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ABSTRACT
Diabetic glomerulopathy (DG) remains the prevalent microvascular complication and leading
cause of shortened lifespan in type-2 diabetes mellitus (T2DM) despite improvement in hypergly-
cemia control. Considering the pivotal role of kidney in metabolism, using untargeted metabolo-
mic techniques to globally delineate the serum metabolite profiles will help advance
understanding pathogenetic underpinnings of renal biopsy-confirmed DG from the perspective
of metabolism specifically. Fourteen pathologically diagnosed DG patients secondary to T2DM
and 14 age- and gender-matched healthy controls (HCs) were recruited for study. We employed
mass spectrometry-based untargeted metabolomic methods to reveal the metabolite profiles of
serum samples collected from all included subjects. We identified a total of 334 and 397 metabo-
lites in positive and negative ion mode respectively. One hundred and eighty-two important dif-
ferential metabolites whose variable importance in projection (VIP) > 1 and p value <0.05 were
selected and annotated to metabolic pathways. KEGG pathway enrichment analysis revealed tryp-
tophan metabolism enriched most significantly. Among the tryptophan derivatives, L-tryptophan
(L-Trp) and serotonin were relatively accumulated in DGs compared with HCs, while 5-hydroxyin-
doleacetic acid (5-HIAA) and indole-3-acetamide were depleted. Correlation analysis showed sero-
tonin and L-Trp are negatively correlated with 24h urine protein and glycosylated hemoglobin
(Ghb). To exclude the interference of preexisting T2DM on DG exacerbation, we selected 5-HIAA
and 3-(3-hydroxyphenyl) propionic acid (3-OHPPA) which are not correlated with Ghb and ana-
lyzed their correlation relationship with crucial renal indices. We found 3-OHPPA is positively cor-
related with urine total protein and creatinine ratio (T/Cr) and 24h urine protein, 5-HIAA is
positively correlated with serum creatinine and urea.
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Introduction

Diabetic nephropathy (DN) and its most devastating
manifestation, end-stage renal disease (ESRD), remain
one of the most common causes of shortened lifespan
in diabetes mellitus (DM) population [1]. Diabetic glo-
merulopathy (DG), the pathognomonic lesions of DN, is
defined as constellation of glomerular basement mem-
brane (GBM) thickening, mesangial expansion and nod-
ules formation, and afferent and efferent glomerular
arteriolar hyalinosis [2]. The incidence of ESRD due to
DG has alarmingly elevated over the past two decades
despite improvement in hyperglycemia and hyperten-
sion control [3]. Thus, it is urgently needed to advance
the understanding of DG pathogenesis.

Nowadays, emerging studies have corroborated the
pivotal role of kidney in metabolism by regulating cir-
culating metabolites secretion or reabsorption [4–6]. It
has been reported that serum metabolomes of patients
with ESRD caused by DN is different with healthy indi-
viduals [7]. Considering the wider spectrum of underly-
ing possible glomerular lesions of the DN patients
secondary to T2DM [2], it is necessary to delineate the
serum metabolite profiles of renal biopsy-confirmed
DG, which may aid in uncovering the pathophysiology
of DG accurately.

Metabolomics, also known as metabonomics, is
defined as the ‘quantitative measurement of the
dynamic multi-parametric metabolic responses of living
systems to pathophysiological stimuli or genetic
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modifications’ [8]. Untargeted metabolomic techniques
can globally examine and quantify small molecules
from various biological samples (e.g., urine, serum,
feces, vitreous fluid, etc.) and provides the relatively
unbiased approach to identify early biochemical altera-
tions, unravel potential biomarkers and underlying
pathogenetic mechanisms of multiple diseases, like
chronic kidney disease, nephrotoxicity-induced acute
kidney injury, renal cell carcinoma, autosomal dominant
polycystic kidney disease and other ciliopathies [9–12].
To our knowledge, there is still no study about serum
metabolomics analysis from pathologically diagnosed
DG patients.

