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Simple Summary: Polymorphonuclear neutrophil (PMN) count is the main diagnostic method
of bovine endometritis. High neutrophil PMN counts in the endometrium of cows affected by
endometritis suggest the involvement of oxidative stress among the causes of impaired fertility.
The damage mechanism of oxidative stress on bovine endometrial epithelial cells (BEECs) is still
unelucidated. The objective of this experiment was to investigate the relationship between oxidative
stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury
to BEECs. Our research showed that there was an imbalance of antioxidant stress in dairy cow
uterine with endometritis, oxidative stress damaged dairy cow endometrial epithelial cells through
mitochondria-dependent pathways. These findings may provide new insight into the therapeutic
target of bovine endometrial cell injury.

Abstract: Bovine endometritis is a mucosal inflammation that is characterized by sustained polymor-
phonuclear neutrophil (PMN) infiltration. Elevated PMN counts in the uterine discharge of dairy
cows affected by endometritis suggest that oxidative stress may be among the causes of impaired fer-
tility due to the condition. Nevertheless, the effects of oxidative stress-mediated endometritis in dairy
cows largely remain uninvestigated. Therefore, fresh uterine tissue and uterine discharge samples
were collected to diagnose the severity of endometritis according to the numbers of inflammatory
cells in the samples. Twenty-six fresh uteri were classified into healthy, mild, moderate, and severe
endometritis groups based on hematoxylin and eosin stain characteristics and the percentage of
PMNs in discharge. BEECs were treated with graded concentrations of H2O2 from 50 µM to 200 µM
in vitro as a model to explore the mechanism of oxidative stress during bovine graded endometritis.
The expressions of antioxidant stress kinases were detected by quantitative fluorescence PCR to
verify the oxidative stress level in uteri with endometritis. Reactive oxygen species were detected
by fluorescence microscope, and inflammation-related mRNA expression increased significantly
after H2O2 stimulation. Moreover, mRNA expression levels of antioxidant oxidative stress-related
enzymes (glutathione peroxidase, superoxide dismutase, and catalase) and mitochondrial membrane
potential both decreased. Further investigation revealed that expression of the apoptosis regulator
Bcl-2/Bax decreased, whereas expression of the mitochondrial apoptosis-related proteins cytochrome
c and caspase-3 increased in response to oxidative stress. Our results indicate that an imbalance
exists between oxidation and antioxidation during bovine endometritis. Moreover, apoptosis induced
in vitro by oxidative stress was characterized by mitochondrial damage in BEECs.

Keywords: dairy cow; oxidative stress; endometritis; PMN; BEECs damage

1. Introduction

Dairy cow health, especially reproductive disease, has attracted increasing attention as
the demand for milk and other dairy products has expanded [1]. Up to 40% of dairy cows
develop postpartum uterine disease, which causes infertility by compromising the function
of the endometrium [2]. High-quality milk requires a healthy uterus. Transition cows, in
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particular, face the challenge of negative energy balance (fatty liver, ketosis, subacute, acute
ruminal acidosis) and perturbed immune function (metritis, mastitis) [3], given that all
cows experience a reduced feed intake and body condition, infection, and inflammation of
the uterus after calving [4]. Endometritis is an inflammation of the inner lining of the uterus
and is one of the principal reproductive diseases that impact the dairy economy [5]. Recent
surveys have revealed that endometritis has a prevalence of 20%, which ranges from 8% to
40%, in certain farms [6]. Bacterial infection is the main cause of postpartum endometritis
in dairy cows. Bacteria, including Escherichia coli, Arcanobacterium pyogenes, Fusobacterium
necrophorum, and Staphylococcus aureus, contaminate the uterus in >90% of dairy cattle in the
first two weeks after parturition [7]. Diagnosis of endometritis is based on the presence of
pus mixed with the vaginal mucus and the proportion of polymorphonuclear neutrophils
(PMNs) among epithelial cells [8–10].

PMNs contribute to the first line of defence in the process of bacterial infection in the
bovine uterus [11]. Neutrophils are recruited to inflammatory sites when inflammation
occurs and then kill microbes by oxidant-dependent pathways [12]. In the activated state,
PMNs produce and release superoxide anions and reactive oxygen species (ROS) to destroy
the invading bacteria [13]. In cells, the initially produced superoxide radical is dismutated
to hydrogen peroxide having a long half-life, which then diffuses and derives highly
reactive ROS, hydroxyl radical [14]. However, an excessive free radical (OH−, O2

−) load
induces damage to structural and functional macromolecules, including lipids, protein,
and RNA, but perhaps with the most severe repercussions on DNA [15]. The damaged
macromolecules impact higher order structures such as compromising the insulation of
organelles, e.g., endoplasmic reticulum, that maintain naturally high ROS. Pathological
perturbations of ROS may result [16,17]. The inflammatory reaction will be more severe
when invasion by pathogenic organisms or excessive free radicals produced by PMN cause
irreversible damage to endometrial epithelial cells [18].

