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ABSTRACT

Pancreatic radiation effect (PRE) can be a component of gastrointestinal tract (GIT) radiotoxicity. This inter-
organ correlation between the GIT and the pancreas was assessed through a rat model. Separate local irradiation
to the abdomen and the pelvis was applied concurrently for 8-week-old male Sprague Dawley rats. Abdominal
irradiation was categorized into pancreatic shield (PS) and non-pancreatic shield (NPS) irradiation. After S Gy and
15 Gy irradiation, the rectal mucosa was analyzed at the first week (early phase, Ep) and the 14th week (late phase,
Lp). A slow gain in body weight was observed initially, particularly in the NPS group receiving a 15 Gy dose (P <
0.001). The large number of apoptotic bodies after 15 Gy at Ep decreased at Lp. At Ep for the S-Gy group, the
NPS group revealed more fibrotic change than the PS group (P = 0.002). Cleaved caspase-3 (CCP3) expression
was greater at Lp, and the Ep-Lp increase was prominent in the NPS-15-Gy group (P = 0.010). At Lp, for 15 Gy
irradiation, CCP3 was expressed more in the NPS group than in the PS group (P = 0.032). Despite no direct tox-
icity difference between the PS and NPS groups, small changes in parameters such as fibrosis or CCP3 expression
suggest that pancreatic shielding does have an effect on the radiation response in the rectal mucosa, which suggests

a need for a multi-organ effect-based approach in GIT radiotoxicity assessment.
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INTRODUCTION

The gastrointestinal tract (GIT) is the dose-limiting organ during
radiotherapy. Insufficient nutrition, caused by GIT toxicity, slows
down tissue recovery, which in turn slows down recovery of the
absorption of nutrients. One of the main factors related to GIT tox-
icity is the degree of mucosal damage, which is caused by loss of bal-
ance between damage and regeneration. Apoptosis and clonogenic cell
death can lead to cytokine-activated inflammatory reactions with per-
ipheral immune cell activation, depending on the degree of injury
[1-4]. However, clinical manifestations cannot always be explained by
these mechanisms. The tolerably administered dose for thoracic or
pelvic GIT is ~55Gy, with 1.8-2.0 Gy daily fractions, while it is
<50 Gy for upper abdominal GIT [S, 6].

This radiation vulnerability can be explained by the presence
of the pancreas, located at the center of the upper abdomen
[7-11]. From this perspective, pancreatic radiation effect (PRE)

needs to be considered in terms of inter-organ interaction. The
purpose of this study was to analyze the GIT radiotoxicity asso-
ciated with PRE in a rat model. First, we examined the validity of
the animal model through an experimentally devised shielding
system. Subsequently, rectal radiotoxicity was analyzed to con-
firm the concept of multisystem dysfunction between the pan-
creas and rectum.

MATERIALS AND METHODS

Animal preparation
Eight-week-old male Sprague Dawley rats (Daehan Biolink,
Eumseong, Korea) were housed with drinking water, a standard
SL79 diet (PMI Inc., St Louis, MO), control of the temperature
and humidity, and a 12-h light-dark cycle. Irradiation was per-

formed on the 7th day of the adaptation period post-arrival. The
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average body weight at irradiation was 250.9 + 8.4 g. The status of
rats was assessed by veterinarians, and all animal experiments pro-
ceeded after approval by the Institutional Animal Care and Use
Committee (Approval number: 000-150519-2).

Irradiation outline

X-rays of 6 MV were delivered using a linear accelerator (Elekta
Synergy, Elekta, Stockholm, Sweden). Three-dimensional planning
was performed using a computed tomography (CT) (Aquillion LB,
TSX-201A, Toshiba Medical Systems Corporation, Otawara, Japan)
scan. The beam was delivered by a postero—anterior (PA) and ante-
ro—posterior (AP) combination in the prone position on the plat-
form after the posture was set as straight from the neck vertebrae to
the tail. The dose rate was 3.6 Gy/min. During CT scanning and
irradiation, each rat was anesthetized via isoflurane inhalation using
a Small Animal Single Flow (O,) Anesthesia System (L-PAS-01,
LMSKOREA Inc., Seongnam, Korea) with thorough monitoring.
The rat position remained stable without a fixation device.