Ultraperformance liquid chromatography (UPLC)
technology has been considered to be suitable for pro-
teomics and metabolomics (like lipidomics) detection,
particularly for universally untargeted metabolomics
due to its high sensitivity in detecting metabolites
[13,14]. Moreover, MS-based metabolomics combined
with liquid chromatography (LC) can separate individual
metabolite, which permits to detect low-concentration
metabolites as well as identify them accurately [9].
During recent studies, UPLC-MS metabolomics technol-
ogy has been widely applied to reveal the potential bio-
markers in clinical chemistry, like renal, cardiovascular,
and neuropsychiatric diseases and cancer [14–16].

The aim of our study is to delineate the serum
metabolite profiles of DG patients using liquid chroma-
tography-mass spectrometry-based untargeted metab-
olomic analysis technologies, uncover the relationship
between metabolites and renal indices, and elaborate
the role of significantly changed metabolites in DG
pathogenesis.

Methods and materials

Ethical approval

All subjects included in this study signed informed con-
sent. All procedures performed in studies involving
human participants were in accordance with the ethical
standards of the institutional and/or national research
committee at which the studies were conducted. The
Ethics Review Committee of First Affiliated Hospital of
Zhengzhou University granted ethical approval for the
research (2019-KY-361).

Study design, participants recruitment and
samples collection

As shown in Figure 1, a total of 180 patients
(18–75 years old) who were admitted in the First
Affiliated Hospital of Zhengzhou University due to

clinically diagnosed DN secondary to T2DM between
December 2018 and October 2019 signed informed
consent and were enrolled. The diagnostic criteria of
DN were based on the American Diabetes Association
guidelines and set as (1) estimated GFR (eGFR) <60mL/
min/1.73 m2 or (2) albuminuria >30mg/g creatinine
more than 3months [17].

Thirty-five of the 180 enrolled subjects underwent
renal biopsy and the results were evaluated by two
pathologists, while rest of 145 were excluded. Then, 14
patients were pathologically diagnosed as DG and
finally entered study cohort, while 21 patients who
were confirmed as the renal lesions of other diseases
(e.g., membranous nephropathy, IgA nephropathy, etc.)
were excluded. Meanwhile, 14 age- and gender-
matched healthy controls (HC) were recruited from
healthy people sample center of the First Affiliated
Hospital of Zhengzhou University.

The serum samples of both DGs and HCs were col-
lected, temporarily conserved in ice packs and immedi-
ately sent to the Biobank of The First Affiliated Hospital
of Zhengzhou University for cold storage at �80 ˚C
environment within 2 h for further untargeted metabo-
lomic analysis.

The chemicals and equipment

The methanol, acetonitrile, and water were all obtained
from Fisher Chemical (Shanghai, China). Formic acid
was purchased from CNW. 2-Propanol was obtained
from Merck. 2-Chloro-L-Pheylalanine was from
Adamas-beta.

Figure 1. Flow chart of study design.
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The centrifuge 5424 R and 5430 R were both pur-
chased from Eppendorf (Shanghai, China). UHPLC liquid
chromatography system (Vanquish Horizon System)
and mass spectrometer (Q-Exactive HF-X) were both
purchased from Thermo Scientific (Shanghai, China).

Sample processing and quality control/QC

The samples were pre-processed to remove proteins
and impurities. We transferred 100 mL sample into a 1.5-
mL centrifuge tube, added 400 mL methanol containing
0.02mg/mL internal standard (L-2-chlorophenylalanine).
After vortexing and mixing for 30 s, the samples under-
went low-temperature ultrasonic extraction (5 �C,
40KHz) and were frozen at �20 �C for half an hour,
respectively. Then centrifuged samples for 15min
(13,000 g, 4 �C), supernatants were collected and trans-
ferred into injection sample vials for further computer
analysis. During the test, the QC samples were evenly
and randomly distributed in the injection process.

UPLC-MS analysis

A Vanquish Horizon ultra-high-performance liquid chro-
matography system (Thermo Scientific) was equipped
with ACQUITY UPLC HSS T3 column (100mm � 2.1mm
i.d., 1.8 mm; Waters, Milford, USA). The binary gradient
elation system consisted of mobile phase (A), which is
composed of 95% water and 5% acetonitrile (contain-
ing 0.1% Formic acid), and (B), which is composed of
47.5% acetonitrile, 47.5% isopropanol and 5% water
(containing 0.1% Formic acid). The separation was
achieved using following gradient: 0–100% B over
0–5.5min, the composition was held at 100% B at
5.5–7.4min, then 7.4–7.8min, 100% to 0 B, and
7.8–10min holding at 0 B. The flow rate was 0.4mL/
min, and the column temperature was 40 �C, the injec-
tion volume was 2mL.

