesis of dentate gyrus (neurogenesis
hypothesis). The decrease in hippocampal volumes may lead to

the failure of negative feedback of the HPA axis. Then, GC levels
further increase, thereby aggravating the failure of the HPA axis,
leading to MDD occurrence (32).

Second, GR can reduce the expressions of brain-derived NF
(BDNF) by directly binding the restriction sequence upstream
of exon IV (exon IV) (45). In addition, GC causes neuronal
apoptosis and degeneration by affecting hippocampal neural
stem cells (NSCs) and neural precursor cells (NPCs) (46). GC-
regulated kinase 1 (SGK1) plays a key role inMDD. GC improves
SGK1 activities by increasing the phosphorylation of SGK1 at
serine 422 (Ser422) and threonine 256 (Thr256), leading to
phosphorylation of GR at Ser203 and Ser211, thereby affecting its
nuclear translocation and further leading to suppressed BDNF
synthesis (33). In addition, SGK1 is involved in the regulation
of the growth of dendrites (47), establishment of neuronal
plasticity (48), and neuronal excitement (49), which may lead to
MDD occurrence.

Glucocorticoid and Non-alcoholic Fatty Liver Disease
The pathogenesis of NAFLD has yet to be fully elucidated.
The “second hit” theory is a classic theory to describe its
pathogenesis (50). “The first hit” theory is centered on insulin
resistance (IR), involving liver steatosis caused by the imbalance
of fatty acid (FA) and TG metabolism in liver cells (51). “The
second hit” theory is mainly centered on oxidative stress (OS),
and it also involves liver inflammation, necrosis, and fibrosis
that are a result of inflammatory cytokine production, lipid
peroxidation, and mitochondrial dysfunction (52). Since the
“second hit” theory does not fully explain NAFLD pathogenesis,
studies have proposed the “multiple parallel hits” theory, which
involves IR, lipotoxicity, inflammation, genetic polymorphism
and epigenetics, adipokines, bile acid (BA), gut microbiota (GM),
and environmental and dietary factors, among others (53).
However, the “multiple parallel hits” theory cannot fully explain
the interrelationship between complex mechanisms and is only
considered to be a supplement to the original classic “second hit”
theory. Among them, GC may be key in implementing these two
theories (54).

First, GC is directly associated with IR. GC enhances the
phosphorylations of p38MAPK and c-JNK via the mitogen-
activated protein kinase (MAPK) pathway, induces the apoptosis
of islet B cells, and destroys glucose sensitivity, thereby
promoting gluconeogenesis. Its indirect products, ceramide
and diglyceride, can directly affect signal transductions in
pancreatic islets through PKC and PI3K pathways (55, 56). GC
has also been shown to directly act on nuclear receptors to
increase mRNA expressions of hormone-sensitive lipase (HSL)
and fatty TG lipase (ATGL) to promote lipolysis (57) and
increase concentrations of free FAs acids (FFAs) in the blood,
leading to IR. In addition, GC can significantly reduce insulin-
stimulated Akt phosphorylation by reducing protein expressions
of insulin receptor substrate-1 (IRS-1), PI3K/Akt, and protein
kinase B (PKB) (58). It also causes a decrease in expression
levels of glucose transporter 1 (GLUT1) protein and reduces
the translocation of insulin-stimulated GLUT4 (GLUT4) to the
plasma membrane, thereby reducing insulin-stimulated glucose
uptake (59), further leading to IR.
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Second, the increase in FFA caused by a high level of GC
induces the production of CYP2E1, a major enzyme in the
microsomal oxidation system. CYP2E1 is the main source of
reactive oxygen species (ROS), which is significantly increased in
NAFLD patients and is positively correlated with steatosis degree
(60, 61). This process may aggravate OS in the mitochondrial
environment and further damage organelle functions (62). In
addition, excessive release of stress-related corticosteroids can
promote peripheral blood leukocyte migration to liver tissues
and elevate proinflammatory cytokine levels, such as TNF-α and
IL-6. These activated inflammatory cells produce more ROS,
thereby exacerbatingOS, causing inflammation and liver necrosis
(63). Increased ROS activates NF-κB by directly interacting with
the small G protein p21ras, and then activating the signaling
pathways involved in transforming growth factor-β-activated
kinase-1 (TAK1), PI3K, and MAPK 1 (MEK1), which further
aggravates liver damage (12).