Irradiation in concurrence to pancreas and rectum
The experimental technique of irradiation in concurrence to pancreas
and rectum (iCPR) was devised to directly investigate whether rectal
toxicity was associated with PRE. Overall, the iCPR volume included
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both the upper abdomen and the lower pelvis area. Figure 1A indi-
cates schematic beam irradiation before shield application. During the
actual irradiation, a specially designed Cerrobend shield system was
applied to the upper abdominal area in order to reflect PRE, and
we distinguished into the pancreatic shield (PS) (Fig. 1B) and
non-pancreatic shield (NPS) (Fig. 1C) groups by the shape of the
shield block. A constant pelvic radiation field was maintained to
ensure a fixed rectal dose as the main object of toxicity analysis.

Irradiation planning
Following CT scan (2 mm-sliced), the major abdominal organs
(liver, stomach, bilateral kidneys, and pancreas) were delineated
using the Pinnacle3 planning system (Philips Healthcare, Andover,
MA) (Fig. 2A). The central part of the pancreas was contoured
from the level of the renal upper pole to eight slices upwards. The
pelvic contour was delineated from the anal verge to the 18th slice
upward, encompassing the whole rectum. The abdomino-pelvic
contour, as a substitute for the whole body, was delineated from the
diaphragm to the anal verge level. The thorax was excluded due to its
small volumetric impact. The NPS was set to a circular shape by homo-
geneous pancreatic contour expansion. The PS was derived as a ring-
shaped structure by additional expansion of the NPS margin (Fig. 2B).
The lower pelvic field was fixed to a 3.4 cm X 3.6 cm-sized open rect-
angular shape and the whole portal area was 3.4 cm X 12.0 cm. The
irradiation dose in planning was SGy and 15Gy with single
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Fig. 1. Schematic diagrams of rat irradiation method. (A) Irradiation in concurrence to pancreas and rectum (iCPR) without
shield. (B) iCPR with pancreatic shield. (C) iCPR with non-pancreatic shield.



fractionation, in the low- and high-dose groups, respectively. Thus, the
estimated dose to the rectum was 5 Gy and 15 Gy in the low- and high-
dose group, respectively. In the PS groups, the central dose to the pan-
creas was 0 Gy. In the 5 Gy-NPS and 15 Gy-NPS groups, the central
dose to the pancreas was 5 Gy and 1S Gy, respectively. After dosimetric
estimation for seven sample rats, the standardized prescription location
(mid-depth point of the upward 7th slice from the pelvic contour upper
margin) and monitor unit values for PA/AP portals (280/275 for § Gy
and 840/825 for 15 Gy) were derived. These conditions were applied
to the irradiation for rectal radiotoxicity analysis (Fig. 2C).

Validation
Gafchromic EBT3 film (Ashland, Bridgewater, NJ) dosimetry was
performed with a solid water phantom (RW3 Slab Phantom, PTW,
Freiburg, Germany) and an ion chamber (TM 30013, PTW,
Freiburg, Germany). The 6-MV X-ray beam was delivered

Pancreas (central portion)
Bilateral kidneys;

Body contour of pelvis including rectum!
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perpendicularly to the film with the following conditions: 2-cm
depth, 3.6-Gy/min dose rate, and 17-cm source-to-surface distance.
The iCPR was applied with 5 Gy irradiation followed by dose pro-
file confirmation for both PS and NPS (Fig. 2D).

Body weight and blood glucose measurement
Blood glucose level and body weight were measured at 0, 1, 5, 9 and
14 weeks after irradiation. Blood glucose was measured in rat tail ves-
sel blood, using a measurement kit (Accu-CHEK, Roche Diabetes
Care GmbH, Mannheim, Germany), with overnight fasting (18 h).

Tissue extraction
Rats were sacrificed at the end of the first week (early phase, Ep) and
end of the 14th week (late phase, Lp) after irradiation. The rectum
was excised from the area where the colon exits out of the periton-
eum into the anal area. The length before excision was ~3.5 cm,
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Fig. 2. An example of a pancreatic shield and radiation planning process using a technique of irradiation in concurrence to
pancreas and rectum (iCPR). (A) Postero-anterior beam’s eye view with contoured organs. (B) Actual radiation exposure
after shield system application; pancreatic shield (PS, left) and non-pancreatic shield (NPS, right). (C) Rendered images of
radiation planning for PS irradiation (left) and NPS irradiation (right) for postero-anterior/antero—posterior portals. (D)
Dose profiles of PS (left) and NPS (right) applied to solid water phantom.
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which was matched by the length of the longitudinal axis of the lower
pelvic field. The specimens were fixed in phosphate-buffered 10% for-
malin and axially sectioned at the mid-point for paraffin embedding.