Inflammation is a complex systemic response. One of the most prominent features
of the inflammatory response is the generation of a pro-oxidative environment due to
the production of high fluxes of pro-oxidant species [19]. NADPH (nicotinamide adenine
dinucleotide phosphate) oxidases (NOXs) are crucial enzymes that promote the production
of ROS in neutrophils during inflammation [20]. Previous studies showed that NOX2 and
mitochondria-derived ROS were required for the respiratory burst that occurs in activated
leukocytes [21]. Enhanced ROS generation in mitochondria at the site of inflammation
causes endothelial dysfunction and tissue injury [22]. ROS and superoxide anions have
high reactivity with the bacterial cell membrane [23], nucleic acids, and proteins, thereby
inducing microbial damage and death. However, these reactive molecules not only kill
bacteria but also cause oxidative damage to BEECs [24]. High neutrophil counts in the
endometrium of cows affected by endometritis suggest that oxidative stress may be among
the causes of impaired fertility due to the condition [25]. High concentrations of ROS are a
key indicator of many inflammatory diseases, and prolonged ROS production is a major
factor that underpins chronic inflammation. In summary, oxidative stress is a crucial source
of inflammation.

ROS emission accounts for approximately 2% of the total oxygen consumed by mi-
tochondria under physiological conditions [26]. The balance between ROS generation
and ROS scavenging is highly controlled, and oxidative stress is absent under normal
conditions [27]. Mitochondria store the energy generated in the inner mitochondrial mem-
brane as electrochemical potential energy during the processes of respiration and oxidation,
thereby causing an asymmetric distribution of protons and other ions on different sides of
the membrane, which forms the mitochondrial membrane potential (MMP) [28]. Super-
oxide anion is the main ROS that causes a decrease in the MMP [29]. A reduction in the
MMP means that the capacity of mitochondria to transport ATP is decreased, which is a
hallmark of cells during early apoptosis [30]. The accumulation of ROS and a decrease of
the MMP indicate that mitochondria are damaged significantly [31]. Mitochondrial damage
is an important feature of inflammation induced by oxidative stress. Severely damaged
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mitochondria lead to apoptosis [32]. The pathways of apoptosis are divided into the death
receptor-mediated extrinsic, mitochondrial-mediated intrinsic, and endoplasmic reticulum
stress-mediated pathways [33]. Mitochondrial-mediated apoptosis is characterized by
mitochondrial outer membrane permeability, followed by cytochrome c release into the
cytoplasm and activation of caspase [34]. The expression of pro-apoptotic proteins Bax and
Bak is increased by apoptotic stimuli, following which these proteins bind to pro-survival
Bcl-2 proteins to release Bax/Bak from inhibition [35]. Free Bax and Bak form oligomers,
which lead to cytochrome c release from mitochondria to the cytoplasm, which activates
the caspase cascade to induce apoptosis [36].

The present study aimed to investigate the relationship between oxidative stress and
graded endometritis in dairy uteri and the molecular mechanism of oxidative stress injury
to BEECs.

2. Materials and Methods
2.1. Tissue and Uterine Discharge Collection

All the uterine samples in our study are from Holstein-Friesian cows. To exclude the
interference of other diseases, cows with infertility were selected, and dairy cows with
mastitis, hoof disease, and other diseases were excluded. Fresh cow uteri were collected
from slaughterhouses and transported to the laboratory on ice within two hours. The
uterine cavity was exposed completely and was scraped for uterine discharge (UD). A
4 × 4 mm tissue section was obtained using biopsy forceps. Collected tissue was placed
into a saline solution (0.9%). The uteri tissue samples were divided into two parts: one
part was immersed immediately in liquid nitrogen for total protein and RNA extraction,
and the second section was placed into paraformaldehyde (4%) for histopathology using
routine haematoxylin and eosin (HE) staining.

