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Abstract: Robustness against background noise and reverberation is essential for many real-world
speech-based applications. One way to achieve this robustness is to employ a speech enhancement
front-end that, independently of the back-end, removes the environmental perturbations from the
target speech signal. However, although the enhancement front-end typically increases the speech
quality from an intelligibility perspective, it tends to introduce distortions which deteriorate the
performance of subsequent processing modules. In this paper, we investigate strategies for jointly
training neural models for both speech enhancement and the back-end, which optimize a combined
loss function. In this way, the enhancement front-end is guided by the back-end to provide more
effective enhancement. Differently from typical state-of-the-art approaches employing on spectral
features or neural embeddings, we operate in the time domain, processing raw waveforms in both
components. As application scenario we consider intent classification in noisy environments. In
particular, the front-end speech enhancement module is based on Wave-U-Net while the intent
classifier is implemented as a temporal convolutional network. Exhaustive experiments are reported
on versions of the Fluent Speech Commands corpus contaminated with noises from the Microsoft
Scalable Noisy Speech Dataset, shedding light and providing insight about the most promising
training approaches.

Keywords: joint training; speech enhancement; intent classification

1. Introduction

Recently, the use of audio-visual platforms e.g., Microsoft Teams, Google Meet, Zoom,
etc., for smart-working, remote collaborations and many other applications has been
growing exponentially. In these cases, the speech signal is the predominant tool used for
communication, and sharing ideas between people [1]. Unfortunately, in these application
scenarios, speech signals are usually corrupted by environmental noises or by the presence
of other sound sources, e.g., TV, or other speakers in cocktail party scenarios [2,3]. Despite
the presence of this interference, humans have the ability to extract the target speech signals,
while ignoring noises and other interfering signals [4,5]. Unlike humans, many speech
applications, like Automatic Speech Recognition (ASR), suffer in the presence of these
adverse noisy conditions which deteriorate the speech quality and intelligibility, leading to
considerable performance drops [6,7], especially in low level of signal-to-noise ratio (SNR).

In recent years, substantial progress has been made to mitigate the noise effect. A
possible approach is to train, or adapt the models on the noisy data [8]. This can be done
either by collecting application specific data or through the usage of data augmentation
strategies [9]. However, it has to be considered that gathering large noisy datasets is costly
and time consuming while, in general, all possible noisy conditions cannot be known a-
priori making unfeasible the data augmentation based approach. Therefore, an alternative
method is to use a speech enhancement (SE) front-end to improve the speech quality and
intelligibility. SE, which is implemented as computer algorithms able to extract the target
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speech from noisy mixtures, is a fundamental task in the field of speech processing, and
is currently integrated in wide range of applications such as: mobile telecommunication,
speaker recognition and ASR systems. During the last decades, tremendous growth has
been observed in the speech enhancement research area, in particular towards improving
the robustness of ASR systems in noisy conditions. Figure 1 shows a general diagram of a
speech enhancement system.

Figure 1. The basic diagram of speech enhancement system

Mathematically, denoting x[n] as the clean speech signal and s[n] as the additive noise
(the environmental noise is also hypothesized to be additive) at time index n, then the noisy
speech signals y[n] can be expressed as:

y[n] = x[n] + s[n] (1)

The goal of speech enhancement algorithms is to estimate the enhanced signal x̂[n]
from the noisy signal y[n], such that:

x̂[n] ≈ x[n] (2)

Classic techniques based on signal processing are, for example, spectral subtraction,
Wiener filter for single channel scenario and beamformers, which employ microphone
arrays to further reduce the noise effect [10]. In particular, the minimum variance distortion-
less response (MVDR) beamformer [11] is the most common solution, that employs a multi-
channel Wiener filter [12] as post-filter. Unfortunately, the effectiveness of these techniques
in reducing the impact of noise, i.e., improving the signal-to-distortion ratio (SDR) and the
SNR, often does not lead to an improvement of ASR accuracy in terms of the word error
rate (WER). In addition, signal processing methods perform poorly in presence of highly
non-stationary noise, mainly because they rely on estimating of static spectral properties of
the noise component [13].