Hematoxylin and eosin staining
Hematoxylin and eosin (HE) staining was performed on paraffin-
embedded tissue sections. Apoptotic bodies were counted in the
entire mucosal villi of a longitudinal shape on the cross section at
X400 magnification. The number of apoptotic bodies per 100 crypts
was defined as the apoptotic index (AI). Morphological guidelines
were as per previous representative studies [12, 13].

Picrosirius red staining
The degree of fibrotic change was estimated by the proportion of
fibrosis in the mucosal layer. The tissue section was stained by a

Table 1. Group classification for male Sprague Dawley rats
and their number allocation according to radiation dose,
pancreatic shielding, and time phase after irradiation

Group category Pancreatic  Non-pancreatic
shield shield
Early phase (1 week after irradiation)
S Gy 6 6
15 Gy 6 6
Late phase (14 weeks after irradiation)
S Gy 6 6
15 Gy 6 6

Picrosirius red (PR) kit (Polysciences, Inc., Warrington, PA)
using the single uniform red-based staining property contrasted
with the unstained glandular areas. The PR-positive proportion
(PR positivity) was quantitated using a computerized imaging
tool (NIS-Elements BR version 4.30, Nikon Instruments Inc.,
Melville, NY) with consistent intensity for each X100 magnifica-

tion image.

Immunohistochemical staining

The degree of apoptotic activity was estimated by immunohisto-
chemical (THC) staining for cleaved caspase-3 (CCP3) in the
mucosal layer. Following section deparaffinization and an an
antigen-retrieval for 60 min, endogenous peroxidase activity was
blocked by exposing the sections to an ultraviolet inhibitor for
4 min. After the reaction buffer washing, an Ultra View Universal
DAB Detection Kit (Ventana Medical Systems, Tucson, AZ) was
used for THC staining. The slides were incubated with monoclo-
nal antibodies against CCP3 (1:100, #9664, Cell Signaling
Technology, Inc., Danvers, MA) for 1 h at 37°C in an autostainer
(Benchmark XT, Ventana Medical Systems) and rinsed with the
reaction buffer. Drops of the following reagents were applied
sequentially to each slide (8 min per reagent), and rinsed again
with reaction buffer: HRP UNIV MULT, DAB H,0, and
COPPER (Ventana Medical Systems). The slides were subse-
quently treated with hematoxylin for 4 min, incubated with bluing
reagent for 4 min, and finally rinsed with reaction buffer. Negative
control sections were also processed to evaluate for the specificity
of primary antibody or background staining levels. CCP3-positive
cells were counted in the representative mucosal area on the
cross-section at X400 magnification. The number of CCP3-
positive cells per 100 epithelial cells in the crypts was defined as
the CCP3 positivity.

Table 2. Dosimetric comparison of mean doses of each contour volume for pancreatic shield (PS) and non-pancreatic shield
(NPS) groups in seven sample rats, with a 500-cGy prescription using postero—anterior/antero—posterior X-rays

Volume (ml)* Mean dose (cGy)* P value®
Pancreatic shield group Non-pancreatic shield group

Liver 8.51 £ 0.62 163.94 + 16.60 135.37 + 21.89 0.018
Stomach 3.78 £ 0.55 146.03 + 32.82 95.96 + 19.11 0.004
Right kidney 1.32 £ 0.13 127.87 £ 38.07 96.17 + 39.33 0.151
Left kidney 122 +£0.13 93.16 + 21.77 38.94 £ 15.51 <0.001
Pelvic contour® 36.93 +3.74 265.33 + 15.76 264.29 + 16.11 0.905
Abdomino-pelvic contour? 171.43 + 8.74 103.59 + 4.20 106.23 + 4.27 0.265
Pancreas 1.86 £ 0.23 53.33 £9.90 464.04 + 8.37 <0.001

*The values are shown as the mean =+ standard error.

bStudent ¢ test for mean doses of each contour volume, between the pancreatic shield and the non-pancreatic shield groups.
“The pelvic contour, including all pelvic organs and skin area, was delineated from the anal verge to the 18th slice location upward, with a 2-mm thickness.
9The abdomino-pelvic contour was delineated from the diaphragm to the anal verge level for integral dose assessment, as a substitute for the whole body, reflecting the

radiosensitive gastrointestinal area.



