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Abstract

SARS-CoV-2 started causing infections in humans in late 2019 and has spread rapidly

around the world. While the number of symptomatically infected and severely ill people is

high and has overwhelmed the medical systems of many countries, there is mounting evi-

dence that some of the rapid spread of this virus has been driven by asymptomatic infec-

tions. In this study, we use a compartmental mathematical model of a viral epidemic that

includes asymptomatic infection to examine the role of asymptomatic individuals in the

spread of the infection. We apply the model to epidemics in California, Florida, New York,

and Texas, finding that asymptomatic infections far outnumber reported symptomatic infec-

tions at the peak of the epidemic in all four states. The model suggests that relaxing of social

distancing measures too quickly could lead to a rapid rise in the number of cases, driven in

part by asymptomatic infections.

Introduction

In late 2019, a novel coronavirus (SARS-CoV-2) began transmitting in humans in Wuhan,

China [1, 2] and has since spread widely around the world. The virus can cause a severe respi-

ratory illness, known as COVID-19, characterized by fever and cough that can lead to respira-

tory failure and death [3, 4]. The virus appears to spread easily from human to human [5, 6],

surviving well in aerosolized form and lasting for long periods of time on surfaces [7]. It has

also become increasingly apparent that asymptomatic or unreported cases are playing a role in

the rapid spread of the virus [8, 9].

A number of studies have investigated the possibility of asymptomatic carriers of SARS-

CoV-2 and have tried to estimate their number using isolated clusters of cases. One study esti-

mated that the asymptomatic proportion of SARS-CoV-2 infections on the Diamond Princess

cruise ship docked outside Tokyo while an outbreak spread onboard was *18% [10]. A study

of Japanese evacuees from Wuhan, China estimated the proportion of asymptomatic infections

at *30% [11]. A similar study of German nationals evacuated from Wuhan found 2 of the 114

evacuees were asymptomatically infected with SARS-CoV-2 [12]. Testing of every person in an

isolated Italian village revealed that 50-75% of people were asymptomatic [13]. Even in high-
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risk populations, there appear to be some asymptomatic cases. A study of a nursing home in

King County, Washington found *30% of patients were asymptomatic on the day of testing

for SARS-CoV-2, with *4% remaining asymptomatic upon followup a week later [14]. A

study in hospitalized patients in Beijing found that*5% of patients testing positive for SARS-

CoV-2 had asymptomatic infections [15]. While the exact proportion of asymptomatic infec-

tions is still unclear, these studies indicate that asymptomatic infections with SARS-CoV-2 are

not uncommon.

However, it is not enough that asymptomatic infections exist. In order for asymptomatic

individuals to spread the infection, they must be able to shed and transmit the virus to others.

There are some studies that indicate this might in fact be the case for asymptomatic infections

with SARS-CoV-2. Zhang et al. [16] report on a familial cluster of COVID patients initiated by

an asymptomatic individual. There is also a second case report of a different asymptomatic

individual infecting other members of his family [17]. A series of SARS-CoV-2 infections

among business associates in Germany was traced to a single pre-symptomatic individual [18].

In a more large-scale scenario, identification and rapid isolation of asymptomatic SARS-CoV-

2 positive individuals led to quick decline in the number of new cases in an Italian village [13],

suggesting that asymptomatic individuals were responsible for at least some of the spread of

the virus. This is supported by a modeling study of transmission in China that suggests that

*86% of infections were caused by asymptomatic or unreported cases [9]. These studies indi-

cate that asymptomatic individuals could be a factor in the spread of SARS-CoV-2 and should

be considered when predicting the scope of the epidemic and the effectiveness of mitigation

strategies.

Mathematical modeling investigations of the role of asymptomatics during an epidemic

have previously been done for other infectious diseases [19–26]. These models have estimated

the proportion of asymptomatic individuals [22, 23, 25, 26] and have shown how changes in

the proportion of asymptomatic individuals might change the course of the epidemic [19, 23,

24] or affect mitigation strategies such as quarantine [23] and vaccination [20, 21]. In the cur-

rent SARS-CoV-2 pandemic, isolation and social distancing are the primary weapons in stop-

ping the spread of the infection. In order to estimate how effective these strategies will be, we

will need a better understanding of the role of asymptomatic individuals in SARS-CoV-2

spread and the effect the proportion and relative infectiousness of asymptomatics have on the

time course of the epidemic.