Recently, the progress of deep learning algorithms has brought substantial improve-
ments also in the SE field [14–19]. Deep learning techniques are data-driven approaches
that frames the SE task as a supervised learning problem aiming at reconstructing the target
speech signals from the noisy mixture. A very popular set of neural spectral-based methods
employ neural networks to estimate Time-Frequency (T-F) masks which are then used to
separate the T-F bins associated to the target source and the noise. The network is trained
using either ideal binary mask (IBM) or ideal ratio mask (IRM) as training targets [20,21].
Typically, the networks are trained using the mean squared error (MSE) either on the masks
or on the reconstructed signal [22,23]. Despite the promising performance achievable in
terms of SDR and intelligibility, the presence of artifacts in the reconstructed signals com-
promises the performance of further processing stages. In addition, only the magnitude of
the spectrogram is enhanced, while the phase is left unprocessed.

One solution that can mitigate these issues is to implement the enhancement task in the
time domain and process the raw waveforms [24]. In this work, we aim at investigating pos-
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sible ways to optimize the front-end speech enhancement not only in terms of signal quality
but also to take into account the performance of the subsequent back-end component.

In particular, we address the intent classification task on noisy data and we propose a
pipeline that integrates Wave-U-Net [25], a time-domain enhancement approach, with an
end-to-end intent classifier implemented with a time-convoluted neural model.

Our contribution to this task is to investigate methods to jointly optimize the front-end
speech enhancement for noise removal and the back-end intent classification task. To the
best of our knowledge, this the first attempt to jointly train an end-to-end neural model
for both speech enhancement and intent classification in the time domain. This paper
extends our previous preliminary work published in [26], where we investigated the use of
pre-trained speech enhancement models in combinations with intent classification. With
respect to this work, the previous paper does not consider joint training of the two model.
Moreover, the back-end operates in the frequency domain.

The rest of the paper is organized as follows: Section 2, we survey the recent joint
training approaches for different speech tasks. Section 3, we explain each component in the
proposed system description. In Section 4, we report and discuss our experimental results.
Finally, in Section 5 we conclude our work.

2. Related Work on Jointly Training of Speech Enhancement with Different
Speech Tasks

Three main strategies can be considered to incorporate a speech enhancement front-
end into different speech-based applications. The first one consists in training the back-end
based component (i.e., the IC classifier in the case of this work) on clean speech signals,
while at inference stage a speech enhancement front-end is integrated for noise removal [27].
The main disadvantage of this approach is represented by distortions introduced by the
front-end (i.e., the speech enhancement module) that didn’t occur in the training data of
the back-end. However, this strategy is still beneficial in different noise-robust speech
based applications.

To overcome this limitation, the second strategy filters the training data of the back-end
with speech enhancement, so that the back-end component works on the enhanced features.
This strategy is useful in strengthen the back-end against noise, but it is highly dependent
on the speech enhancement performance [28]. In general, it was found to be better training
the back-end on noisy data-sets, if they contain enough samples of the noise present in the
operating conditions on the field.

The third strategy is to make the back-end component work on the noisy speech, while
at inference noisy features are fed either to the back-end directly or, first, to the speech
enhancement module. These multi-condition training strategy has shown promising results
in [29], but its performance in unmatched conditions is poor [30]. Each strategy has its own
advantages and disadvantages, and it is highly dependent on the application domain.

Jointly training, the strategy proposed in this paper aims to jointly adjusting the
parameters of a neural (front-end) speech enhancement model and a neural (back-end)
model designed for a specific task (e.g., ASR, voice activity detection, or intent classification).
Thus, the speech enhancement front-end provides the “enhanced speech” desired by
the back-end model. In this way the back-end model guides the front-end towards the
execution of a better discriminative enhancement. Figure 2 shows the schematic diagram of
a conventional joint training approach including speech enhancement and an end-to-end
(E2E) back-end. Note in the figure the two different losses defined for the front-end and the
back-end that will be combined in a global loss as will be explained in Section 3.3.
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Figure 2. Schematic diagram of the conventional joint training speech enhancement with different
back-end.