Mass spectrometry was performed on a Q-Exactive
HF-X system (Thermo Scientific). The mass range was
from m/z 70 to 1050. The resolution was set at 60 000
for the full MS scans and 7500 for MS2 scans. The sam-
ples were ionized by electrospray and the mass spec-
trometry operated as follows: spray voltage, 3500 V
(positive) and 3500 V (negative); sheath gas flow rate,
50 arbitrary units; auxiliary gas flow rate, 13 arbitrary
units; capillary temperature, 325 �C.

Bioinformatic and statistical analysis

The original metabolomic data were processed using
the Progenesis QI (WaterCorporation, Milford, USA),

which produced a matrix features with retention time,
peak area, mass-to-charge ratio and identification infor-
mation. All variables were normalized to the total peak
area of each sample. All metabolites were identified by
MS and MS/MS fragment through Progenesis QI
(WaterCorporation, Milford, USA) with several main-
stream public databases (http://www.hmdb.ca/, https://
metlin.scripps.edu/). Afterwards, the ProgenesisQI
(WaterCorporation, Milford, USA) was used to search
and identify the characteristic peaks. We set MS mass
error as less than 10 ppm, matched the MS and MS/MS
mass spectrum information with the metabolic data-
base, then the metabolites were identified based on
the secondary mass spectrometry matching score. The
main databases used for metabolites identification are
several mainstream public databases (http://www.
hmdb.ca/, https://metlin.scripps.edu/). Principle compo-
nent analysis (PCA) and Orthogonal Partial Least-
Squares Discrimination Analysis (OPLS-DA) were per-
formed to identify the discrimination of variables.
Permutation testing was used to evaluate the accuracy
of PLS/OPLS-DA. Based on OPLS-DA analysis, the
metabolites with variable importance in projection (VIP)
>1 are recognized as important variables. VIP repre-
sents the ability to extract variables of differentiation
between DG and HC groups. Important differential
metabolites were defined as those with VIP >1.0
obtained from OPLS-DA and adjusted p values <0.05.
Hierarchical cluster analysis (HCA) was applied to create
heatmaps of the differentially expressed metabolites
and to assign metabolites to clusters (R version, pack-
age gplot), combined with Spearman and Pearson cor-
relation analyses. Based on HMDB, KEGG and LIPID
MAPS databases, all important differential metabolites
were annotated to specific pathways and classified
based on pathways’ function. KEGG pathway topology
was applied to evaluate the extent of important
differential metabolites’ influence on their func-
tional pathways.

Data collected from biochemical assay were
expressed as mean± SEM. Statistical analyses were per-
formed using SPSS 23.0 software. Comparisons between
groups were measured by Student’s t-test. p Values
<0.05 were considered statistically significant.

Results

Baseline characteristics of recruited DGs and HCs

As mentioned in Methods, 14 pathologically diagnosed
DGs and 14 age- and gender-matched HCs were
recruited. As shown in Table 1, we recruited the DGs
whose fasting blood sugar level were comparable with
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HCs’, which is due to blood glucose was well controlled
around sample collection. As for medication history, 3
of 11 DGs received regular insulin therapy, four of 10
DGs used oral antidiabetic drugs (OADs, one used met-
formin, one used dipeptidyl peptidase (DPP)-4 inhibi-
tors, one used meglitinides, one used alpha-glycosidase
inhibitors and DPP-4 inhibitors), one of 13 received anti-
biotics. Even though significant difference of OADs
application between DGs and HCs exists, it has been
reported that OADs do not impact serum metabolomics
of DN patients significantly [7]. Thus, we excluded the
interference of medications perfectly. The laboratory
indices (including glycosylated hemoglobin, serum cre-
atinine and urea, 24-h urine protein and urine total pro-
tein and creatinine ratio) of DGs are significantly higher
than HCs. The blood lipid profiles were totally matched.