2.2. Cytological Smear Preparation and Cytological Assessment

Duplicate cytology smears were prepared immediately after the UD samples were
collected. Slides for cytologic examination were prepared by rolling a disposable inocula-
tion ring with the smear onto a clean glass microscope slide. The slides were air-dried and
stained using the Diff-Quick staining protocol (Solarbio, Beijing, China). The slides with
smear are naturally dry and then fixed with Diff-Quik Fixative for 20 s. Then, Diff-Quik I
staining for 5–10 s and Diff-Quik II staining for 10–20 s was completed. After rinsing, the
slides were observed under a microscope. The cytological assessment was performed by
counting a minimum of 100 cells to determine the percentage of PMNs. The PMN percent-
ages were evaluated microscopically (magnification of 400×; Ni-U, Nikon, Tokyo, Japan)
by a single experienced observer who was blinded to the slides’ origin. At least 100 PMN
and epithelial cells were counted for each microscope field and used to calculate the PMN
proportion in the sample [(PMN cells)/(PMN + epithelial cells)]. At least three fields of
view were analyzed for each sample. Briefly, smears were evaluated microscopically, and
the proportions of PMNs, lymphocytes and epithelial cells were recorded.

2.3. Evaluation and Diagnosis of Dairy Endometritis

Endometritis in dairy cows is a controversial issue among practitioners due to the lack
of a diagnostic gold standard [37]. In most cases, the definitive diagnosis of endometritis
is made based on histological examination of endometrial tissue and the percentage of
PMN in vaginal discharge. The threshold value for PMNs as diagnostic for subclinical
endometritis depends on the time postpartum and varies from 5 to 18% [38]. It has also
been shown that a general threshold of 5% PMN is permissible for all cows between 21 and
62 days postpartum. Briefly, PMN and lymphocytes in the present study were counted in
histological sections of endometrial tissue specimens. Similarly, the proportion of PMNs
and lymphocytes to all cells were counted in UD. We deemed that severe endometritis (Se)
was present if the proportion of PMNs was >25% [38–40] in UD and was accompanied
by exfoliation or necrosis of endometrial epithelial cells. In contrast, we assessed that
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moderate endometritis (Moe) was present if the proportion of PMNs was 18–25% [41–43],
endometrial epithelial cells were flattened, and the proportion of mononuclear cells was
5–10%. Mild endometritis (Mie) was defined if the proportion of PMNs was 2–5% [44–46]
and mononuclear cells were 3–5% in lamina propria. Endometrial epithelial cells were
columnar when the proportion of PMNs was <3% [47–49] (Table 1).

Table 1. Histopathologic and cytological scoring criteria.

Histopathologic
Feature of

Epithelium

Mononuclear
in Lamina Propria (%)

Cytological
PMN% in Mucus Description

Columnar Mononuclear < 3% PMN < 2% Normal
Cuboidal 3–4% < Mononuclear < 5% 5% < PMN <18% Mild
Flattened 5% < Mononuclear < 10% 18% < PMN < 25% Moderate

Necrosis and loss 10% < Mononuclear 25% < PMN Severe

2.4. Cell Culture and Treatment

Fresh cow uteri were collected from slaughterhouses and transported to the laboratory
on ice within two hours. BEECs were isolated immediately from healthy cornua uteri and
were cultured in DMEM supplemented with penicillin (100 mg/mL) and streptomycin
(100 U/mL) with 10% FBS at 37 ◦C in a humidified atmosphere with 5% CO2. After
expanded culture, the BEECs were stored in liquid nitrogen for subsequent experiments.
BEECs were recovered and treated with 0, 50, 100, and 200 µM H2O2 when required. BEECs
were seeded on the 6-wells plates at a density of 2 × 105.

2.5. Total RNA Extraction and Quantitative Reverse Transcription PCR

Uterine tissue samples were thawed at low temperatures. Uteri samples and liquid
nitrogen were added to mortar; the samples were ground into powder at low-temperature
RNA, and protein was extracted. Total RNA from BEECs and endometrial tissues was
isolated using RNAiso Plus (Takara, Maebashi, Japan), according to protocols from the
manufacturer. Extracted RNA was quantified, and 1 µg of RNA was added to a genomic
DNA elimination reaction for reverse transcription into a cDNA template with gDNA
Eraser (Takara). Quantitative PCR was performed with a Bio-Rad CFX96 system using the
SYBR Green Plus Reagent Kit (Takara). The reaction conditions were as follows: 95 ◦C for
2 min, followed by 40 cycles at 95 ◦C for 10 s and 60 ◦C for 30 s. The mRNA expression
levels were measured relative to the mRNA of the β-actin reference gene using the 2−∆∆Ct

method. The primer sequences for each gene are reported in Table 2.

Table 2. Primer pairs used for q-PCR.