In the next sub-sections, we survey the most recent research based on joint training
speech enhancement with other back-ends e.g., ASR and voice activity detection.

2.1. Jointly Training Speech Enhancement with Voice Activity Detection (VAD)

Many research works had been conducted to improve the VAD performance in low
SNR environments. Typically the basic solution is to integrate a SE front-end as a pre-
processing stage to eliminate noise [31].

The authors of [32,33] trained the VAD based on the the denoised speech signals
obtained from the SE front-end in which both the front-end model and the VAD model
are jointly optimized and fine-tuned. Later it was observed that, training VAD directly
based on the denoised signals resulting from the SE front-end may decrease the VAD
performance, especially when the performance of the SE is poor [34]. To mitigate this effect
several researches integrates advanced SE front-end to extract the denoised features for
VAD training [35].

Inspired by the performance of U-Net in the field of medical imaging segmentation [36],
the authors in [37] integrated a SE front-end based on U-Net to estimate both clean and
noise spectra simultaneously, while the the VAD is trained directly on the enhanced signals.

Another contribution is done in [38], in which a variational auto-encoder (VAE) is
used to denoise the speech signals while the VAD is trained on the latent representation of
the VAE. The authors of [34], instead of training the VAD on the latent representation of the
VAE, concatenate the noisy acoustic features with the enhanced features estimated from a
convolutional recurrent neural network.

Finally, Refs. [39,40] proposes the use of a multi-objective network to jointly train SE
and VAD to boost their performance. In this system both modules share the same network
with different loss functions. Unfortunately, this technique weaken the performance of the
VAD module.

2.2. Jointly Training Speech Enhancement with ASR

An early attempt for jointly training speech enhancement with ASR was proposed
in [41], where a front-end based feature extraction was jointly trained with a Gaussian Hid-
den Markov Model back-end and optimized with a maximum mutual information criterion.
Towards this direction, the authors in [42] proposed a novel jointly training approach by
concatenating a deep neural network (DNN) based speech separation module, a feature
extractor based on a filter-bank and an acoustic model, and train these models jointly.

The authors of [43], beside investigating feature mapping based on DNN, jointly
trained a single DNN for both feature mapping and acoustic modelling. The proposed
approach showed a clear improvement in the ASR performance.

In [44] the authors addressed the problem of joint training when the front-end output
distribution change dramatically during model optimization, noticing a performance
drawback on the ASR task due to the fact that the back-end needs to deal with a non-
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stationary input. To mitigate this effect, the authors proposed a a joint-training approach
based on a fully batch-normalized architecture.

Inspired by its performance in the computer vision, the authors of [45] investigated
the usage of generative adversarial networks (GAN) in the speech enhancement area. They
proposed a joint training framework based on adversarial training with self-attention
mechanism for ASR noise robustness. The proposed system consists of a self-attention
GAN for speech enhancement with a self-attention end-to-end ASR model. Finally, a recent
research in [46] proposes a joint training approach based on a gated recurrent fusion (GRF)
for ASR noise robustness.

3. System Description

As previously mentioned, this paper tackles the problem of intent classification (IC)
in noisy environments considering the combination of a speech enhancement component,
based on the Wave-U-Net architecture [25], and a time convolutional network (TCN) [47]
that performs the intent classification task. Figure 3 shows the complete pipeline of the
proposed system. The following subsections describe each module in details.

Figure 3. The full pipeline of our intent classification scheme, including speech enhancement and
intent classifier.

3.1. Wave-U-Net for Speech Enhancement

Recently, time-domain approaches for speech enhancement operating directly on the
raw wave-forms have been proposed [48–51]. Among them, U-Net [52] was successively
improved towards Wave-U-Net [25], allowing to achieve promising results in comparison
with other approaches.

The Wave-U-Net model consists of 3 components [53]: (a) an encoder made by multiple
1-D fully convolutional down-sampling blocks; (b) a 1-D convolutional layer called bottle-
neck layer; and (c) a decoder made by a series of 1-D fully convolutional up-sampling blocks
(this architecture is depicted in Figure 3). Note that in this architecture skip connections
(i.e., the green arrows in the left part of Figure 3) are applied between each down-sampling
layer and the corresponding up-sampling layer of the model.