In hepatocytes, accumulated FFAs act as a danger-associated
molecular pattern (DAMP), which produces IL-1β and TNF-
α among others by activating the NALP3 inflammasome and
inducing lysosomal translocation of Bax (a porin that can trigger
lysosomal instability) to promote and maintain inflammation. At
the same time, excess FFA can mediate cell apoptosis via various
pathways, such as the intrinsic mitochondrial apoptotic pathway,
endoplasmic reticulum stress apoptotic pathway, lysosomal
apoptotic pathway, and proinflammatory cytokine apoptotic
pathway, further aggravating liver damage (62). In addition,
under stress conditions, hypothalamus-secreted GC can increase
gut permeability (64). Increased gut permeability is closely
correlated with NAFLD (see below for details).

The Destruction of Gut Microbiota
Human endogenous GM is an important “organ” that provides
nutrition, regulates epithelial development, and guides innate
immunity. Moreover, it plays an important role in health and
disease (65). GM, which is associated with the brain and liver, has
recently been correlated with theories of the gut–brain axis (66),
gut–liver axis (67), and gut–liver–brain axis (68).

Gut Microbiota and Major Depressive Disorder
In MDD animal models, chronic stress affected psychological
as well as physiological responses, disrupted the GM (69), and
increased gut permeability (70). Overgrowth of gut bacteria,
enhanced gut permeability, and bacterial translocation can all
lead to elevated lipopolysaccharide (LPS) levels (71–73). Toll-
like receptors (TLRs) are pattern recognition receptors for LPS,
which are widely present in cell membranes, cytoplasm, and
nucleus. TLRs play an important role as bridges in GM-mediated
inflammation (74) and are involved in various immune response
processes in the body, especially in inducing and promoting
inflammation (75). Compared with other TLR-like receptors,
activation of TLR4 triggers proinflammatory transcription via 2
adaptor proteins, myeloid differentiation factor 88 (MyD88), and
β-interferon-containing TIR domain adaptor protein (TRIF),
which induces the activation of NF-κB, AP-1, and IRF3 (76).
Activation of these transcription factors causes the release of
proinflammatory cytokines, including IL-1β, TNF-α, IL-6, and

CXCL10, and elevates cyclooxygenase-2 (COX-2) levels, resulting
in activated proinflammatory signals; please refer to the following
text in section Release of Inflammatory Factors and references
of the details for this content (76). These factors may directly
stimulate the HPA axis or inhibit the negative feedback loop
to make it upregulated, leading to the release of GC and
CRF (77–79). TLRs are expressed in peripheral immune cells
and in CNS cells, such as microglia, astrocytes, neurons, and
oligodendrocytes (80). Activation of TLR4 can shift microglia
polarization toward the M1 phenotype, thereby inducing
proinflammatory responses in the CNS (76), which in turn
leads to depressive symptoms (80). Astrocytes promote MDD
pathophysiology by enhancing serotonin reuptake; however,
their potential as TLR-expressing cells in MDD has not been
elucidated. Moreover, expressions of TLR4 in astrocytes have not
been conclusively determined (80).

IL-1, a GM-produced cytokine in the circulatory system,
induces the expressions of COX-2 in cerebrovascular cells
(81). It catalyzes the conversion of arachidonic acid (AA) into
prostaglandin G2 (PGG2) and further into prostaglandin H2
(PGH2) and then generates prostaglandins (PGs) under the
action of cell-specific synthetase (82). Due to their small size
and strong lipophilicity, PGs are able to translocate to the brain
parenchyma, and their induced synthesis in the brain is necessary
for IL-1 to activate the HPA axis (83). At the same time, GM
may also exert its effects on the brain through the tryptophan
metabolic pathway (84), which may be associated with the gut
inflammation state (85–87). When immune activation occurs,
inflammatory factors induce the activation of indoleamine-
2,3-dioxygenase (IDO), which exists in the periphery. Then,
levels of peripheral transient receptor potential (TRP) decrease,
and it crosses the blood–brain barrier (BBB) to enter the
brain. Meanwhile, the presence of proinflammatory cytokines
overactivates the IDO enzyme in the brain, leading to enhanced
TRP metabolism, which in turn causes TRP levels in the brain to
decrease (88, 89). TRP is converted to 5-hydroxytryptophan (5-
HTP) by TPH, which is the rate-limiting step in this pathway.
Aromatic amino acid decarboxylase (AAAD) then converts 5-
HTP to 5-HT (90). This pathway is closely associated with the
occurrence of depression (91, 92).

A high amount of serotonin is localized in the gut, where
it is synthesized from tryptophan in the enterochromaffin cells
(ECs) of the gastrointestinal tract. It is also present in enteric
nerves (84). The vagus nerve can transmit signals to the brain
via the paracrine mode (93), thereby triggering depression-like
behaviors. However, the specific mechanisms involved in this
process remain undefined.