Quantification of mRNAs for inflammation-related
proteins
For quantitative polymerase chain reaction (QPCR) analysis, tissue
samples were acquired from the area adjacent to the rectal longitu-
dinal mid-point. Samples were rinsed with normal saline and stored
at —80°C. RNA was extracted using the RNeasy mini kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. The
reverse transcription reaction was performed with 100 ng of total
RNA using the ReverTra Ace® qPCR RT Master Mix with gDNA
Remover (Toyobo, Osaka, Japan). Amplification of cytokine genes
and 18s RNA was monitored and analyzed using the PowerUp™
SYBR Green Master Mix (Thermo Fisher Scientific Inc., Waltham,
MA) and the 7900HT Real-Time PCR System (Thermo Fisher
Scientific Inc.). The following primers were used: interleukin-6 (IL-
6) (Rn_II6_1_SG QuantiTect Primer Assay, Qiagen), nuclear fac-
tor (NF)-xB (Rn_Nfkbl 1 SG QuantiTect Primer Assay),
hypoxia-inducible factor (HIF)-la (Rn_Hifla 1 SG QuantiTect
Primer Assay), vascular endothelial growth factor (VEGF)-A
(Rn_RGD:619991 1 SG QuantiTect Primer Assay), and of the
endogenous control gene 18s RNA (Rn_Rn18s_1_SG QuantiTect
Primer Assay). PCR amplification was carried out through 10 pl
reactions, and at least three replicates were used for each sample.
Cycling parameters: 95°C for 10 min, followed by 45 cycles of 95°C
for 15 s and 60°C for 60 s. Single product generation was confirmed
with a melting curve analysis. Calculations of relative gene expres-

. : —AACt
sion levels were performed using the 2

method, by normaliz-
ing them to 18s RNA expression levels. A non-irradiated 8-week-old
male Sprague Dawley rat was used as a control object. Its rectum
tissue was extracted by the same method as for the irradiated groups

on the seventh day of the adaptation period post-arrival.

Statistical analysis

The dosimetric comparison of the irradiation planning for the PS
group and the NPS group was performed by Student’s t-test. The
parameters of comparison were as follows: body weight, blood glu-
cose, Al, PR positivity, CCP3 positivity, mRNA expression accord-
ing to dose (S Gy versus 15 Gy), pancreatic shielding (PS versus
NPS), and elapsed time (Ep versus Lp). For multiple comparisons,
data were assessed by One-way ANOVA. In each case, Bonferroni’s
method was chosen for the post hoc test to calculate P-values for the
significance of differences between groups. Analyses were conducted
using SPSS version 23 (IBM, Armonk, NY). A P < 0.05 was defined
as significant. For statistical analysis, six rats were allocated to each
group (Table 1).

RESULTS
Sample dosimetry of irradiation technique
According to the mean doses for each contour volume, PS showed
higher or equal dose distribution compared with NPS, except for
the pancreas. Pelvic and abdomino—-pelvic contours did not show a
mean dose difference between the PS and NPS groups (Table 2).

Nutrition status and body weight
After irradiation, the body weight gain slowed down at Ep. For the
NPS-15-Gy group, it was even reduced temporarily, leading to a
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significant gap compared with that of the NPS-S Gy-group (P <
0.001, filled stars in Fig. 3A). From the fifth week, the difference in
body weight rapidly increased. With the passage of time, the dose-
dependent difference in body weight was shifted from the NPS
group to the PS group: at the ninth week (P = 0.03S, empty stars
in Fig. 3A) and at Lp (P =0.046, filled circles in Fig. 3A). The
blood glucose level decreased markedly at Ep and it recovered grad-
ually after that.