In this paper, we study a compartmental epidemic model that includes asymptomatic infec-

tions to determine the role that asymptomatic individuals might play in the spread of SARS-

CoV-2. We find that the relative infectiousness of asymptomatic individuals has more of an

impact on the time course and size of the epidemic than the proportion of asymptomatic indi-

viduals, but that the proportion of asymptomatic individuals has a bigger impact on mortality.

We apply our model to data from SARS-CoV-2 epidemics in California, Florida, New York,

and Texas, finding that a large number of infections in these states are unreported and that

relaxing social distancing measures too early will cause a rapid spike in infections driven in

part by these hidden infections.

Materials and methods

Mathematical model

We use a compartmental model that includes asymptomatic infections with assumptions

geared towards modeling the current SARS-CoV-2 pandemic,
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where S is the pool of susceptible individuals, A are individuals infected asymptomatically, I
are individuals infected symptomatically, R are recovered individuals, and D are those who

have died. We assume that the course of the epidemic is short compared to the human lifespan

and do not include births or deaths from other causes, instead assuming that the total popula-

tion, N = S + A + I + R + D stays constant over the course of the epidemic. Upon exposure to

the virus, some fraction (given by p) of people become asymptomatically infected; the remain-

ing people become symptomatically infected. We assume that the asymptomatics can infect

susceptible individuals, but with a different infection rate, determined by the proportionality

constant r. We assume that asymptomatic individuals will all recover (after an average time 1/

k), but that symptomatically infected individuals are removed either through recovery or hos-

pitalization/isolation (at rate α) or die (at rate δ).

Data fitting

To apply our model to the current pandemic, we use four US states as examples: California,

Florida, New York, and Texas. We use data from the state health departments of California,

Florida, New York, and Texas that tracks the cumulative number of infected individuals and

the cumulative number who have died through April 17, 2020. Data is included in S1 File. We

assume that the epidemic starts with a single symptomatic individual, I(0) = 1 and that there

are no asymptomatic, recovered or dead (A(0) = R(0) = D(0) = 0). Since we do not know the

time at which the infected individual arrived to start each epidemic, we introduce a free

parameter, Td, to shift the data in time and set the appropriate start time of the infection. We

fix the death rate of symptomatic individuals to δ = 0.056/d based on mean time from symp-

tom onset to death [27]. Since our data includes the cumulative number of infected individu-

als, we define a variable C, where dC
dt ¼ ð1 � pÞ bN SI þ rSAð Þ tracks the cumulative number of

symptomatically infected individuals and fit that to the cumulative infected individuals. Early

in the pandemic, testing was primarily limited to individuals who displayed symptoms, so the

case count in this data set should primarily consist of symptomatic individuals. We simulta-

neously fit both the infected and dead to the model by minimizing the weighted sum of square

residuals (SSR) using the Nelder-Mead algorithm implemented in Octave. Confidence inter-

vals are determined through bootstrapping with 1000 replicates.

Results

Effect of asymptomatics on infection size and deaths

We explored the effect of asymptomatics on the course of the infection using a base set of

parameters given in Table 1. We used the population of the United States for the population

size and used estimates for the remaining parameters from the literature. Infections are
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initiated with a single symptomatic infected individual. The infection rate was taken from a

model fit to data of coronavirus infections from China [9]; they estimate infection rates before

and after travel bans and social distancing measures were put in place. We use both values in

our simulations. The mean time from symptom onset to death is 18 d [27] or δ = 0.056/d. We

use a removal rate of α = k = 0.143/d based on data suggesting the mean time from symptom

onset to hospitalization is 7 d [27]. Although many people who are hospitalized eventually

recover, once they are hospitalized they are not contributing much to widespread community

transmission.

To study the role of asymptomatic individuals in an epidemic, we varied both r (from 0 to

2) and p (from 0 to 1) and measured the case-fatality ratio, the size of the epidemic, and the

time of peak of the epidemic. The case-fatality ratio is defined as the number of dead divided

by the total number infected. The size of the epidemic is measured here as the proportion of

the total population who become infected, either symptomatically or asymptomatically.