Gut Microbiota and Non-alcoholic Fatty Liver Disease
First, GM participates in NAFLD pathogenesis by regulating BA
metabolic pathways (94). PXR can be activated by lithocholic
acid (LCA), a secondary metabolite of BAs. Transgenic mice
expressing a constitutively activated PXR exhibited hepatomegaly
and marked hepatic steatosis. Treatment of mice with a PXR
agonist elicited a similar effect (95). PXR-induced hepatic
steatosis has been attributed to a combination of several
mechanisms. First, PXR activation increases FA influx by
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inducing the expressions of FA translocase (FAT/CD36) in the
liver (95), while suppressing FA oxidation by preventing the
binding of Forkhead box A2 (FoxA2) to its target genes, such
as Cpt1a and Hmgcs2, which are involved in lipid oxidation
(96). BA can also bind CAR, an orphan nuclear receptor that
is mainly expressed in the liver and small intestines, but its
effects contrast with those of PXR. CAR agonist administration
significantly suppressed or reversed the adiposity gain induced by
carbohydrate-free diet (HFD) feeding in C57BL/6J mice without
affecting the lean mass. This reduced adiposity was associated
with improved serum lipid profiles and insulin sensitivity (97);
however, the specific mechanism has not been established (98).
BA can also bind S1P2R. S1P2R-associated activation of neurons
led to increased expressions of the proinflammatory chemokine,
CCL2, which in turn activated the microglia to secrete more
proinflammatory cytokines (99).

After BA stimulation, the L-cell membrane receptor, TGR-5,
can activate the accumulation of cytochrome c oxidase (COX)
and cAMP, increasing the ATP/ADP ratio and cell oxygen
consumption. BA promotes glucagon-like peptide-1 (GLP-1)
secretion by opening the voltage-gated calcium (CAV) and
closing the ATP-sensitive potassium channel (KATP) (100).
On the one hand, GLP-1 regulates liver lipid metabolism
by enhancing the expressions of FA oxidation genes (acyl-
CoA oxidase 1 (AOX1) and peroxisome proliferator-activated
receptor alpha (PPARα)) while inhibiting the expressions of
sterol regulatory element-binding protein-1c (SREBP-1C) as well
as stearoyl–CoA desaturase (SCD1) (101). On the other hand, it
may inhibit the release of inflammatory factors (102), reducing
endoplasmic reticulum stress (103) and OS (104) to improve IR,
inhibit lipid synthesis, promote FA oxidation, reduce liver cell
apoptosis, and further improve NAFLD. In the liver, activation
of FXR by BAs upregulates the short heterodimer partner (SHP)
and PPARα while inhibiting SREBP-1C, thereby suppressing the
synthesis of TGs and very-low-density lipoproteins (VLDLs),
while enhancing FA oxidation (105, 106).

GM can also affect the BA reabsorption pathway. Most of the
conjugated BA (taurocholic acid, glycocholic acid, etc.) is actively
reabsorbed by the apical sodium ion-dependent BA transporter
on the brush border side of the distal ileum gut epithelial
cells (ASBT), combined with ileal BA-binding protein (IBABP),
transported to the basement membrane, and reabsorbed by
the organic solute transporter (OST) α/β on the basolateral
membrane to the portal vein bloodstream, passing through
the basolateral hepatocyte sodium ion/sodium taurocholate
cotransport peptide (NTCP) uptake on the membrane (107).
GM inhibits the expressions of ASBT by stimulating the
GATA4 transcription factor (108) and Farnesoid X receptor–
SHP–fetoprotein transcription factor (FXR–SHP–FTF) cascade
reaction (109), thereby suppressing BA reabsorption. In adipose
tissue cells, TGR-5 promotes the conversion of T4 to T3 by
upregulating the expressions of type 2 deiodinase (DiO2), thus
accelerating metabolic rates in adipose tissues (110).

Second, GM overgrowth, enhanced gut wall permeability, and
bacterial translocation all lead to the secretion of large amounts
of LPS, which then enters the liver via the portal vein (71–
73). Secreted LPS binds LBP in serum, which transmits it to