Disparity of serum metabolomics between DGs
and HCs

We employed UPLC-MS on DGs’ and HCs’ serum sam-
ples and identified a total of 334 and 397 metabolites
in positive and negative ion mode respectively. Serum
metabolic characteristics were first evaluated using
multivariate statistical analyses. The stability of samples
collection and handling were evaluated by internal QC.
PCA provided an unsupervised and comprehensive
view of serum samples. Significant disparities were

illustrated between DG and HC groups, with an accept-
able explanatory value of PCA model (accumulative
R2X¼ 0.51, Figure 2(A)). Furthermore, PLS-DA analysis
was performed to maximally analyze the difference and
confirmed marked altered serum metabolite profiles
between DG and HC groups (R2Y¼ 0.985, Q2 ¼ 0.892,
Figure 2(B)). Finally, we used OPLS-DA to maximize the
class discrimination and calculate the VIP value of each
metabolites. OPLS-DA showed a complete separation
(R2X¼ 0.55, R2Y¼ 0.997, Figure 2(C)) once again. In
200’s permutation test, all R2 and Q2 values of permu-
tated models were worse than original model, indicat-
ing a better prediction ability and reliability of this
model (Figure 2(D)). Therefore, we revealed the serum
metabolite profiles of DG patients has dramatically
altered compared with HCs.

Serum metabolite profiles identification

To select the metabolites as potential candidates which
may participate in DG pathophysiology and influence
renal indices, we combined OPLS-DA analysis with
Student’s t-test. We screened in the 182 metabolites
whose VIP are greater than 1 and p value are less than
0.05 and defined them as important differential metab-
olites. Among them, there are 87 metabolites in
ESIþmode and 95 in ESI- mode. The relative expression
level of 182 metabolites from each sample were

Table 1. Participants demographic and clinical features.
DN (n¼ 14) HC (n¼ 14) p Value

Age(years) 50.29 ± 10.29 48.93 ± 10.49 0.733
Gender(male/female) 8/6 7/7 0.314
oral hypoglycemic drugs(yes/no) 4/10 0/14 0.031
Insulin (yes/no) 3/11 0/14 <0.01
Antibiotic use (yes/no) 1/13 0/14 0.309
Ghb(%) 7.50(6.76,8.59) 5.85(5.75,5.90) <0.01
Hb(g/L) 105.58 ± 19.01 136.71 ± 13.99 <0.01
Count of NG (10�9/L) 3.55 ± 1.24 3.26 ± 0.77 0.468
Count of Leu (10�9/L) 1.52 ± 0.70 1.95 ± 0.32 0.056
24h-Protein (g/24h) 5.64(2.82,8.25) 0(0,0) <0.01
TCR（g/g) 3.84(2.03,8.92) 0(0,0) <0.01
Blood glucose (mmol/L) 5.53(4.41,7.96) 4.98(4.82,5.11) 0.227
Urea (mmol/L) 9.66(6.52,13.07) 3.98(3.68,4.98) <0.01
Creatinine (lmol/L) 226.64 ± 318.63 72.57 ± 20.92 0.094
Uric acid (lmol/L) 320.14 ± 70.63 281 ± 97.57 0.235
eGFR (mL/min/1.73 m�2) 56.07 ± 29.83 95.45 ± 12.48 <0.01
Alb (g/L) 30.78 ± 6.36 46.5 ± 2.87 <0.01
CHO (mmol/L) 4.6 ± 1.72 4.44 ± 0.84 0.762
TG (mmol/L) 1.55(1.05,2.34) 1.04(0.62,1.51) 0.164
HDL (mmol/L) 1.4 ± 0.33 1.15 ± 0.48 0.123
LDL (mmol/L) 3.06(1.56,3.82) 2.84(1.98,3.24) 0.635
DM course (months) 120(99,180) 0(0,0) <0.01
Hypertension history (months) 18(1.62,66) 0(0,0) <0.01
CD history (months) 0(0.27) 0(0,0) 0.21
CI course (months) 0(0,0) 0(0,0) 0.769
DR (positive/negative) 0/6 / /

Ghb: glycosylated hemoglobin; Hb: hemoglobin; NG: neutrophilic granulocyte; Leu: leukocyte; TCR: urine total protein and
creatinine ratio; eGFR: estimated glomerular filtration rate; Alb: serum albumin; CHO: cholesterol; TG: triglyceride; HDL: high-
density lipoprotein; LDL: low-density lipoprotein; DM: diabetes mellitus; CD: cardiovascular disease; CI: cerebral infarction; DR:
diabetic retinopathy.
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presented as heat map (Figure 3(A)). Based on expres-
sion mode, these metabolites could be further divided
into five clusters, and the average expression level of
them were shown in Figure 3(B). We found subclusters
2 and 3 (containing 99 and 14 types of metabolites,
respectively) were obviously enriched in DG patients’
serum sample, while subcluster 4 (containing 66 types
of metabolites) was relatively depleted compared
with HCs.