In details, the input to Wave-U-Net is a noisy signals y[n], n = 0, . . . , L− 1, where L is
the number of samples. During training, low-dimensional high level features are computed
at different time scales using a series of downsampling blocks. These features are then
concatenated with its corresponding local, and high resolution features computed from the
upsampling blocks. In case of monaural speech enhancement, the network is trained to
map the noisy signal y[n] to its enhanced counterpart x̂[n] using the clean signal x[n] as
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the training targets, by minimizing the mean squared error (MSE) loss between x[n] and
x̂[n], i.e.,:

LSE = ∑
n
‖x[n]− x̂[n]‖2 (3)

3.2. Intent Classification

The IC task aims to recognize the intents encoded in a given spoken utterance [54].
This task is usually implemented by processing the outputs of an ASR system with natural
language processing (NLP) tools, in order to produce a semantic interpretation of the input
speech. For example, in smart home applications an utterance like “increase the sound”
might correspond to an intent represented with the following filled slots: action: “increase”,
type: “sound”, count: “None”, place: “None”. A survey reporting fundamentals of spoken
language understanding (SLU) technology can be found in [55,56].

Recently, different approaches that perform this task in an E2E fashion have been
investigated with excellent performance on several data sets. The E2E paradigm uses a
single neural model to map a spoken input into the corresponding intents, thus optimizing
directly the classification metrics and avoiding error propagation caused by ASR errors.
Some interesting models and related results in this direction can be found in the works
reported in [57–60]. These approaches have been proved to be effective both on large data
sets, such as Google Home [58,61], and on a smaller data set, such as the Fluent Speech
Command [57]. As reported in [57], the reason for this is manifold: (a) E2E models avoid
using either useless information or information contaminated by errors in the ASR output;
(b) it learns directly the metric used in the evaluation phase; and (c) it can take advantage
from supra-segmental information contained in the speech signal to process.

In this work, we use the model described in Figure 4a, which is based on Conv-TAS
Net, a neural architecture introduced for time audio separation [47]. The model processes
the enhanced signals from the SE front-end as input. The model architecture consists of a
normalization layer followed by a 1-D convolutional layer that maps the input features into
bottleneck features with 64 channels. The input layer is followed by 2 convolutional blocks,
each of them includes 5 residual blocks, with SoftMax activation function. Each residual
block consists of 1-D dilated convolutional layers, normalization layers with Parametric
Rectified Linear Unit (pReLU) activation function as shown in Figure 4b. The dilation factor
is increased for each successive residual block. Then, 64 channels for bottleneck features
and 128 channels for depth-wise separable convolutional layers are used, respectively.

Skip connections are also used between each residual block. The IC classifier is trained
to predict the target intent by minimizing the cross entropy loss between the actual and
predicted labels LIC, i.e.,:

LIC = − 1
T ∑

t
log(pt) (4)

where T is the number of training samples and pt is the probability of the tth target sample.

3.3. Joint Training Architectures

Training the two components in a joint way typically provides better performance than
training the models independently [38,40]. Therefore in this work we investigate different
model architectures varying the interconnection between the speech enhancement and
the intent classifier components, as shown in Figure 5. The Joint Training (JT) approach,
depicted in Figure 5a, is the most straightforward combination strategy where the IC
module receives as input the enhanced signals. The Bottleneck approach (BN) is depicted
in Figure 5b. Instead of the reconstructed time domain signal, this combination uses the
bottleneck features of the SE component as input to the intent classifier. Finally, Figure 5c
shows the Bottleneck-Mix (BN-Mix) strategy: a more articulated combination approach
which concatenates the noisy mixture with the bottleneck representations.
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Figure 4. The general architecture of: (a) Time Convolutional network for intent classification. (b) The
architecture of the residual block

Figure 5. Three strategies of the proposed joint training approaches: (a) based on the mixture signals
(JT). (b) based on bottleneck representation (BN). (c) based on the concatenation between mixture
signals and bottleneck representation (BN-Mix).