CD14 to form a complex that then causes TLR4 dimerization via
MDD-2 and, finally, activates TLR4 (111–113). TLR4 is expressed
in various liver cells, such as Kupffer cells, liver cells, hepatic
stellate cells (HSCs), bile duct epithelial cells, hepatic sinusoidal
endothelial cells, and hepatic dendritic cells. Its activation
induces the activation of transcription factors, such as NF-κB,
AP-1, and IRF3, leading to the secretion of proinflammatory
cytokines, IL-1β, IL-6, and TNF-α, as well as CXCL10, and to
the upregulation of COX-2, thereby generating proinflammatory
signals and triggering a series of responses. The LPS/TLR4
signaling pathway has been shown to induce inflammation,
mediate OS, participate in IR and liver inflammatory damage as
well as fibrosis repair, and play a key role in NAFLD pathogenesis
(114). Kupffer cells are a type of macrophage that are located
in hepatic sinuses and have the ability to phagocytize, process,
and present antigens. Due to their special locations, they play an
important role in liver defenses. They can effectively phagocytize
pathogens entering via the portal vein and act as the first barriers
against bacteria and related toxins from the gastrointestinal tract
(115, 116). LPS, TLR4, and Kupffer cells play a key role in NAFLD
(73, 117). Multiple receptors are expressed on the surface of the
plasma membrane of Kupffer cells. LPS binds its receptor, CD14,
to activate Kupffer cells to release inflammatory mediators.
LPS can also bind TLR4 to activate NF-κB by causing calcium
overload in Kupffer cells (118). By stimulating Kupffer cells to
activate the TLR4 signaling pathway, LPS induces the secretion
of TNF-α, IL-1, IL-6, IL-12, and IL-18 in Kupffer cells (119, 120),
thereby triggering hepatic steatosis, IR, and hepatocyte apoptosis,
among others.

In addition, GM promotes the release of gastrointestinal
hormones through its metabolites (short-chain Fas, SCFAs),
thereby regulating IR and insulin sensitivity through its
transmembrane receptor G protein-coupled receptor 43 (GPR43)
and G protein-coupled receptor 41 (GPR41). These effects
induce an increase in intracellular Ca2+ and a decrease in
cAMP via the G protein pathway Gq/11 and Gi/o (121, 122).
GM disorders can also enhance the conversion of choline to
toxic methylamine and reduce phosphatidylcholine levels as
well as choline bioavailability in the blood. The liver can also
metabolize methylamine to trimethylamine N-oxide (TMAO),
which exposes the host to inflammatory toxic metabolites,
resulting in liver manifestations similar to those of a choline-
deficient diet (123, 124). Its metabolite, ethanol, can also promote
gut permeability and aggravate liver injury (125–127).

Release of Inflammatory Factors
Inflammatory cytokines, which are elevated in many diseases,
are involved in inflammatory responses. After treatment, TNF-
α levels in MDD patients have been found to be significantly
lower than before (128). Elevated IL-6 levels are significantly
positively correlated with psychological stress (129). IL-8 levels
have been positively correlated with depressive symptoms and
perceived stress, but negatively correlated with social support
(130). In a previous study, average plasma IL-18 levels for
patients with mental disorders were found to be 3.7 times
higher than those of the control group (131). In chronic liver
disease, elevated systemic levels of TNF-α are highly correlated
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with NAFLD severity (132), IL-6 levels are correlated with
the degree of liver inflammation (133), and IL-8 levels are
significantly correlated with NAFLD disease activity and fibrosis
severity (134). Significant correlations between IL-18 and alanine
aminotransferase (ALT), gamma glutamyltransferase (GGT), TG,
high-sensitivity C-reactive protein (hsCRP), and the degree of
liver steatosis have been reported (135). These findings suggest
that inflammatory factors in MDD and NAFLD have important
mediating roles, and they may be important links between
the two conditions. However, the current studies have mainly
focused on TNF-α and IL-6, with relatively few studies evaluating
IL-8 and IL-18.

Inflammatory Factors and Major Depressive Disorder
Currently, there are two types of inflammation hypotheses for
MDD. One is that MDD is the product of neurotoxicity and
neurodegeneration caused by inflammation, which is mainly
related to the tryptophan degradation product (quinolinic acid,
QUIN) and kynurenic acid caused by IDO activation. They can
destroy post-process components and lead to serious nerve cell
degeneration, including the death of hippocampal granular cells
and cerebellum meridians selective necrosis (136, 137). Another
hypothesis that emphasizes the power factor of stress states that it
can micro-damage neurons, resulting in reduced NF release and
enhancement of neuroinflammatory activities, and the induction
of depressive symptoms (34).

TNF-α can directly stimulate CRF and overactivate the HPA
axis, which in turn leads to the secretion of large amounts
of ACTH and GC (138). Besides, it prevents the cortisol–
GR complex from entering the nucleus by activating the JNK
signaling pathway. It also induces the NF-κB signaling pathway
to prevent the complex from binding to DNA, causing GR
resistance, expression decrease, or functional decrease (139),
which induces depression. Meanwhile, TNF-α affects CRF
activity of the central amygdala, increases the uptake of 5-HT
and NE in PVN (140), and causes the degradation of the 5-HT
synthetic rawmaterial-TRP by stimulating IDO (141, 142). At the
same time, levels of the degradation product (QUIN) increase,
which in turn suppresses NF while enhancing neurotoxicity
(143).Moreover, it induces depression by activating the serotonin
transporter (SERT) through the p38/MAPK pathway and by
suppressing 5-HT (144). TNF-α affects synaptic plasticity and
neuronal atrophy by inhibiting negative feedback regulation
of the HPA axis through the JNK, P38, and NF-κB signaling
pathways. However, the specificmechanisms related to apoptosis,
survival, and MDD induced by these pathways and relationships
with TNF-α concentrations should be evaluated further (145–
147).