Gene Name ID Sequence Size (bp)

CAT NM_001035386.2 F: AGAGGAAACGCCTGTGTGAG
R: ATGCGGGAGCCATATTCAGG 115

SOD NM_174615.2 F: CTCTACTTGGTTGGGGCGTC
R: TCGAAGTGGATGGTGCCTTG 122

GPx NM_174076.3 F: AACGTAGCATCGCTCTGAGG
R: GATGCCCAAACTGGTTGCAG 121

NOX1 NM_001191340.1 F: TGTCTTTCCTGAGAGGCACC
R: TTTGTGGAAGGCGAGGTTGT 80

NOX2 NM_174035.4 F: CAAGATGGAGGTGGGCCAAT
R: GAGGTCAGGGTGAAAGGGTG 81

NOX4 NM_001304775.1 F: TCTGGACCTTTGTGCCT
R: GACGGATGACTTGTGACTG 95

IL-8 NM_173925.2 F: CATTCCACACCTTTCCACCC
R: AGGCAGACCTCGTTTCCATT 116

IL-10 NM_174088.1 F: CACAGGCTGAGAACCACG
R: AGGGCAGAAAGCGATGA 108
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2.6. Detection of Intracellular ROS

Intracellular ROS was detected using 2,′ 7′-dichlorofluorescein diacetate (DCFH-DA)
according to the manufacturer’s protocol (Beyotime, Shanghai, China). BEECs were seeded
on coverslips in 12-well plates, and the cells were attached completely within 12 h. The
culture was discarded at 70–80% confluency, and adhered BEECs were washed three times
with PBS. BEECs were incubated with a serum-free medium containing 10 µmol/L DCFH-
DA and then treated with various concentrations of H2O2 (0, 50, 100, or 200 µM) at 37 ◦C
for five hours. Rosup was used as a positive control for inducing oxidative stress. The cells
were observed by fluorescence microscopy (Nikon, Tokyo, Japan), and the fluorescence
intensity was evaluated with ImageJ 1.47 v software.

2.7. Detection of Mitochondrial Membrane Potential

The decrease of MMP is characteristic of the early stage of apoptosis. 5,5′,6,6′-
Tetrachloro-1,1′,3,3′- tetraethyl-imidacarbocyanine iodide (JC-1) is an ideal fluorescent
probe that is used widely to detect MMP. At higher mitochondrial membrane potentials, JC-
1 accumulates in the matrix of mitochondria to form polymers (J-aggregates) that produce
red fluorescence. When the mitochondrial membrane potential is low, JC-1 could not accu-
mulate in the matrix of mitochondria that exists as a monomer and emits green fluorescence
exposed to blue light. MMP was detected with the JC-1 kit (Beyotime); the JC-1 solution
was diluted 200 times. BEECs were stimulated with various concentrations of H2O2 (0, 50,
100, or 200 µM) for five hours, followed by the addition of a JC-1 working solution (0.6 mL).
After incubation for 20 min at 37 ◦C, the BEECs were washed with phosphate-buffered
saline three times. The fluorescence intensity was measured by confocal laser scanning
microscopy.

2.8. Transmission Electron Microscopy

BEECs were fixed using 2.5% glutaraldehyde at room temperature, washed by PBS,
fixed by osmic acid, washed by PBS, and dehydrated by a graded ethanol series. After
embedment in LR-White, the sample was cut into ultrathin sections. The ultrathin sections
were stained using 3% uranyl acetate–lead citrate cream and photographed using an
HT7800 transmission electron microscope (Hitachi, Tokyo, Japan).

2.9. Protein Extraction and Western Blotting

Total protein was extracted from cells and uterine tissue with a protein extraction kit
(KeyGEN, Changchun, China) according to protocols from the supplier. Protein concentra-
tion was determined using a bicinchoninic acid assay (KeyGEN). Equal concentrations of
total protein were separated by SDS-PAGE (12%). Proteins were transferred onto polyvinyli-
dene difluoride membranes and were blocked for two hours with TBST (50 mmol/L Tris,
pH 7.6, 150 mmol/L NaCl, and 0.1% Tween 20) containing 5% BSA. The membranes were
incubated with primary antibodies diluted in TBST overnight at 4 ◦C. Antibodies against
cytochrome C (ab133504), caspase-3 (ab184787), BAX, (ab32503), and Bcl-2 (ab182858) were
from Abcam (Shanghai, China). After washing three times in TBST, the membranes were
incubated with horseradish peroxidase-conjugated secondary antibodies for two hours at
room temperature and then washed three times for 10 min. Protein bands were visualized
by exposure to an enhanced chemiluminescence detection system imager (Tanon Biotech,
Shanghai, China) with an enhanced chemiluminescence solution (DiNING, Beijing, China).
The relative intensity of each band was assessed by Image J 1.47 v software.