Results are shown as contour plots in Fig 1 for both high (left column) and low (right column)

infection rates. We see that the relative infectivity (r) of asymptomatic individuals has little

effect on the case-fatality ratio, remaining essentially constant for all values of r except when p
is near one. In the upper left corner, there is a pocket where the mortality is zero; this is partic-

ularly evident for the lower infection rate. This pocket is more clearly defined for the epidemic

size and the time of peak. Both the epidemic size and the time of peak are fairly constant until

we approach the upper left hand corner where there is a rapid decrease in the epidemic size

and a rapid increase in the time of peak. This boundary defines a threshold for the epidemic—

above this boundary, the epidemic simply dies off. This boundary is determined by the basic

reproduction number R0 for the epidemic. R0 for this model is given by

R0 ¼
prb
k
þ
ð1 � pÞb
aþ d

: ð2Þ

R0 here has two components: the first term, Ra ¼
prb
k , represents spread due to asymptomatic

individuals, while the second term, Rs ¼
ð1� pÞb
aþd

represents spread due to symptomatic

individuals.

Estimates of the basic reproduction number for SARS-CoV-2 outbreaks in various locations

range from 0.5–4 [28], however, Fig 1 includes combinations of parameters leading to R0 val-

ues much larger than 4, so are likely biologically unrealistic. It might be more interesting to

understand the trade-off between the proportion of asymptomatic infections and the relative

infectivity in contributing to a particular value of R0. We fixed R0 to values within the known

range for SARS-CoV-2 and plotted the values of p and r that will produce particular values of

R0 for both the high (Fig 2 (left)) and low (Fig 2 (right)) values of infection rate. Solving for p

Table 1. Model parameters.

Parameter Value

N 320,000,000

β 1.12/d, 0.52/d a

δ 0.056/d b

k 0.143/d b

α 0.143/d b

a Taken from [9].
b Taken from [27].

https://doi.org/10.1371/journal.pone.0236976.t001
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Fig 1. Effect of asymptomatic individuals on case-fatality ratio (top row), size of the epidemic (center row), and time of peak of the epidemic (bottom row). The

left column shows results for a high infection rate and the right column shows results for a low infection rate. The relative infectivity of asymptomatics (r) has little

effect on mortality, but the mortality decreases as the proportion of asymptomatics increases. Both the time of peak and the size of the epidemic remain fairly constant

until the threshold for the epidemic is reached.

https://doi.org/10.1371/journal.pone.0236976.g001
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in the R0 equation gives the relationship between p and r,

p ¼
R0kðaþ dÞ � kb
rbðaþ dÞ � kb

: ð3Þ

When the infection rate is high, a high proportion of asymptomatics and low relative infectiv-

ity is required for low values of R0. The range of possible p and r values expands as R0 increases,

with the relationship indicating that higher values of p require higher values of r for a particu-

lar R0. When the infection rate is low, we see a slightly different relationship between p and r
for high R0—when R0 = 3, increasing r values require lower values of p for a particular R0. This

change in behavior occurs because we have crossed an asymptote at r = k/(α + δ) (*0.72 for

these parameters). Note that the R0 = 4 curve does not appear in this plot because there are no

biologically reasonable combinations of p and r that will result in R0 values of 4.

In the current COVID pandemic, public health authorities have been attempting to lower

the infection rate through social distancing measures, so we more closely examined the

dependence of the epidemic threshold on infection rate. Fig 3 shows the R0 = 1 (the epidemic

threshold value) curves for different values of infection rate (β). R0 < 1 is to the left of each

curve. We see that as the infection rate is lowered, there are more combinations of r and p
that result in no epidemic. That is, the general infection rate is just not high enough to sup-

port spread of the infection no matter what the proportion of asymptomatic individuals or

their relative infectivity.