Since TNF-α and interferon-γ (IFN-γ) as well as other
inflammatory factors can induce the synthesis and secretion of
IL-6 (148), IL-6 can play a similar role to TNF-α by excessively
activating the HPA axis (138) and stimulating IDO activation to
degrade tryptophan and hinder the synthesis of N-acetyl-5-HT
and melatonin (148). Detailed mechanisms have been previously
described (149, 150). IL-6 can play both anti-inflammatory
and proinflammatory functions. It exerts its anti-inflammatory
effects by binding receptors on cell membrane surfaces. This

process is referred to as classical signal transduction, but
it only occurs on certain subsets of T cells, hepatocytes,
megakaryocytes, neutrophils, and monocytes. When the soluble
form of IL-6 receptor (sIL-6R) is detached from membrane-
bound receptors and binds IL-6, it can be transported to any type
of cells expressing membrane-bound glycoprotein 130 (gp130)
to produce proinflammatory signals. This process is referred
to as anti-signal transduction. In these two signal transduction
processes, the IL-6/IL-6R/gp130 complex activates intracellular
signal transduction through the JAK/STAT pathway and the
MAPK pathway (151).

Inflammatory Factors and Non-alcoholic Fatty Liver

Disease
TNF-α is highly correlated with IR. It was the first
proinflammatory factor to be associated with IR (152). It
can inhibit IRS-1 tyrosine phosphorylation and downstream
signal transduction by suppressing GKAP42 levels (153) and
further inhibit GLUT4 translocation (154, 155), thereby inducing
IR. It also induces the expression of Suppressor of Cytokine
Signal Transduction 3 (SOCS3) to inhibit its downstream
signals, JAK and STAT3, leading to IR (156, 157). In addition,
it can damage adiponectin multimerization and, consequently,
decrease adiponectin secretion by altering disulfide bond
modification in the endoplasmic reticulum and increasing the
sensitivity of hepatocytes to insulin (158).

Second, in addition to causing IR, TNF-α can also promote
cell damage and apoptosis. After TNF-α binds its receptor
(TNFR), it interacts with tumor necrosis factor receptor-related
protein and death domain (TRADD), tumor necrosis factor
receptor-related factor 2 (TRAF2), and receptor-interacting
protein (RIPK). Together, they form TNF-α-induced signal
complex I (complex I) and activate the NF-κB signaling
pathway to form a proinflammatory and anti-apoptotic pathway
(147), which may be affected by the IκK complex, pyruvate
dehydrogenase kinase 4 (PDK4), and regulation of p65 to
promote apoptosis (159, 160). Besides, if TRADD, TRAF2,
and RIPK are separated from their receptors, they recruit fas-
related death domain protein (FADD) and precaspase-8 (Caspase
8) to form a TNF-α-induced signal complex II (complex II),
which in turn binds ROS regulatory factor 1 (Romo1) located
in the mitochondria and recruits Bcl-xl protein to reduce the
mitochondrial membrane potential and to activate ROS as well
as JNK to promote cell apoptosis (147, 159). The mechanisms
involved in the activation of the JNK signaling pathway and
NF-κB pathway have been previously described (161).

In addition, TNF-α can also induce liver steatosis by inhibiting
the activity of AMP-activated protein kinase (AMPK), activating
SREBP-1c, and upregulating the expression of acetyl-Coenzyme
A carboxylase (ACC) as well as FA synthase (FAS). These effects
lead to increased FA synthesis and excessive accumulation of
TG, which results in liver steatosis and direct induction of lipid
accumulation in HepG2 cells (162, 163).

As mentioned earlier, TNF-α can induce the production
and secretion of IL-6, which may associate with TNF-α to
cause diseases and aggravate NAFLD (163). IL-6 has also been
associated with phosphorylation of STAT3, ERK, and JNK to
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indirectly induce changes in AKT and mTOR-S6K signals.
Suppressed IL-6 inhibits the phosphorylations of STAT3, ERK,
and JNK and reverses the decline in p38 phosphorylation (164).
Activated JNK, STAT3, ERK, and AKT signaling pathways are
involved in IR and apoptosis (165–167). However, IL-6 has also
been shown to play protective roles in chronic liver disease, and
blocking IL-6 signaling can improve IR as well as liver damage
(168, 169). These contradictory outcomes may be associated with
the two contrasting pathways involved in IL-6-mediated anti-
inflammatory and proinflammatory effects. However, studies
should aim at elucidating these outcomes.