Apoptotic index
By Ep, the number of apoptotic bodies had increased with few
inflammatory cell infiltrations, especially in the 15-Gy group
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Fig. 3. Changes in body weight (A) and fasting
blood glucose (B) after irradiation. Data represent
the mean and 95% confidence interval with six
samples. Pairs of filled stars, empty stars and filled
circles: P < 0.0S.
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(Fig. 4). By Lp, clear indications of recovery were observed. The
Al of the PS-5-Gy, NPS-5-Gy, PS-15-Gy and NPS-15-Gy groups
at Ep was 41.3 +11.0, 47.2 + 7.4, 127.8 +24.9 and 146.0 +
29.8, respectively. By Lp, the AI had decreased to 28.5 + 8.2,
32.5+10.2, 50.0+6.3 and 70.0+8.0 in the same groups,
respectively. In terms of the PRE, the AI tended to be high in
the NPS groups relative to the PS groups, although there was no
statistical significance.

Picrosirius red positivity
At Ep, PR positivity of the PS-5-Gy, NPS-5-Gy, PS-15-Gy and
NPS-15-Gy groups was 26.12 + 2.79%, 31.80 + 1.95%, 34.03 +
3.06% and 37.87 & 7.75%, respectively. At Lp, each value tended
to converge on ~37% (37.27 + 2.26%, 37.44 + 2.56%, 35.05 +
2.79% and 36.45 + 5.22% for the same groups) (Fig. 5). A dose-
dependent increase was shown in the PS-Ep group (P = 0.032,
filled stars in Fig. SI). An increase in PR positivity over time

20 1

No. of apoptotic body per 100

PS (Ep)

NPS (Ep)

PS (Lp) NPS (Lp)

Fig. 4. Apoptosis in rectal mucosa by hematoxylin-eosin stain. (A) to (D) Representative images of axial rectum tissue at the
first week (early phase, Ep) after irradiation are shown for pancreatic shield (PS)-5-Gy (A), non-pancreatic shield (NPS)-5-Gy
(B), PS-15-Gy (C), and NPS-15-Gy (D) groups. Black arrows, apoptotic bodies in the mucosa. Magnification, X400. Scale
bar, 25 pm. (E) Apoptotic index calculated by the number of apoptotic bodies per 100 crypts on axial rectal mucosa. The
images at the 14th week (late phase, Lp) were not displayed due to relatively rare apoptotic bodies with unclear differences
for each group. Data represent the mean and 95% confidence interval with six samples.
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occurred only in the 5-Gy groups (P < 0.001, empty stars and P Cleaved caspase-3 positivity

= 0.002, filled circles in Fig. SI), leading to no significant differ- At Ep, CCP3 positivity of the PS-5-Gy, NPS-5-Gy, PS-15-Gy and
ences between groups at Lp. It is noteworthy that the PS group ~ NPS-15-Gy groups was 1.30 + 1.06, 1.11 + 0.47, 2.58 + 0.81 and
showed less PR positivity than the NPS group did at Ep, after S 2.95 + 1.67, respectively. At Lp, each value tended to increase to
Gy irradiation (P = 0.002, empty circles in Fig. 5I). 2.55 +0.94, 2.90 + 1.99, 3.73 + 1.02 and 5.59 + 1.39 for the same

Fig. S. Fibrotic changes in rectal mucosa by Picrosirius red (PR) staining. Representative images of the axial rectum
tissue stained by hematoxylin-eosin (1), Masson’s trichrome (2), PR (3), and PR-stained area in a defined range of
the mucosal layer (4) are shown for each group at the first week (early phase, Ep) and the 14th week (late phase, Lp).
(A) Pancreatic shield (PS)-5-Gy-Ep group. (B) Non-pancreatic shield (NPS)-5-Gy-Ep group. (C) PS-15-Gy-Ep group.
(D) NPS-15-Gy-Ep group. (E) PS-5-Gy-Lp group. (F) NPS-5-Gy-Lp group. (G) PS-15-Gy-Lp group. (H) NPS-15-Gy-
Lp group. Magnification, X100. Scale bar, 100 pm. (I) PR positivity calculated quantitatively. Data represent the
mean and 95% confidence interval with six samples. Pairs of filled stars, empty stars, filled circles and empty circles:
P < 0.0S.
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Fig. 5. Continued

groups (Fig. 6). This time-dependent increase was significant, espe-
cially in the NPS-15-Gy group (P = 0.010, filled stars in Fig. 6I). In
terms of PRE, CCP3 positivity tended to be higher in the NPS
groups relative to the PS groups, especially in the 15-Gy group at
Lp (P = 0.032, empty stars in Fig. 61).

mRNA expression
In HIF-1a, VEGF-A and NF-kB, the expressions at Lp tended to be
less than those at Ep, with the same dose or PRE status. HIF-lo
(three pairs) had the greatest number of significant Ep-Lp decrease
pairs (Fig. 7).