2.10. Statistical Analysis

Statistical analysis was performed using SPSS Statistics 25 (Chicago, IL, USA). In
our study, each experiment was repeated three times; a one-way ANOVA was used, and
the results were compared between groups or with the control for multiple comparisons
with Bonferroni correction. Differences between means were determined using Dun-



Animals 2022, 12, 2444 6 of 16

can’smultiple comparisons. All data are presented as means ± SD. A p-value < 0.05 was
considered statistically significant, and a p-value < 0.01 was considered highly significant.

3. Results
3.1. Examination of Bovine Uteri and Uterine Discharge

Uteri were classified according to different levels of inflammation to investigate the
relationship between graded endometritis and oxidative stress in the bovine endometrium.
Uteri were divided into four groups based on the results of HE staining and cytological
assessment. Three uteri were graded as having Se (Figure 1D). The PMN counts of UD in
this group were >50%, most luminal epithelial cells were desquamated, epithelial necrosis
and nuclear condensation were evident, and great numbers of PMNs and lymphocytes
were infiltrated in the lamina propria (Figure 1D,H). Five uteri were graded with Moe with
significant lymphocyte infiltration, relatively few luminal epithelium cells desquamated,
and few PMNs in UD (Figure 1C,G). Six uteri were graded as displaying Mie, with few
lymphocytes in the epithelial layer, scanty presence of red blood cells in lamina propria,
and hardly any PMNs in UD (Figure 1B,F). Twelve uteri were graded as normal (He) with
the scanty presence of inflammatory cells (Figure 1A,E). Few granulocytes are present
in UD without endometritis (Figure 1I), whereas more granulocytes occur in UD with
endometritis (Figure 1J).Animals 2022, 12, x FOR PEER REVIEW 7 of 17 
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was calculated. E indicates a luminal epithelial cell, G denotes a granulocyte, L is a lymphocyte, S 
indicates a stroma cell, and R is a red cell, BM is a basement membrane. Images were magnified 400 
×. One-way ANOVA analysis was used to compare to the control group. ## p < 0.01, ### p < 0.001. 

  

Figure 1. Histopathologic and cytological characterization of the bovine uterus. (A–D) Healthy
dairy cow uterus (He), dairy cow uterus with mild endometritis (Mie), dairy cow uterus with
moderate endometritis (Moe), and dairy cow uterus with severe endometritis (Se), respectively.
(E–H) Corresponding histopathological characterization of samples in panels (A–D). (I) Represen-
tative cytology by cytobrush image of healthy dairy cow uterus. (J) Representative cytology by
cytobrush image of the uterus with endometritis. (K) Percentage of PMNs of UD in He, Mie, Moe,
and Se groups. Different fields were randomly selected, 100 cells were counted, and the percentage
of PMN was calculated. E indicates a luminal epithelial cell, G denotes a granulocyte, L is a lym-
phocyte, S indicates a stroma cell, and R is a red cell, BM is a basement membrane. Images were
magnified 400×. One-way ANOVA analysis was used to compare to the control group. ## p < 0.01,
### p < 0.001.
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3.2. Glutathione Peroxidase, Superoxide Dismutase, Catalase Show Reduced Expression and IL-8,
IL-10 Show Increased Expression in Bovine Uteri with Inflammation

Real-time PCR was performed to examine differences in the expression of anti-
oxidative stress-related enzymes in uteri with endometritis compared to healthy uteri.
The results showed that the expression of glutathione peroxidase (GPx) in the Moe and
Se groups was reduced significantly (p < 0.01) compared with the He group (Figure 2C).
Superoxide dismutase (SOD) expression also was less (p < 0.05) in the endometrium in
the Moe and Se groups compared with the He group (Figure 2B). Similarly, catalase (CAT)
expression in the endometrium was reduced significantly (p < 0.01) in the Moe and Se
group compared with normal (Figure 2A). In contrast, expression of SOD and CAT was
not significantly different in the Mie group compared with the He group, but GPx gene
expression was increased significantly (p < 0.05) (Figure 2). The expression of IL-8 in the Se
group was increased (p < 0.001), but there was no significant difference in the Mie group
and Moe group compared with the He group (Figure 2D). IL-8 expression in the Moe group
and Se group was increased significantly (p < 0.001) compared with the normal (Figure 2E).
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Figure 2. The mRNA expression levels of antioxidant stress related enzymes CAT (A), SOD (B), GPx
(C) and inflammation-related IL-8 (D), IL-10 (E) in uterine tissue were assessed by RT-qPCR. The
experiment was repeated three times. Expression data were normalized to that of β-actin. One-way
ANOVA analysis was used to compare to the control group. Significance differences are marked as
# p < 0.05, ## p < 0.01, ### p < 0.001, ns no significance.