Changes in Thyroid Hormone Levels
Thyroid Hormones and Major Depressive Disorder
Alterations in the HPA axis and hypothalamic–pituitary–thyroid
(HPT) axis are important neuroendocrine abnormalities in
MDD. However, their associated mechanisms have not been
established, and there is no unified theory on the relationship
between MDD and thyroid hormone (TH) levels (170).

Most studies report that the prevalence of subclinical
hypothyroidism (SCH) and obvious hypothyroidism in MDD
patients is higher than that of the general population. About
4–40% of patients with affective disorders have SCH (171,
172), and the prevalence of SCH in female MDD patients is
about twice that of males (173). However, some studies have
reported contrasting conclusions to the effect that there is no
correlation between SCH and depression (174, 175). Other
studies have documented that the prevalence and incidence
of hypothyroidism or hyperthyroidism in patients with severe
MDD are higher than those of the general population (176).
In addition, contradictory conclusions have been reported with
regard to other aspects. For instance, some studies claim that
the correlation between MDD and SCH risk is more obvious in
people aged over 50 years (172), while another study reported
that it is associated with younger patients (<60 years old), but
not elderly patients (177).

Geography (178), diet (179), personal habits (180), depression
scale scores, thyroid-stimulating hormone (TSH) ranges, and
other indicators do not have a unified standard, which may lead
to differences in results. Since 17.6% to 30% of patients with overt
thyroid disease were reported to have SCH due to inadequate
therapy, SCH or mild thyroid dysfunction in patients with MDD
should be paid more attention to in clinical practice (171).

Thyroid Hormones and Non-alcoholic Fatty Liver

Disease
Hypothyroidism is closely associated with NAFLD (128,
181, 182). Hypothyroidism is a metabolic disease that is
characterized by decreased serum TH and increased TSH
levels (183), which may be related to lipid metabolism, OS,
and mitochondrial dysfunction. Moreover, it mediates NAFLD
occurrence and development.

TSH can bind TSH receptor (TSHR) on the surface of
liver cells, mediate peripheral FFA into the cell through FA-
binding proteins (L-FABPs), FA transfer proteins (FATPs), and
FA translocators (FAT), and increase liver SREBP-1c activities
through the cAMP/PKA/AMPK pathway. TSH has also been

shown to increase liver gluconeogenesis and TG accumulation,
inhibit BA synthesis, and cause high cholesterolemia by
regulating the phosphorylation of HMG-CoA reductase (a
cholesterol synthesis rate-limiting enzyme) and the activity of
PPAR-α, thereby leading to NAFLD occurrence (184–187). The
remaining FAs are released into the blood in the form of
VLDLs and hydrolyzed by lipoprotein lipase (LPL) to become
low-density lipoproteins (LDLs). LDL binds LDLR receptor to
cell membranes and returns to the cytoplasm (188). TH can
increase the expressions and enzyme activities of LPL. Suppressed
TG clearance leads to accumulation of TG in the liver when
peripheral blood TH decreases, which in turn leads to NAFLD
(VLDL is rich in TG cholesterol, etc.) (188). In addition,
TH promotes FA catabolism through liver lipid phagocytosis
(autophagy of FAs in liver cells), transports lipids to lysosomes,
and stimulates β-oxidation (189). Other hormones such as leptin,
adiponectin, fibroblast growth factor-21, and sex hormones are
all related to TH (188, 190).

Effects of Obesity
Obesity is one of the most important public health challenges of
the 21st century, reaching epidemic proportions. It affects adults,
adolescents, and children of both genders (191). In addition to
the established medical comorbidities, obesity is also associated
with psychiatric challenges and the developments of many
diseases, including cardiovascular diseases, diabetes, obstructive
sleep apnea, NASH, osteoarthritis, andmobility-related disorders
(192). Nevertheless, the pathogeneses for these diseases have not
been fully established because these proximal mechanisms may
be seriously affected by more distal behavioral and psychosocial
factors (193).

Obesity and Major Depressive Disorder
With various studies establishing a link between obesity and
MDD, these conditions are bidirectional. The presence of one
increases the risk of developing the other. This may be related
to genetics, alterations in systems involved in homeostatic
adjustments (HPA axis, immuno-inflammatory activation, and
neuroendocrine regulators of energy metabolism such as leptin,
insulin, and microbiome), and brain circuitries integrating
homeostatic and mood regulatory responses (193).