Application to SARS-CoV-2

We fit the model to data from four states: California, Florida, New York, and Texas. Data and

model fits to the data are shown in Fig 4. Best fit parameter values with 95% confidence inter-

vals are given in Table 2. Parameter correlation and parameter distribution plots are included

in S1 File. All four of these states have implemented some form of social distancing for a period

of time, and the majority of the data is taken after these measures are in place. All four states

have R0 values near 2. Estimates of the R0 for SARS-CoV-2 before changes in social behavior in

China run between 2 and 4.25 [29–31], typically falling below 1 when complete lockdowns are

imposed [28]. The R0 values found here are on the low end for unmitigated SARS-CoV-2, sug-

gesting that the social distancing measures are having some effect, but the measures taken in

these states have not driven R0 below the threshold value of 1. Interestingly, the estimated R0

Fig 2. Trade-off between p and r to achieve a particular basic reproduction number for a high infection rate (left) and low infection

rate (right).

https://doi.org/10.1371/journal.pone.0236976.g002
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Fig 3. Effect of infection rate on epidemic threshold. The contours indicate the points where R0 = 1; to the left of

each curve R0 < 1 and there will be no epidemic.

https://doi.org/10.1371/journal.pone.0236976.g003

Fig 4. Data and model fits for SARS-CoV-2 epidemics in California (upper left), Florida (upper right), New York (bottom left),

and Texas (bottom right). Best fit parameters are given in Table 2.

https://doi.org/10.1371/journal.pone.0236976.g004
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values are almost entirely determined by the basic reproduction number for asymptomatic

spread in all four states, indicating that the spread of the infection is largely driven by asymp-

tomatic individuals, at least in the early stages of the pandemic. The large Ra value is almost

entirely determined by the high proportion of asymptomatic individuals—about 99% for all

four states. This is somewhat higher than the 86% unreported cases estimated in China [9] and

might be indicative of the limited testing availability in the United States early in the pandemic.

The undercounting of symptomatic infections is particularly problematic since each symptom-

atic person incorrectly classified as asymptomatic because they weren’t tested might appear as

several asymptomatic people in order to account for the difference in infectivity between the

two groups. The high proportion could also be in part due to the lack of a pre-symptomatic

phase in this model; recent studies have shown that symptomatic people can infect others dur-

ing the pre-symptomatic phase [32–34] and within this model would be considered part of the

asymptomatic population. The relative infectivity of asymptomatic patients ranges from *6–

15%, so the high basic reproduction number for this group is driven by the large number of

patients rather than their ability to easily infect others. The infectivity values for all four states

are high, so based on the analysis of Fig 2, we expect that there are few combinations of p and r
that will result in R0 values near 2 and that this can only happen if p is large and r is small.

Fig 5 shows the time course of asymptomatic individuals and symptomatic individuals for

epidemics in all four states. In all cases, at the peak of the epidemic, there are far more asymp-

tomatic individuals than symptomatic individuals. This is due not only to the high proportion

of infections that are asymptomatic, but is also caused by a faster removal of symptomatic indi-

viduals as compared to asymptomatic individuals. While it might seem unusual that asymp-

tomatic individuals are recovering slower than symptomatic individuals, given the heightened

awareness of transmission of infectious diseases as well as the stay-at-home orders in these

states, symptomatic individuals are likely to isolate themselves upon symptom onset, effec-

tively removing themselves from participating in further transmission. While not true recov-

ery, from the standpoint of the model, these symptomatic people are classified as recovered.

Therefore, asymptomatic individuals participate in transmitting the infection for a longer

period of time and in greater numbers than asymptomatic individuals. It is also notable that

the peak in asymptomatic infections occurs slightly after the peak in symptomatic infections.

This could have repercussions for decisions on when to relax social distancing measures since

we will observe a decline in infections while asymptomatic infections are still increasing.

We also estimated the time at which the initial infected individual initiated the infection in

each state. Using our estimates of Td, we can calculate the estimated date of the start of the

Table 2. Best fit parameters and 95% confidence intervals for COVID epidemics in California, Florida, New York, Texas.