Enriched metabolic pathways analysis

By searching KEGG/HMDB database, we obtained the
pathways in which 182 important differential metabo-
lites are involved. Among the top 16 enriched meta-
bolic pathways ranked by the number of important
differential metabolites they contained, tryptophan
metabolism contained the largest number of metabo-
lites, which are five types of metabolites, followed by
phenylalanine metabolism and Biosynthesis of amino
acids (Figure 4(A)). KEGG pathway enrichment analysis
further confirmed the results above and revealed that
enrichment of tryptophan metabolism is most significant
(p< 0.001, Figure 4(B)). We evaluated the degree of
important differential metabolites’ influence on their

pathway via MetPA analysis. The results showed that
tryptophan derivatives have the most notable impact
on tryptophan metabolism (Figure 4(C)). The expression
level of four important differential metabolites belong-
ing to tryptophan metabolism were compared between
DGs and HCs. L-tryptophan (L-Trp) and serotonin were
relatively depleted in DGs compared with HCs (Figure
5(A,B)), while indole-3-acetamide and 5-hydroxyindole-
acetic acid (5-HIAA) were relatively accumulated (Figure
5(C,D)). It is noted that 3-(3-hydroxyphenyl) propionic
acid (3-OHPPA), the metabolite belonging to phenyl-
alanine metabolism, is relatively enriched in DGs than
HCs (Figure 5(F)). Of the remaining important differen-
tial metabolites, we found glycerophosphocholine
(GPC) was relatively decreased in DGs than HCs (Figure
5(E)), while 2-isopropylmalic acid and 1-methyluric acid
were relatively increased (Figure 5(G,H)).

Correlation analysis

To illustrate the relationship within important differen-
tial metabolites and unravel their interaction with some
crucial renal indices, we implemented Spearman correl-
ation analysis. We analyzed the correlation relationship
between 24 selected important differential metabolites

Figure 2. Analysis and validation of serum metabolites disparity between DGs and HCs. (A) PCA scores plots; (B) PLS-DA scores
plot; (C) OPLSA-DA scores plot; (D) Scatter plots of the statistical validations obtained by 200’s permutation tests.
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(i.e., the derivatives of tryptophan and phenylalanine
metabolism and other selected metabolic pathways)
and DG-related clinical indices (Figure 6). Among tryp-
tophan derivatives, we found serotonin and L-Trp are
negatively correlated with 24 h urine protein (p< 0.01,
rho ¼ �0.568; p< 0.01, rho ¼ �0.563, respectively.
Figure 7(A,B)) but also with glycosylated hemoglobin
(Ghb) (Figure 6). While 5-HIAA is positively correlated
with serum creatinine and urea (p< 0.01, rho ¼ 0.595;
p< 0.01, rho ¼ 0.600, respectively. Figure 7(E,F)) and
not correlated with Ghb (Figure 6). As for phenylalanine
metabolism, 3-OHPPA showed a clear positive correl-
ation with urine total protein and creatinine ratio (T/Cr)
and 24 h urine protein (p< 0.05, rho ¼ 0.374; p< 0.05,
rho ¼ 0.431 respectively. Figure 7(C,D)), and it neither
correlated with Ghb (Figure 6). Then, we analyzed the
correlation relationship within the selected metabolites
above. It is noted that serum 5-HIAA level is negatively
correlated with L-Trp and serotonin (p< 0.01, rho ¼
�0.572; p< 0.01, rho ¼ �0.574, respectively Figure 6).