Long-term HPA axis hyperactivation has also been found in
nearly half of adult obese persons (194). At a young age, an
almost 10-fold increased risk of obesity has been observed in
children with the highest long-term cortisol levels (195). This
is a result of chronic inflammation that is typical of obesity,
which may disrupt GR functioning. Proinflammatory cytokines
activate elements of the cellular transduction cascades that
impede GR nuclear translocation or interfere in GR interactions
with response elements in gene promoters (196).

Chronic low-grade inflammation is a hallmark of obesity.
White adipocytes infiltrated by macrophages and other immune
cells produce proinflammatory cytokines (197). This peripheral
immune activation can be translated via humoral, neural, and
cellular pathways (198) into brain inflammation, as indicated
by higher hippocampal and cortical expressions of cytokines in
obesity animal models (199, 200).
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The effects of leptin on moods may be exerted via different
pathways: direct action on neurons via receptors expressed in the
hippocampus and amygdala, enhancement of neurogenesis and
neuroplasticity in the hippocampus and cortex, and modulation
of the HPA axis and immune systems (201, 202). It has been
hypothesized that leptin resistance (peripheral hyperleptinemia
due to reduced central signaling) may constitute a phenotype
risk of depression (203). Alterations in regional cerebral
metabolism due to IR have been associated with memory and
executive function impairments as well as neuronal damage
in the hippocampus and medial prefrontal cortex (204, 205).
Therefore, it has been postulated that insulin dysregulation plays
a role in neuropsychiatric conditions such as dementia and
depression (206).

Microbiota of the gastrointestinal tract is emerging as a
key player in the pathophysiology of obesity. Alterations in
microbiota aremarkers of local inflammation, which can increase
gut permeability to bacteria that, in turn, contributes to the onset
and progression of systemic inflammation.

Obesity and Non-alcoholic Fatty Liver Disease
Obesity is a primary antecedent to NAFLD, which makes
them closely related (207). Up to 80% of NAFLD patients
are obese, and only 16% of individuals with a normal body
mass index (BMI) and without metabolic risk factors are obese
(208, 209). Obesity is aggravated by lipid metabolism, systemic
inflammation, intestinal microorganisms, and IR.

Fat accumulation in the liver is the first step in NAFLD
development. The higher the visceral fat content, the greater the
risk of metabolic abnormalities. Visceral adipose tissue (VAT)
has an abundant vascular and neural distribution than in other
parts, which makes its cell metabolism more active, sensitive
to sympathetic nervous system regulation, and produce more
FFAs (210). VAT is mostly found in mature and hypertrophic
adipocytes. Compared with the small adipocytes, their FFA and
TG uptake rates are low, which makes it easy to cause fat
deposition (211).

Excess FFAs and chronic low-grade inflammation from VAT
are two of the most important factors contributing to liver
injury progression in NAFLD. In hepatocytes, FFAs are bound
to coenzyme A as fatty acyl-CoAs to form hepatic TGs, which
stimulate the reduction of insulin-induced glucose uptake as
well as induce intracellular inflammation and IR (212, 213). The
hyperinsulinemia and hyperglycemia that occur with IR create an
imbalance in lipid input relative to output and promote hepatic
steatosis (214).

The associations between GM and the pathogenesis of obesity
as well as NAFLD have been reported (215–217). Onemechanism
is that colonic-derived SCFAs account for 10% of harvested
energy from the diet, with acetate (being mainly obesogenic)
being themain source of energy (218). Besides, acetate is themost
substantially absorbed SCFA and is a substrate for lipogenesis
and cholesterol synthesis in the liver and adipose tissue (219).
GM can also decrease intestinal expressions of the adipose tissue
LPL inhibitor fasting-induced adipose factor (FIAF). The net
result is increased uptake of FAs in the adipose tissues and

liver, favoring the expansion of the adipose tissue and hepatic
steatosis (215).

In addition, GM contributes to the development and
progression of NAFLD through several mechanisms: modulation
of intestinal permeability by promoting endotoxemia as well
as other microbe products that promote systemic and hepatic
inflammation; modulation of choline metabolism (required for
VLDL synthesis and export of lipids from the liver); generation of
endogenous ethanol as well as other toxic products such as toxic
compound TMAO; and modulation of BA homeostasis and FXR
functions (220).

CONCLUSIONS

There is a significant correlation betweenMDD and NAFLD, and
theymediate and promote each other, gradually forming a vicious
circle, which is particularly obvious in patients with MDD-
associated NAFLD. The most common biological feature for
MDD patients is that long-term life pressure and psychological
stress chronically elevated GC levels (33). Elevated GC can
directly induce MDD; for another, the indirect products of
inflammatory factors increase, and GM disturbance further
promotes and aggravates MDD and NAFLD.