All the three end-to-end joint approaches depicted in Figure 5 were trained using a
compound loss defined as follows:

L = αLSE + (1− α)LIC, (5)
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where LSE and LIC are the MSE loss and the cross-entropy loss for speech enhancement and
intent classification, respectively. The coefficient α ∈ (0, 1) is a hyper-parameter that adjusts
the weight of each component in the joint loss. In all proposed strategies we measure the
performance on a grid of values for α, i.e., (0, 0.1, 0.5, 0.9).

Although the loss is the same, its components (i.e., LSE and LIC) affect differently
the model parameters depending on the particular architecture and providing different
performance trends for both SE and IC tasks, as will be shown in Section 4.2. As a matter
of fact, the gradient of the IC loss acts in different manners across the the parts of the SE
model. These (SE) model parameters ΘSE are updated as follows:

ΘSE ←− ΘSE − λ1[α∇LSE + (1− α)∇LIC], (6)

where ∇LSE and ∇LIC represent the gradients of SE and IC respectively, and λ1 is the
learning rate for the SE front-end. As a consequence, the front-end is expected to produce
enhanced signals not only for matching the target clean signals but also to maximize the IC
performance. Note that in BN and BN-mix training strategies the decoder part of the SE
module is not affected by the LIC. Unlike the front-end, the IC module depends only on its
own loss function and its parameters are updated as:

ΘIC ←− ΘIC − [(1− α)λ2∇LIC], (7)

where ΘIC denotes the the IC parameters, and λ2 is the IC learning rate.

4. Experimental Analysis
4.1. Dataset

For our experimental analysis we consider the Fluent Speech Commands (FSC)
dataset [57]. FSC includes 30,043 English utterances, recorded as 16 kHz single chan-
nel .wav audio files. Overall, 97 native and non native speakers (52 males, and 49 females)
are recorded while simulating an interaction with voice-enabled appliances or smart de-
vices with no overlapping speech in each signal. Overall, the dataset provides 248 different
utterances that are mapped in 31 different intents. Each intent consists of three items: action,
object, and location. For example, “increase heat in the kitchen” is categorized as: action:
“increase”, object: “heat”, location: “kitchen”. Totally, 6 different actions, 14 objects and
4 locations are available. For training, validation and evaluation, we consider the official
splits as described in Table 1 [57]. In order to avoid the presence of long silence in the wav
files, all signals were cut using librosa.effects.trim() module.

Table 1. FSC dataset Description.

Data Speakers No. Utterance No. Total Hours

Train Data 77 23,132 14.7
Validation Data 10 3119 1.9
Evaluation Data 10 3793 2.4

To emulate realistic application scenarios, where environmental noise may affect the
intent classification accuracy, we contaminated the FSC dataset creating an equivalent noisy
version. In particular, we superimpose 6 different types of noise out of the 25 noises avail-
able in the Microsoft Scalable Noisy Speech Dataset (MS-SNSD) [62]: e.g., air conditioner,
airport announcements, traffic, neighbor speaking, shutting door, and restaurant.

The FSC dataset is contaminated using the “maracas” library available in [63]. For each
clean utterance, a noise signals is randomly selected from those available and superimposed
with an SNR randomly selected from 3 possible values: −5 dB, 0 dB, 5 dB. Note that the
resulting noisy dataset includes a uniformly distributed variety of different conditions in
terms of type and amount of noise.
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The speech enhancement network is designed to process fixed-length input signals
with sample length 16,834 [64]. Therefore, signals longer than that are first split in segments
and then concatenated at the output of Wave-U-Net. The model has 12 layers. The encoder
part uses with kernelsize = 15, stride = 1, and padding = 7, while the decoder has the
same number of layers but with kernelsize = 5, stride = 1, and padding = 2. Each layer in
both encoder and decoder is followed by a 1D batch normalization layer, and leaky ReLU
activation function with negative slope equals to 0.1. The model is trained by optimizing
the MSE loss with learning rate λ1 = 10−4. For the intent classifier, the model is trained by
optimizing the cross entropy loss with learning rate λ2 = 10−3. For the BN-MIX experiment
the first layer is 1-D convolutional layer with kernelsize = 1. Both models are trained with
ADAM optimizer with decay rates are β1 = 0.9 and β2 = 0.999, batch size 2.