DISCUSSION

The radiotoxicity of one organ can be influenced by the status of
simultaneously irradiated adjacent other organs [7, 8, 14]. PRE can
contribute to GIT toxicity [8, 10]. However, there have not been
sufficient follow-up studies investigating this due to the technical
difficulty in separately irradiating each organ in the abdomen.

Because of the anatomical location of the pancreas, it is challen-
ging to irradiate the upper GIT while avoiding exposure of the pan-
creas to radiation. Therefore, it is difficult to examine the effects of
pancreatic radiation on radiation damage in the upper GIT. In add-
ition, GIT toxicity can be aggravated by the proteolytic activity of
the pancreatic enzymes [15-17]. The rectum, which is free from
pancreatic enzyme influence and located far from the pancreas, was

PS (Lp) NPS (Lp)

estimated to be a valid organ for assessing the PRE in GIT radio-
toxicity. The iCPR method allowed for objectivity by targeting the
pancreatic enzyme-independent rectum, as an alternative option to
the pancreatic enzyme-dependent upper GIT. The PRE-unaffected
dose balance is another issue. Our dosimetric comparison between
the PS and the NPS showed the feasibility of maintaining the radi-
ation exposure volume in the area around the pancreas, regardless
of PRE.

Previous studies showed >25 Gy was required to induce rodent
GIT inflammation [18, 19]. This dose level may trigger secondary
reactions, making it difficult to establish a GIT toxicity model that
reflects the clinical situation. Difficulties are more pronounced in
pancreatic histologic change-related cases because the pancreatic
radioresistance is much higher [7, 20]. In addition, the dose level of
pancreatic histologic injury can result in the problem of unfair
assessment originating from a fundamental radiosensitivity differ-
ence between the GIT and the pancreas. Our apoptosis-dominant
dose level of 5-15 Gy was derived from seeking primary GIT tox-
icity without inflammatory reactions.

As expected in our study, there was no difference between
groups in the microstructure of the pancreas due to the histologic
radioresistance (data not shown). However, a relatively low-level
effect to the pancreas may disturb the systemic nutritional status.
According to Sarri et al. [21], 10 Gy irradiation to the entire rat
abdomen resulted in rapid normoinsulinemic hypoglycemia without
definitive pancreatic histologic change, which may imply impaired



insulin secretion from the islet cells. This hypothesis was applied in
our study, and PRE-related malnutrition may have influenced histo-
logic changes in the rectal mucosa.

The value of the serum amylase/lipase was measured in our
study. However, there were no differences between the experimental
groups (data not shown). There may have been undetected histo-
logical damage to the pancreas. Moreover, radiation injury in the
GIT may have affected the serum data. On CT-based simulation,
the dose exposure to the liver, stomach and left kidney was rela-
tively high in the PS irradiation group compared with that in the
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NPS group, even under well-balanced irradiation conditions
(Table 2). Despite the relatively low dose exposure to the liver,
stomach and left kidney in the NPS irradiation group compared
with the PS group, histological changes in the NPS group showed a
similar or more severe pattern in apoptosis and fibrosis compared
with those in the PS group, which indicates the validity of pancre-
atic dose differentiation by the iCPR method. A recent clinical study
revealed possible compromised serum amylase/lipase profiles due to
radiation. However, it may not be possible to generalize those
results, since the data in that study was confined to the amylase/

Fig. 6. Cleaved caspase-3 (CCP3)-positive cells by immunohistochemical staining. Representative images of the axial rectum
tissue are shown for each group at the first week (early phase, Ep) and the 14th week (late phase, Lp). (A) Pancreatic shield
(PS)-5-Gy-Ep group. (B) Non-pancreatic shield (NPS)-5-Gy-Ep group. (C) PS-15-Gy-Ep group. (D) NPS-15-Gy-Ep group.
(E) PS-5-Gy-Lp group. (F) NPS-5-Gy-Lp group. (G) PS-15-Gy-Lp group. (H) NPS-15-Gy-Lp group. Magnification, X400.
Scale bar, 25 pm. (I) CCP3 positivity defined as the number of CCP3-positive cells per 100 epithelial cells in the crypts. Data
represent the mean and 95% confidence interval with six samples. Pairs of filled stars and empty stars: P < 0.0S.
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Fig. 6. Continued

lipase profiles, and the radiation dose distributions in the abdominal
organs were not specified at all [11]. Consequently, at this time, the
most reliable parameter for PRE is dosimetric data.