Therefore, we postulate that chronic elevations in GC levels
may be key in the pathogenesis of MDD-related NAFLD.
Long-term psychological stress can induce the increase and
accumulation of GC. If not controlled, when GC concentrations
reach a certain level, they can induce the release of inflammatory
factors and change intestinal permeability (63). Elevated
inflammatory cytokines activate the HPA axis (86), which
elevates GC levels. Meanwhile, changes in gut permeability
further promote the release of inflammatory factors (80), causing
disease outbreaks. Changes in TH induce MDD and NAFLD,
although interaction mechanisms and causality between GC and
TH should be further studied (Figure 1).

Not only is MDD related to NAFLD, but it is also associated
with metabolic diseases such as diabetes. Since the concept
of “microbe–gut–brain axis” was first put forward in 2012
(221), studies have begun to pay attention to the relationship
between intestinal microbes and the brain. Mental disorders can
lead to abnormal glucose metabolism and increase the risk of
diabetes. However, diabetes can also directly or indirectly affect
the function of the CNS, leading to the emergence of mental
symptoms. Interactions between nervous system diseases and
metabolic diseases increase the risk of complications and early
death (222). This process may be highly related to the HPA axis
(223, 224), monoamine neurotransmitters (225, 226), immune
inflammation (227), cellular signaling pathway (228, 229), and
the metabolic pathway (230, 231), among others. However, the
specific mechanisms of action between the two systemic diseases
have not been clarified.

Currently, there is no good management strategy for the
cross talk between the two diseases. For example, the use
of psychotropic drugs, including antidepressants, lithium salts,
and antipsychotics, is associated with a higher prevalence of
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FIGURE 1 | Long-term psychological stress induces the increase and accumulation of glucocorticoid (GC). On the one hand, it induces non-alcoholic fatty liver

disease (NAFLD) by mediating liver transport of white blood cells and decomposition of fat cells. It also mediates major depressive disorder (MDD) occurrence by

elevating inflammatory factors, damaging neurons, and inhibiting the negative feedback of the hypothalamic–pituitary–adrenal (HPA) axis. It also affects intestinal

permeability and intestine flora, gradually leading to mutual promotions of NAFLD and MDD, causing disease outbreaks. Although more studies have shown that

hypothyroidism is more related to MDD, there is still a big divergence between thyroid function and MDD. Its specific mechanism, which causes MD through paracrine

mode, is still unclear. Similarly, the specific mechanism of MDD caused by intestinal flora through paracrine is not clear. Causal relationships between them should be

further studied.

diabetes, among which clozapine, olanzapine, and quetiapine
are correlated with the highest risks (232). If the patient has
increased blood glucose levels, other antipsychotic drugs should
be considered. In recent years, the integration of psychiatric
nursing in diabetes education clinics has been considered as
an effective management option for diabetes mellitus with
depression (233). However, this mode of management needs
further exploration.

In MDD-related NAFLD, we should prevent and treat
from the source by improving our lifestyles and reducing our
stress. Aerobic exercise is an effective way of stress reduction
(234). People who exercise regularly have a higher level of
mental health. Physical exercise can reduce work pressure and
improve job satisfaction and happiness (235). Aerobic exercise
has been shown to significantly improve serum ALT, aspartate

aminotransferase (AST), and NAFLD activity scores in NAFLD
patients and has a certain effect on TG (236, 237). In early
and middle stages of the disease, GC inhibitors or antagonists
may be key for the treatment of NAFLD. A few studies have
investigated this perspective, although treatment of NAFLD from
the perspective of GC has achieved significant effects (238). In
the middle and late stages of the disease, GC, inflammatory
factors, GM, and TH, among others, interact in a vicious
circle. Combination medication may be an optional treatment.
However, combined medications are associated with significant
side effects. To reduce these risks, there is a need to ascertain the
causal relationship between them as well as the dosage and order
of medication.

The development of traditional Chinese medicine (TCM)
has made it possible to treat complex diseases. In the TCM
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theory, the function of “liver governing free flow of qi” is an
important theory for maintaining MDD and NAFLD, which
involves the regulation of emotional response (nervous system)
and digestive function (digestive system). The liver regulates
the free flow of qi and prefers to act freely and dislikes
depression, which will be destroyed by emotional dysfunction
and cause qi stagnation, gradually leading to MDD. If liver qi
stagnates for a long time, it induces liver inflammation, which
leads to liver damage and then causes NAFLD development.
In clinical medication, MDD and NAFLD can be treated with
Sini powder (a prescription in TCM), which has been verified
by relevant experiments and has achieved good therapeutic
effects (239, 240). These outcomes may be highly related
to its multi-target and multi-path characteristics (241–243).
However, due to the complexities of TCM compounds and the
possibility of chemical composition changes after processing
(244), studies on Chinese medicine are challenging. We believe
that this challenge will be easily solved with advances in science
and technology.
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