Although our final goal is to improve the classification accuracy, we also evaluate
the performance of the enhancement component. We consider traditional speech quality
metrics, namely PESQ [65], STOI [66], and MSE. The PESQ metric is based on the wide-band
version recommended in ITU-T [67], and its range is extended from −0.5 to 4.5. STOI is
based on a correlation coefficient between time-aligned clean and enhanced signals, and
its range is from 0 to 1. For both metrics the highest score is the best. We also consider the
MSE metric as a similarity measurement between the clean and enhanced signal. Unlike
the PESQ and STOI, a lower MSE is better. Finally, the performance of the back-end is
evaluated using the intent classification accuracy, that measures the actual match between
the estimated intent slots and it corresponding ground truth ones.

4.2. Experimental Results

Table 2 reports the classification accuracy resulting from the different joint-training
approaches described above, using different values of the parameter α in Equation (5). The
table reports also the results of JT applied to clean signals as upper bound. The column
“noisy” refers to the performance obtained providing the noisy signals to the back-end.
From the table it appears evident the improvement brought by the JT model. The highest
classification accuracy is achieved with α = 0.5, indicating that SE loss and IC loss equally
contributes. Note that α = 0 correspond to training the model without SE, i.e., the SE
front-end is part of the classifier. This improves the classification accuracy with respect
to the noisy case as the classifier is actually deeper. When α is very large (i.e., 0.9) the
front-end tends to give more importance to the signal reconstruction rather than making
the output signal suitable for the IC component. Thus the final classification performance
drops. Interestingly, the LSE loss helps improving the performance also when JT is applied
to clean signals. In the latter case, when α = 0 only a small improvement is observed with
respect to the noisy case, while for larger values the model reaches almost state of the art
performance (achieved with larger models or using spectral features).

Table 2. Classification accuracy for different architectures with different α.

Noisy Jt-Clean Jt BN BN-Mix

53.2%

α = 0 73.37% 72.80% 72.39% -
α = 0.1 91.53% 80.50% 77.80% 58.02%
α = 0.5 92.77% 86.02% 77.53% 54.99%
α = 0.9 - 82.52% 77.90% 66.67%

A similar trend is not observed in both the other two architectures: BN and BN-mix.
The BN approach seems to be not influenced by α and performs very similarly to JT with
α = 0. The fact that the encoder of Wave-U-Net does not interact with the IC component
make the contribution of LSE negligible. In addition, the bottleneck representation is
probably too compact and focused on other properties of the signal. For the BN-mix
method, since the difference in dimensionality between the combined features (bottleneck
and 1D-Conv output) is very high the contribution of the bottleneck is very limited. In facts,
the performance is just slightly better than the noisy baselines. Note that for very high
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values of α the front-end starts to provide some beneficial influence. Finally, we experiment
on alpha = 1, but these experiments do not bring any improvement in the accuracy as the
back-end is not trained.

Tables 3–5 show the SE performance achieved with the various architectures. As
previously observed, both BN and BN-Mix strategies optimize the Wave-U-Net decoder
independently on the LSE loss. Hence, it is of no surprise that the resulting intelligibility
metrics are much higher than JT. Note however that the enhancement is not dependent on
α as long as it is larger than 0. Basically the decoder is capable of reconstructing the signal
counterbalancing the impact of the IC on the encoder. For what concerns JT, as α increases
the signal reconstruction increases. Finally, it is remarkable to observe that reconstruction
quality and classification accuracy are in contrast with each other and it is not possible to
effectively optimize both.

Table 3. The PESQ metric for different architectures with different α.

Noisy JT BN BN-Mix

1.28

α = 0 1.14 1.16 -
α = 0.1 1.18 1.71 1.81
α = 0.5 1.15 1.76 1.67
α = 0.9 1.14 1.79 1.83

Table 4. The STOI metric for different architectures with different α.

Noisy JT BN BN-Mix

0.84

α = 0 0.46 0.60 -
α = 0.1 0.48 0.83 0.85
α = 0.5 0.47 0.84 0.85
α = 0.9 0.58 0.85 0.86

Table 5. The MSE metric for different architectures with different α.