Parameter California Florida New York Texas

β (/d) 3.48 (3.46–3.49) 4.97 (4.85–5.08) 2.53 (2.40–2.67) 5.51 (5.40–5.61)

r 0.112 (0.110–0.114) 0.0734 (0.0702–0.0772) 0.153 (0.137–0.170) 0.0635 (0.0617–0.0658)

p 0.999 (0.999–0.999) 0.998 (0.998–0.998) 0.980 (0.979–0.981) 0.999 (0.999–0.999)

k (/d) 0.198 (0.197–0.199) 0.161 (0.154–0.174) 0.212 (0.196–0.229) 0.154 (0.149–0.161)

α (/d) 1.76 (1.40–2.33) 2.33 (1.76–2.78) 1.17 (0.968–1.34) 2.69 (1.97–3.25)

Td (/d) 55.2 (52.8–56.0) 53.7 (52.0–56.1) 63.6 (60.5–67.3) 53.8 (51.6–55.6)

SSR 37.7 (14.0–98.3) 19.1 (8.51–46.0) 378 (88.5–446) 8.58 (7.71–24.7)

R0 1.97 (1.94–2.00) 2.26 (2.14–2.33) 1.83 (1.79–1.86) 2.28 (2.20–2.35)

Ra 1.96 (1.94–2.00) 2.25 (2.13–2.33) 1.79 (1.74–1.82) 2.27 (2.20–2.35)

Rs 0.00213 (0.00161–0.00270) 0.00336 (0.00286–0.00443) 0.0414 (0.0367–0.0494) 0.00182 (0.00152–0.00254)

https://doi.org/10.1371/journal.pone.0236976.t002

PLOS ONE Asymptomatics in SARS-CoV-2

PLOS ONE | https://doi.org/10.1371/journal.pone.0236976 August 10, 2020 8 / 14

https://doi.org/10.1371/journal.pone.0236976.t002
https://doi.org/10.1371/journal.pone.0236976


epidemic. For all four states, we find that the epidemics were initiated sometime in January

2020. For California, this is as early as January 15, while for Florida the estimated infection

start date is January 14. New York has the earliest estimated start date of January 11, while the

latest is in Texas on January 24.

Changing the infection rate

Strict stay-at-home measures have severe economic implications and are difficult to maintain

[35, 36], so government officials want to relax social distancing measures as early as possible.

Given the large number of asymptomatic individuals predicted by our model, as well as the

fact that the asymptomatic peak is slightly later than the symptomatic peak, we decided to

investigate model predictions of what happens as social distancing measures are relaxed. Based

on a previous modeling study, we assume that stay-at-home orders cut the infection rate β in

half [9], so double the infection rate at two week intervals starting on the last day of our data

(April 17, 2020). Results are shown in Fig 6 with the solid line indicating the original epidemic

where social distancing was not relaxed, and dashed lines indicating predicted epidemics

when social distancing is relaxed. We see that there is an immediate spike in both symptomatic

and asymptomatic infections upon reopening and that the spike becomes smaller as reopening

is delayed. Interestingly, there is also a change in the decay rate of the epidemic as the re-open-

ing date is changed. Earlier re-openings have a larger spike in cases, but also exhibit a more

Fig 5. Estimated asymptomatic dynamics during epidemics in California (upper left), Florida (upper right), New York

(bottom left), and Texas (bottom right).

https://doi.org/10.1371/journal.pone.0236976.g005
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rapid decline in cases. In fact, if all four states re-opened immediately, the decay rate would be

faster than if the states continued with social distancing measures indefinitely.

To further quantify the effect of reopening at different times, we found the final death toll

and the total size of the epidemic for each reopening scenario. Results are shown in Fig 7. In all

Fig 6. Estimated dynamics during epidemics when social distancing measures are relaxed. Shown are epidemics in California

(upper left), Florida (upper right), New York (bottom left), and Texas (bottom right) where each dashed line shows the trajectory

if social distancing measures are relaxed at different two week intervals.

https://doi.org/10.1371/journal.pone.0236976.g006

Fig 7. Estimated epidemic size (left) and number of dead (right) for different reopening timelines. We examined the effect of

relaxing social distancing measures at different times from the end of our data (April 17, 2020).

https://doi.org/10.1371/journal.pone.0236976.g007
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cases, delaying re-opening lowers the size of the epidemic as well as the number of fatalities.

Even though immediate re-opening might result in a faster resolution to the epidemic, this

comes at the cost of more illness and deaths. For California, Florida, and Texas, both the total

epidemic size and the number of fatalities increase with any re-opening within the next 10

weeks, as compared to no relaxation of social distancing measures for the duration of the

epidemic.