3.3. H2O2 Induces Increased Inflammatory Cytokines and Decreased Antioxidant Enzymes in BEECs

An in vitro oxidative stress model targeted to bovine endometritis was established, and
various concentrations of H2O2 (50, 100, and 200 µM) were used to induce oxidative stress
in BEECs [50,51]. The expression of the genes for inflammation-related factors IL-8 and
IL-10 increased in BEECs (p < 0.01) following stimulation with 50 or 100 µM H2O2 for five
hours compared with the untreated cells. The expression of IL-8 and IL-10 also increased
significantly in the 200 µM group but less than with 50 or 100 µM H2O2 (Figure 3G,H).
Interestingly, IL-8 increased without dose-dependence after H2O2 stimulation (Figure 3G).
Antioxidant enzymes are not only the main contributors to the elimination of oxygen
free radicals but also are markers of antioxidant stress. The expression of GPx decreased
significantly (p < 0.01) after incubation of BEECs with H2O2 compared with the control
group (Figure 3D). Additionally, 100 and 200 µM H2O2 significantly inhibited the expression
of SOD (p < 0.01) and CAT (p < 0.05), although 50 µM H2O2 had no significant effect on the
expression of these enzymes (Figure 3E,F). NOXs are one of the major sources of cellular
ROS, high levels of which are the principal cause of oxidative stress. The expression of
the genes for NOX1 and NOX4 was increased significantly after incubation with H2O2
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compared with the untreated control (Figure 3A,C). In contrast, we also observed that the
expression of NOX2 did not alter significantly after incubation with 50 µM H2O2, but that
expression increased significantly at concentrations of 100 and 200 µM H2O2 (Figure 3B).
Taken together, these data suggest that H2O2 induces higher expression of inflammatory
and oxidative stress-related factors but lower expression of antioxidant enzymes in BEECs.
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Figure 3. Oxidative stress-related factors and inflammatory cytokines in BEECs treated with different
concentrations of H2O2 for five hours were detected. (A–C) Expression of ROS-generating oxidases
NOX1, NOX2, and NOX4, respectively. (D–F) Expression of antioxidant stress-related factors GPx, CAT,
and SOD, respectively. (G,H) Expression of inflammatory cytokines IL-8 and IL-10, respectively. The
experiment was repeated at least three times. All data are means ± S.E. One-way ANOVA analysis was
used to compare to the control group. # p < 0.05, ## p < 0.01, ### p < 0.001, ns no significance.

3.4. H2O2 Increases ROS and a Decrease of the MMP to Damage Mitochondria in BEECs

ROS oxidizes non-fluorescent DCFH-DA intracellularly to produce green, fluorescent
DCF. The strength of the fluorescence correlates with higher ROS levels. Green fluorescence of
H2O2-treated cells increased significantly compared with the untreated group, although fluo-
rescence intensity was not significantly different between the H2O2-treated groups (Figure 4A).
These results suggest that 50, 100, and 200 µM H2O2 increase intracellular ROS levels to similar
values in BEECs (Figure 4C). We also examined the MMP to ascertain whether exposure of
BEECs to H2O2 affects membrane integrity. Data obtained from JC-1 staining showed that
the MMP decreased significantly after H2O2 stimulation compared with the untreated group
(Figure 4B), although there were no significant differences among the H2O2-treated groups.
Meanwhile, mitochondrial morphology was observed by transmission electron microscope
(Figure 4E). After treatment with H2O2, for five hours the mitochondria showed swelling and
vacuolization of mitochondria, clearing of the mitochondrial matrix, and breakage of mito-
chondrial cristae. These results suggest that mitochondria are damaged after H2O2 exposure.
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In summary, the increase in ROS and the decrease in MMP indicate that mitochondria are
damaged after treatment of BEECs with H2O2.
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Figure 4. H2O2-induced intracellular ROS increase and MMP decrease in BEECs. (A) BEECs were
exposed to the indicated concentrations of H2O2 for five hours. Rosup was a positive control. ROS
levels were detected by DCFH-DA fluorescence (green). (B) MMP (mitochondrial membrane poten-
tial) was detected with the JC-1 kit. Cellular mitochondria with normal MMP emitted red fluorescence
(J-aggregate), while those with abnormal MMP showed green fluorescence (J-monomer). (C) Quan-
tification of intracellular ROS levels relative to the untreated group. (D) Quantitative analysis of the
MMP. The MMP was calculated using Image-J as red/green fluorescence. (E) After being exposed to
the indicated concentrations of H2O2 for five hours, the mitochondria of BEECs were analyzed by
transmission electron microscopy. The typical mitochondrial structures are clearly visualized: black
arrowheads depict the mitochondria. The data are representative of three independent experiments.
The optical density was calculated for each sample with ImageJ 1.47v software. The experiment
was repeated in triplicate. One-way ANOVA analysis was used compared to the control group.
## p < 0.01, ### p < 0.00.