Noisy JT BN BN-Mix

3.5× 10−3

α = 0 7.6× 10−1 1.4× 10−1 -
α = 0.1 2.7× 10−2 1.7× 10−3 1.8× 10−3

α = 0.5 9× 10−3 1.7× 10−3 1.8× 10−3

α = 0.9 6× 10−3 1.7× 10−3 1.8× 10−3

In summary, looking at the performance reported in Table 2 we notice that, as expected,
the best IC performance is achieved with the JT approach, which carries out optimization
directly on the enhanced signal at the cost, however, of reduced enhancement results.
On the contrary both the BN and BN-mix, working on the bottleneck of the Wave-U-net
model, gives better enhancement quality at the cost of lower IC accuracy. Finally, for better
interpretation, we report all the evaluation metrics in graphical representation as shown in
Figure 6. Also, we report all the abbreviations in Table A1, see Appendix A.
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(a) (b)

(c) (d)

Figure 6. Graphical representation for: (a) the classification accuracy. (b) PESQ metric. (c) STOI
metric. (d) MSE metric against α values for all experiments

5. Conclusions

In this paper we proposed an end-to-end joint training approaches to robust intent
classification in noisy environment. The jointly compositional scheme consists of a neural
speech enhancement front-end based on Wave-U-Net combined with an end-to-end intent
classification scheme. In particular, we investigate three different joint training strategies
which combine the two components in different ways, namely JT, BN, and BN-Mix.

All experiments are conducted on the FSC dataset contaminated with a set of noises
from MS-SNSD. Contrary to what observed in other speech related classification tasks,
experimental results validate the efficacy of the proposed joint training approach, in which
de-noising actually is beneficial in terms of final classification accuracy when models are
trained on matched noisy material. We observed that equally balancing the enhancement
and classification losses gives the best results. In addition, it is worth noting that injecting
an intermediate loss is always beneficial, also with clean data. The motivation could be
that given the large size of the model and the relatively small amount of training material
the intermediate loss guides the network towards its optimal configuration. Finally, we
also observed that the sequential nature of JT is better than the multi-task structure used in
BN and BN-mix.

Future Directions

One future direction is to evaluate the proposed approach on different more complex
datasets, as for example the ATIS corpus [68], the Almawave-SLU corpus [69], the SLURP
corpus [70]. In addition, to better assess the robustness and flexibility of the proposed
approach, we plan to apply the same joint training scheme to other speech processing tasks,
eventually involving seq2seq or regression tasks. One option is also to include multiple
parallel tasks and jointly train the model in a multi-task learning fashion. Finally, we
plan to investigate the joint training approach in combination with speech embedding. In
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particular, wav2vec pre-trained models [71] can be used as an intermediate stage between
the front-end and back-end models i.e., to extract the speech embedding form the enhanced
speech signals and train the back-end based on these embedding. An alternative approach,
is to integrate the wav2vec model on top of the speech enahncement front-end i.e., the
front-end estimates the enhanced speech embedding, that will be later used to train the
back-end.
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Appendix A

To improve the flow of the paper and for a better understanding of our research,
Table A1, summarizes all the abbreviations used in this research.

Table A1. List of Abbreviations.

Abbreviation Meaning

ASR Automatic Speech Recognition
SNR Signal-to-Noise Ratio
SE Speech Enhancement

MVDR Minimum Variance Distortion Response
SDR Signal-to-Distortion Ratio
WER Word Error Rate
IBM Ideal Binary Mask
IRM Ideal Ratio Mask
MSE Mean Square Error
TCN Time Convolutional Neural Network

IC Intent Classification
VAD Voice Activity Detection
VAE Variational Auto Encoder
DNN Deep Neural Network
GAN Generative Adversarial Network
GRF Gated Recurrent Fusion
NLP Natural Language Processing
SLU Spoken Language Understanding
E2E End-to-End
FSC Fluent Speech Commands

PESQ Perceptual Evaluation of Speech Quality
STOI Short Time Objective Intelligibility
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