Beyond tryptophan and phenylalanine metabolism,
we also selected 4 important differential metabolites
belonging to other metabolic pathways based on the
same criteria above. Among them, GPC was negatively

correlated with 24 h urine protein and serum creatinine
(p< 0.05, rho ¼ �0.397; p< 0.001, rho ¼ �0.590,
respectively. Figure 7(H,K)), 2-isopropylmalic acid was
positively correlated with 24 h urine protein and serum
creatinine (p< 0.05, rho ¼ 0.407; p< 0.01, rho ¼ 0.541,
respectively. Figure 7(G,J)), and 1-methyluric acid was
positively correlated with serum creatinine and urea
(p< 0.01, rho ¼ 0.600; p< 0.05, rho ¼ 0.459, respect-
ively Figure 7(I,L)).

Discussion

Even though hyperglycemia and hypertension control
has been improved in DG management, the incidence
of ESRD due to DG is still horribly increasing over the
past two decades [3]. Considering the pivotal role of
kidney in metabolism, our study revealed that signifi-
cant serum metabolomic disparities exist between the
pathologically diagnosed DG secondary to T2DM and
general healthy individuals, and tryptophan derivatives
may be served as pathogenic factors which worth being
illustrated in depth.

By using LC-MS analysis, we globally delineated the
serum metabolite profiles of DGs and uncovered that

Figure 3. HCA for important differential metabolites between DGs and HCs. (A) Hierarchical clustering and heatmap of all 182
metabolites that were identified to be significantly different (p� 0.05) in concentration between DGs (n¼ 14) and HCs (n¼ 14).
(B) Trend line charts of 4 subclusters presenting average expression level of the important differential metabolites
they contained.
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composition of serum metabolites alters significantly
compared with HCs. PCA and PLS-DA analysis further
confirmed the marked disparities, which is consistent
with studies indicating robust changes of serum metab-
olites occurred in DN [7,18–23]. Impaired renal regulat-
ing effects of metabolism due to DM causes systemic
metabolism disturbances, renal complications further
alter serum metabolite profiles subsequently.

Based on OPLS-DA analysis combined with Student’s
t-test, 182 important differential metabolites were

selected and subclustered. Not surprisingly, different
subclusters presented distinct expression level between
DGs and HCs. In another word, the serum metabolo-
mics of DG patients may change toward the ‘certain
trend’. Therefore, we speculated reasonably that this
‘certain trend’ of alteration may participate in DG
pathogenesis.

To illustrate this, we analyzed the enriched metabolic
pathways containing important differential metabolites
by searching KEGG/HMDB database. Marked altered

Figure 4. Advanced metabolic pathways analysis. (A) The top 16 metabolic pathways ranked by the number of important differ-
ential metabolites they contained. (B) The KEGG enrichment analysis of all 11 significantly enriched metabolic pathways. (C) The
bubble chart of KEGG pathway topology indicating the tryptophan metabolism are influenced most notably by its important dif-
ferential metabolites.

986 F. ZHANG ET AL.



metabolic function existed in DGs. It is noted that tryp-
tophan metabolism, the most significantly changed
pathway containing largest number of important differ-
ential metabolites (five types), is the most important
metabolic pathway according to MetPA analysis. When
compared with HCs, the level of L-Trp and serotonin
are relatively lower, while 5-HIAA and indole-3-aceta-
mide are higher.

From the clinical aspect, Spearman correlation ana-
lysis revealed several important differential metabolites
are associated with the severity of DG manifestations.
Serum level of serotonin and L-Trp are negatively corre-
lated with 24 h urine protein. Since they are also corre-
lated with Ghb, it is difficult to clarify whether
preexisting DM state or DG is the major insult aggravat-
ing renal manifestations. Considering studies have
revealed altered serum level of tryptophan and sero-
tonin are ubiquitous in DM and its other microvascular

complications (e.g., diabetic retinopathy, etc.) [24–28], it
is reasonable to speculate that altered serum level of
them may be not the solely cause of renal manifesta-
tions exacerbation in DG.