With respect to body weight profile, there seemed to be a dose
dependency in the NPS irradiation group at Ep (Fig. 3A). Blood
glucose levels were non-specific to PRE, and there was no sign of
diabetes (Fig. 3B). This seems to be due to the fact that our radi-
ation dose level was not enough to affect the islet cells. Although
there was no direct difference in body weight or blood glucose
levels between the PS and NPS group, the changing patterns in
body weight according to radiation dose level indicated that there
were differences to some extent. This pattern was slightly similar to
the apoptotic body-related effects in HE staining. The relatively
severe toxicity of the NPS group in the strict comparative condi-
tions of the same rectal radiation dose may represent the PRE
impact on the rectal mucosa during its dose-dependent and time
course-related trend from Ep to Lp.

The convergence of PR positivity at Lp for all groups may be
explained by the increase in 5-Gy (low dose) groups from Ep to Lp
(Fig. SI). In a previous study of a similar situation, there was an over-
all increase in fibrotic changes, not only in the case of high radiation
dose but also with longer post-radiation follow-up time [22]. Fibrosis
is known to occur even with acceptably low doses [20], and it was
more prominent in the NPS group (Fig. SI). This PRE-related GIT

toxicity pattern was also confirmed for CCP3 positivity, especially in
the 15-Gy-Lp group (Fig. 6I). Interestingly, apoptosis-related
responses showed a conflicting time-dependent profile according to
the analyzing methods. The AI by HE staining increased at Ep and
decreased sharply at Lp, especially in the 15 Gy irradiation groups.
On the other hand, CCP3 positivity showed a continuous increase
until Lp. In the pathways of apoptosis, apoptotic bodies and CCP3
activation seem to be different from each other. This difference may
be caused by changes in gut bacteria, intestinal immune environment,
or other CCP3-associated tissue responses in the cell death regulation
system, and should be explained through further studies [23, 24].
Even though a histologic inflammatory reaction was not apparent, dif-
ferential expression of inflammation-related mRNA expression was
observed. The mRNA expression of HIF-1a, NF-xB and VEGF-A
tended to increase at Ep, and tended to decrease by Lp. This might
be related to the tissue recovery process, such as rectal mucosal
regeneration. Fundamentally, simple approaches such as apoptosis or
inflammation have limitations in radiation toxicity assessment. A
more appropriate approach is needed in order to reflect all the vari-
ous factors in the radiation toxicity analysis.

This study had some limitations. First, it was difficult to guaran-
tee that the planned radiation dose was transmitted to the pancreas
entirely, due to the respiratory motion in the abdomen. Targeted
radiation of the rectum and pancreas by precision small-animal
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Fig. 7. Relative mRNA expression (real time PCR using rat-specific primers) compared with one control subject at the first
week (early phase, Ep) and the 14th week (late phase, Lp) after irradiation for each group. (A) Interleukin-6 (IL-6). (B)
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irradiation platforms could help to determine more accurately the
role of the pancreas in rectal radiation toxicity in future studies.
Second, simple approaches such as the Al or CCP3 positivity had
limitations in estimating the essential effects of the pancreas in tox-
icity analysis. More sophisticated data need to be derived through
more diversified approaches in the future. Third, totally sham-
irradiated controls were not used in the current study. This is
because we focused solely on PRE under the precondition of rectal
radiation. However, the lack of sham-irradiated controls made it dif-
ficult to assess the severity of the rectal radiation toxicity more sys-
tematically. A follow-up study will require a more comprehensive
approach.

In conclusion, the iCPR method is feasible for assessing the
multi-organ effect in the clinical situation-simulating in vivo study.
PS irradiation is helpful in reducing the negative factors of GIT tox-
icity from the various perspectives of nutritional status, apoptosis,
fibrotic tissue recovery, and inflammation. Above all, it is note-
worthy that PS was associated with a tendency toward less toxicity,
despite the same rectal dose and more unfavorable dosimetric con-
ditions compared with NPS.
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