Discussion

We analyzed a compartmental model that includes asymptomatic infections finding that the

relative infectiousness of asymptomatic individuals plays a larger role in changing the time

course and size of the epidemic while the proportion of asymptomatic infections plays a larger

role in determining mortality. Yet testing in many countries is limited to people who are symp-

tomatic, meaning that there is no data on the number of asymptomatic infections, so mathe-

matical models cannot properly incorporate asymptomatic individuals. This not only hampers

the ability of the model to accurately predict the time course of the epidemic, but could also

lead to inaccurate predictions of the effect of isolation [23] and contact-tracing mitigation

strategies. If a vaccine is eventually developed, previous studies have shown that the number of

asymptomatic infections also alters the effectiveness of vaccination strategies [20, 21].

When we fit our model to data from the SARS-CoV epidemic in four states, we found that

there were far more asymptomatic individuals than symptomatic individuals at the peak of the

epidemic in all four states. This is consistent with recent studies of antibody seroprevalence

that suggest a 50-85 fold undercount of COVID-19 in Santa Clara County, California [37] and

in Los Angeles [38]. Our model has two different mechanisms by which the number of asymp-

tomatic individuals can rise to high numbers. If the proportion of infections that become

asymptomatic is high (p close to 1), then as the number of infections rise, more of these will be

asymptomatic. It is also possible to accumulate large numbers of asymptomatic individuals if

symptomatic infections are removed from the epidemic, either through death, recovery, or iso-

lation, faster than asymptomatic infections. This might be the case if symptomatic individuals

are quickly tested and then isolated thereby being removed from further participation in the

infection as might be the case for these four states since testing for SARS-CoV-2 in all these

states at the time this data was taken, was limited to symptomatic individuals.

This also points to a limitation of this study. Testing for SARS-CoV-2 started slowly in the

United States [39] and remains inadequate to this day, so there is no tracking of the number of

asymptomatic cases and likely an undercount of symptomatic cases. Thus the asymptomatic

compartment in this application of the model includes symptomatic patients who were unable

to get tested. Our model also does not include a latent or pre-symptomatic phase, which also

lumps people who likely have different infection rates into one compartment. This mixing of

individuals who should be in separate compartments as well as the inadequate counting of

symptomatic infections leads to error in our parameter estimates and an inability to uniquely

identify all parameters of the model [40]. Correlation plots included in S1 File show that there

are correlations between some parameter estimates, although there was no consistent pattern

on which parameters were correlated between the four data sets used. Adequate testing proto-

cols that capture both symptomatic and asymptomatic infections will allow better parameteri-

zation of the model. Additional data, such as tracking the number of recovered individuals

would also help constrain parameters. While some state public health agencies are reporting

the number of recovered, this number is really only reflective of symptomatic patients who

have been hospitalized and released. Symptomatic patients who remain at home are not being

tracked, so their recovery is not recorded. Accurately tracking the course of all aspects of the
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epidemic, particularly in its early phase [41], is crucial for proper parameterization of mathe-

matical models and will lead to more accurate model predictions.

Despite these limitations, fitting of our model to the data has resulted in some interesting

parameter estimates. The basic reproduction number appears to be robust to limitations of

parameter identifiability [42]. We found a basic reproduction numbers around 2 for all four

states. This is at the lower end of SARS-CoV R0 estimates in the absence of any behavioral

changes [29–31]. These low values of R0 likely reflect the effect of social distancing measures in

the US, although these measures have not driven R0 below 1 as a full lockdown would [28].

However, a recent study [43] indicates that SARS-CoV-2 oubreaks with R0 < 1.5 can be con-

tained with 50% contact tracing. Even for R0 up to 2.5, contact tracing only needs to capture

70% of infections to be effective.

Conclusion

While the epidemiological model used here is not as complex as some others that have been

suggested for SARS-CoV-2, it still provides insight into a key aspect of SARS-CoV-2 transmis-

sion. Our model shows that asymptomatic infections can change the size and lethality of an

epidemic even if they are not necessarily a large proportion of the infections. For the SARS-

CoV epidemics examined here, the model predicts that there are far more asymptomatic or

unreported cases at the peak of the infection, suggesting that there might be widespread com-

munity transmission if stay-at-home orders are relaxed too early.

Supporting information

S1 File. File containing epidemiological data and parameter correlation and distribution

plots.
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