Therefore, we selected the metabolites which are
not correlating with Ghb but only with crucial DG-
related renal indices. The results showed 5-HIAA is only
positively correlated with serum creatinine and urea
(the indices indicating renal function), and 3-OHPPA is
only positively correlated with 24 h urine protein. After
excluding the interfering effects of DM, these renal indi-
ces-related metabolites may be served as candidates to
provide new insights into studies on DG pathogenesis.
5-HIAA acts as vasoconstrictor potentially exacerbating
microvascular injury and has been recognized as valu-
able biomarkers for estimating the DN-related risk dur-
ing the early stages of the disease [27–30]. It is
conceivable that relatively accumulated serum 5-HIAA

Figure 5. The boxplots showing the comparison of the relative expression level of four important differential metabolites of tryp-
tophan metabolism and other four selected metabolites between DGs and HCs. (A) L-Tryptophan. (B) Serotonin. (C) Indole-3-
acetamide. (D) 5-Hydroxyindoleacetic acid. (E) Glycerophopshocholine. (F) 3-(3-hydroxyphenyl)propionic acid (3-OHPPA). (G) 2-
Isopropylmalic acid. (H) 1-methyluric acid. �p< 0.05, ��p< 0.01 and ���p< 0.001 vs. HCs. M: metabolism; HD: human diseases;
OS: organismal system.
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level will worsen renal function in DGs characterized as
elevating serum creatinine and urea level. However, 3-
OHPPA, a gut microbiota-derived “protective” potent
vasodilator [31], are relatively accumulated in DGs’
serum and positively correlated to 24 h urine protein
based on this study. At the same time, studies reported
that composition and metabolic function of DN
patients’ gut microbiota alters significantly [7]. Thus, it
is plausible to infer that more severe manifestation of
DG (e.g., higher level of 24 h urine protein, etc.) may
result in more dramatically enhanced 3-OHPPA produc-
tion from gut microbiota to overcome DG deterioration
and ‘protect’ host. Further deciphering the biological
effects of these molecules will not only aid in under-
standing DG pathogenesis from the perspective of
metabolism specifically, but also guide to concentrate
on the effects of gut microbiota on DG and
host metabolism.

Notably, the derivatives of tryptophan metabolism
are closely associated. Pathological DG state will change
the trend of inter-conversion among these metabolites.
Besides used for protein translation, L-Trp is also cata-
bolized to crucial secondary metabolites via two parallel
pathways, which can be termed by their respective
end-products or intermediates, that is, the serotonin
and kynureine pathway [32]. According to previous

studies, the serum level of both L-Trp and serotonin are
elevated in DM and DN state [25–29]. Intriguingly, our
study revealed decreased serum L-Trp and serotonin in
DGs than HCs. Therefore, it may be the best time to
inspiringly illustrate the unique mode of tryptophan
metabolism in renal biopsy-confirmed DGs, rather than
clinically diagnosed DNs.

5-HIAA, the end-product of serotonin pathway, has
been confirmed relatively accumulated in DGs’ serum in
this study. Spearman correlation analysis showed clear
negative correlation relationship exists between the
serum level of serotonin and 5-HIAA. Thus, it is conceiv-
able to conclude that reduced serotonin level results
from its enhanced degradation into 5-HIAA in DG state.
Serotonin, which can be catabolized by kidney into
weaker vasoconstrictor 5-HIAA [30,33], has been also
reported involved in the pathological process of plate-
let aggregation [34] and thrombogenesis [35] in DM-
induced vascular complications. Thus, the unique mode
of enhanced degradation of serotonin into 5-HIAA in
pathologically diagnosed DG may act as the self-pro-
tective process trying to overcome the metabolic dis-
turbance and alleviating renal manifestations.

The pivotal role of tryptophan metabolism and its
intermediates in the pathogenesis of kidney disease
have been illustrated in many previous studies. Phenyl

Figure 6. The heatmap of the correlation analysis between 24 selected important differential metabolites (containing 4 important
differential metabolites of tryptophan metabolism) and 6 crucial renal indices (i.e., blood glucose, urea, Ghb, T/Cr and 24 h urine
protein). Ghb: glycosylated hemoglobin; T/Cr: urine total protein and creatinine ratio.
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sulfate, the gut microbiota-derived intermediates of
tryptophan, has been reported to contribute to albu-
minuria and podocyte damage in diabetic rat models.
In a diabetic patient cohort, phenyl sulfate levels signifi-
cantly correlate with basal and predicted 2-year
progression of albuminuria in patients with microalbu-
minuria [36]. According to the study implemented by
Zhao et al. [37], significantly altered tryptophan metab-
olism was also observed in chronic kidney disease rat
models, indicating the crucial role of tryptophan metab-
olism in CKD. Moreover, the metabolites of tryptophan
metabolism can act as the ligands binding to specific
receptors to elicited various pathologic cellular process.
For example, kynurenine, serotonin and indole deriva-
tives may bind to aryl hydrocarbon receptor (AHR), a
cytoplasmic ligand-activated transcription factor, to
trigger oxidative stress, inflammation in chronic kidney
disease [38]. via UPLC-based metabolomics technology,

we constructed the important position of tryptophan
metabolism once again and revealed novel metabolites
derived from tryptophan in DG, which may provide
fruitful insights into the study on DG pathogenesis.