3.5. Pro-Apoptosis of Mitochondria-Dependent Proteins Increases after Treatment with H2O2

Mitochondria may be severely damaged due to ROS that is released during inflamma-
tion. We detected mitochondrial-dependent apoptosis proteins in BEECs after treatment
with H2O2 to examine this hypothesis further. The expression of mitochondria-dependent
apoptosis proteins cytochrome C, caspase-3, and BAX increased in BEECs with increasing
H2O2 concentrations compared with the untreated control (Figure 5). Additionally, we
monitored the expression of the Bcl-2 protein that regulates apoptosis. Exposure of BEECs
to H2O2 resulted in reduced expression of Bcl-2 (Figure 5).
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Figure 5. BEECs were treated with H2O2 at different concentrations for five hours. Cells were
prepared for Western blotting with antibodies against caspase-3, Bcl-2, BAX, and cyto-c. Expression
relative to the β-actin reference was quantified using gray-scale analysis by ImageJ 1.47v software.
The data are representative of three independent experiments. One-way ANOVA analysis was used
to compared to the control group. # p < 0.05, ## p < 0.01, ### p < 0.001. (A) The protein expression of
caspase-3, Bcl2, BAX, Cyto-c; (B) Expression level of caspase-3 relative to β-Actin; (C) Expression
level of BAX relative toβ-Actin; (D) Expression level of Bcl-2 relative to β-Actin; (E) Expression level
of Bcl2:BAX; (F) Expression level of Cyto-c relative to β-Actin. Original Western Blot could be found
as Supplementary Material.

4. Discussion

The uterus in a healthy state is a sterile environment. Postpartum cow uterine in-
fection is a major cause of endometritis. An unhealthy uterus is detrimental to embryo
implantation. Therefore, dairy cow uterine infection is a significant cause of economic loss
and animal distress [52]. The grading of endometritis is conducive to understanding the
pathogenesis of bovine endometritis to provide strategies for the treatment of the condition.
Hence, in the present study, we aimed to investigate the relationship between oxidative
stress and graded endometritis in dairy uteri and the molecular mechanism of oxidative
stress injury to BEECs.
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Dairy cow endometritis is quantifiable by the proportion of neutrophils in cytology
samples which has led to the use of the term cytological endometritis as a more descriptive
diagnosis [10]. Cytological assessment has been recommended as a reliable method for de-
termining the percentage of polymorphonuclear leukocytes at the endometrial surface [53].
The diagnosis of endometritis in dairy cows is a controversial topic in bovine health due to
the lack of a diagnostic gold standard [54,55], and no diagnostic test is considered 100%
accurate [56]. Endometritis is defined histologically as the presence of inflammatory cells
in the uterine endometrium with disruption, or not, of the epithelial layer [57]. Histopathol-
ogy is considered the best way to diagnose endometrial alterations [58], mainly because
this approach allows direct visualization of both acute and chronic alterations in the epithe-
lium and stratum compactum of the endometrium (Figure 1). In this study, mean PMN
counts based on cytological smear and histopathological examination were significantly
different between healthy and endometritis groups (Figure 1F). However, PMN count
alone is insufficient to indicate the inflammation level. Uterine biopsy has been reported
to be a reliable technique for assessing uterine function and health, but the procedure is
detrimental to further fertility [59] and failure of embryo implantation [60]. Consequently,
fresh uteri from slaughterhouses were studied here to grade endometritis according to
PMN count and HE staining (Figure 1). The high expression of the anti-inflammation
factor IL-10 antagonizes other inflammatory factors to inhibit inflammation response. IL-8
induces fever, participates in pathological inflammatory damage, and promotes the release
of inflammatory mediators. High expression of IL-8 and IL-10 in endometritis groups
proves that it is consistent with the pathological examination and cytological examination.

ROS are among the main cellular electrophiles involved in a delicate and easily
corruptible balance between biological benefit and damage [61]. ROS are of three major
types, namely hydrogen peroxide, OH−, and O2

−, and affect cells mainly by DNA damage
and reducing MMP. It has been reported that oxidative damage induced by ROS and
subsequent cell death are associated with several human diseases, such as diabetes [62,63].
Mitochondria are equipped with SOD which is one of the most efficient ROS scavengers.
SOD is the only factor that converts superoxide into hydrogen peroxide [19]. In addition,
GPx and CAT convert hydrogen peroxide into water and thereby play important roles
in preventing the formation of hydroxyl radicals. Wu et al. [64] found that salvianolic
acid C enhanced the expression of SOD, GPx, and the antioxidant glutathione to mitigate
mitochondrial oxidative stress and the inflammatory response. We tested for SOD, GPx, and
CAT to investigate the antioxidant levels in uterine tissue with endometritis. The expression
of these enzymes was decreased significantly in the Moe and Se groups compared with the
He group, and the levels of IL-8 and IL-10 were significantly increased in the Moe and Se
groups. Thus, these data indicate that there is a disequilibrium of oxidative stress-related
enzymes in bovine uteri with endometritis. Exposure to H2O2 is a widely used procedure
to induce oxidative damage/stress in cellular models [65]. BEECs were exposed to graded
concentrations of H2O2 to simulate the cellular environment during endometritis. Previous
studies indicated that ROS were generated primarily by NOX2 and activated inflammation
in microglia [66]. Here, we observed that high expression of NOX1, NOX2, and NOX4
promoted intracellular ROS accumulation and that MMP simultaneously was decreased.
Based on a previous report [66,67], NOXs promote intracellular ROS accumulation and
exacerbate the inflammatory response in certain types of mammalian cells. The function
of NOXs in regulating redox processes and inflammation is a complicated process. The
findings here provide evidence that NOX1, NOX2, and NOX4 promote ROS generation
to express IL-8 and IL-10 in BEECs (Figure 3). Thus, the results demonstrate that H2O2
induces inflammation and oxidative stress in BEECs.

Mitochondria are the energy centers of cells and are essential for cellular survival.
MMP is a key indicator of cell health and injury due to the important role that it plays in
adenosine 5’-triphosphate synthesis [68]. Previous studies have reported that monitoring
of MMP is a good indicator for the assessment of cell status and diagnosis of diseases [69].
As shown in Figure 4B,D, treatment of BEECs with H2O2 significantly decreased MMP
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compared with the control group. Mitochondrial damage causes the decrease of MMP,
mitochondrial swelling, and ridge disappearance [70,71]. Electron microscope examination
here showed that after treatment of BBECs with H2O2, mitochondria were damaged with
mitochondrial swelling and ridge disappearance (Figure 4E).

At higher ROS levels, longer mitochondrial permeability transition pore openings
may release a ROS burst leading to the destruction of mitochondria and, if propagated
from mitochondrion to mitochondrion, of the cell itself [27]. Neitemeier et al., found that
mitochondrial damage induced neuronal apoptosis by ferroptosis [72]. Moreover, persistent
oxidative stimulation not only attenuates the effects of cellular antioxidative systems but
also damages mitochondria resulting in high expression of proapoptotic proteins [73].
Consistent with a previous report [74,75], we found that the expression of apoptosis-related
protein Bax increased significantly after treatment of BEECs with H2O2 (Figure 5A). Bcl-2
family members, including Bcl-2, Bax, Bcl-w, and Bcl-xL, are crucial integrators of signals
for cell survival and death [76]. The ratio of Bcl-2/BAX appears to determine the survival
or death of cells following an apoptotic stimulus [77]. Previous studies showed that a
reduction in the Bcl-2/BAX ratio with a simultaneous decrease in MMP indicated that
mitochondria-damage mediated pathways induced apoptosis [78,79]. The shift in Bax/Bcl-
2 ratio in favor of apoptotic signal, a reduction in the Bcl-2/BAX ratio increased levels of
cytochrome c release and the expression of proapoptotic protein caspase-3 [80]. According
to our data, the ratio of Bcl-2/BAX (Figure 5) decreased significantly with the decrease in
MMP and increased ROS in BEECs undergoing oxidative stress (Figure 4). Our findings
are consistent with previous reports in which the aggravation of oxidative stress during
inflammation caused increased expression of caspase-3 and cytochrome c (Figure 5). It has
been demonstrated that an increase in the release of cytochrome c from the mitochondria
into the cytosol is regulated by Bcl-2 family proteins [81]. Therefore, the regulatory interplay
between the Bcl-2 family and cytochrome c is essential for the control of apoptosis. In
other words, high levels of ROS and decreased MMP under oxidative stress conditions
damage the mitochondria by a reduction in the Bcl-2/BAX ratio and facilitate the enhanced
expression of cytochrome c and caspase-3. Taken together, these data provide evidence
that damage caused by oxidative stress induces BEECs to express mitochondria-dependent
pro-apoptosis proteins.

5. Conclusions

In conclusion, our findings reveal that oxidative stress occurs in the bovine uterus with
endometritis. Oxidative stress is correlated positively with the severity of endometritis, and
H2O2-induced oxidative stress promotes apoptosis in a mitochondrial damage-dependent
pathway during inflammation in BEECs.
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