Beyond the derivatives of tryptophan and phenyl-
alanine metabolism mentioned above, we also selected
other four types of significant differential metabolites of
various metabolic pathways based on the same criteria.
Broader metabolites belonging to different metabolic
pathways were identified to influence renal function,
which indicated that global metabolic imbalance are
involved in DG pathogenesis.

GPC is the intermediates of choline metabolism
which can be divided into 4 major pathways involving
in the synthesis of phospholipids (e.g., phosphotidyl-
choline), trimethylamine (TMA), betaine and acetylcho-
line [39]. Our study revealed that the GPC level was
decreased in DGs than HCs and negatively correlated

Figure 7. A-L. The linear regression plots of the correlation relationship between 7 selected important differential metabolites
(containing 3 important differential metabolites of tryptophan metabolism) and 4 crucial renal indices (i.e., 24 h urine protein,
T/Cr: serum urea and creatinine). T/Cr: urine total protein and creatinine ratio.
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with T/Cr, 24 h urine protein and serum creatinine, indi-
cating that depleted GPC acts as exacerbating insult of
DG renal manifestation. Considering GPC is the down-
stream product of phosphatidylcholine and TMA is con-
verted by liver into trimethylamine-N-oxide (TMAO)
which acts as uremic toxins and has been confirmed
accumulated in DNs’ serum [40,41], we infer reasonably
that decreased GPC level is caused by shunting of cho-
line resource from synthetic pathway of phospholipids
toward TMA. Meanwhile, enhanced TMA production
will decrease the level of betaine and GPC simultan-
eously, which are the crucial methyl donor and major
component of cell membrane respectively. Decreased
level of them results in unstable cell structure and
abnormal cell cycle [42–44], which may participate in
DG pathogenesis and renal function exacerbation.

One-methyluric acid is the major physiological metabol-
ite of caffeine [45] and annotated to caffeine metabolism
according to our results. A case report described a heavy
coffee consumer with high urine 1-methyluric acid level
and suffered rare kidney stone composed of 1-methyluric
acid [46]. As demonstrated in our study, 1-mthyluric acid
was relatively accumulated in DGs than HCs and positively
correlated with 24h urine protein and serum creatinine. It
may result from DG-induced caffeine metabolism imbal-
ance. Meanwhile, elevated serum 1-methyluric acid may
also injure endothelium and renal tubular cells, increase
the risk of kidney stone, and aggravate renal function. Our
study suggested caffeine restriction may be warranted for
DG management.

The study on physiologic function of 2-isopropyl-
malic acid is limited. Intriguingly, it derives from metab-
olism of gut microbiota [47,48]. Our study unraveled
the relatively increased serum level and correlation rela-
tionship with renal function exists in DG patients, sug-
gesting the potential link between DG pathogenesis
and gut microbiota once again.

The limitation of this study is relatively small
number of subjects included in cohort as well as the
limited number of serum samples. We will expand
the size of cohort and use multivariate analysis to
exclude the potential clinical indices indicating renal
function which may influence metabolite profiles.
Moreover, we have revealed the correlation relation-
ship between the critical clinical renal indices of DG
and important differential metabolites of tryptophan
metabolism, indicating the critical role of tryptophan
metabolism. Our following study will develop a larger
DG cohort to validate the findings of this research
once again and focus on the impact of tryptophan
metabolic pathway on underlying pathogenetic
mechanism of DG.

This study demonstrated the dramatically altered
serum metabolite profiles of pathologically diagnosed DG
using untargeted metabolomic techniques. Specifically,
we constructed the critical position of tryptophan metabol-
ism which may be served as the biomolecular candidates
for future research on DG pathogenesis.
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