Published online 9 December 2010

Nucleic Acids Research, 2011, Vol. 39, No. 8 3141-3155

doi:10.1093/nar/gkq1276

Pre-replication complex proteins assemble at
regions of low nucleosome occupancy within
the Chinese hamster dihydrofolate reductase

initiation zone

Yoav Lubelsky', Takayo Sasaki', Marjorie A. Kuipers', Isabelle Lucas?,
Michelle M. Le Beau?, Sandra Carignon®*, Michelle Debatisse®*,
Joseph A. Prinz®, Jonathan H. Dennis' and David M. Gilbert'*

"Department of Biological Science, Florida State University, Tallahassee, FL 32306, 2Department of Medicine,
Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA, 3Institut Curie, 26 rue
d’Ulm, 75248 Paris, France; UPMC Univ. Paris 06, “CNRS UMR3244, F-75005 Paris, France and

*Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, UK

Received August 10, 2010; Revised and Accepted November 23, 2010

ABSTRACT

Genome-scale mapping of pre-replication complex
proteins has not been reported in mammalian cells.
Poor enrichment of these proteins at specific sites
may be due to dispersed binding, poor epitope avail-
ability or cell cycle stage-specific binding. Here, we
have mapped sites of biotin-tagged ORC and MCM
protein binding in G1-synchronized populations of
Chinese hamster cells harboring amplified copies
of the dihydrofolate reductase (DHFR) locus, using
avidin-affinity purification of biotinylated chromatin
followed by high-density microarray analysis across
the DHFR locus. We have identified several sites
of significant enrichment for both complexes
distributed throughout the previously identified ini-
tiation zone. Analysis of the frequency of initiations
across stretched DNA fibers from the DHFR locus
confirmed a broad zone of de-localized initiation
activity surrounding the sites of ORC and MCM en-
richment. Mapping positions of mononucleosomal
DNA empirically and computing nucleosome-
positioning information in silico revealed that ORC
and MCM map to regions of low measured and
predicted nucleosome occupancy. Our results
demonstrate that specific sites of ORC and MCM
enrichment can be detected within a mammalian

intitiation zone, and suggest that initiation zones
may be regions of generally low nucleosome
occupancy where flexible nucleosome positioning
permits flexible pre-RC assembly sites.

INTRODUCTION

The replication of DNA once, and only once, per cell cycle
is essential for the maintenance of genome stability and
cell survival and is ensured by tight regulation over the
assembly of pre-replication complexes (pre-RCs) at
replication origins. Although budding yeast replication
origins have been well defined and contain a consensus
sequence (ACS) that is necessary but not sufficient for
origin activity (1,2), origin consensus sequences have not
been identified in any other eukaryotic organisms
including fission yeast, which can initiate within any suf-
ficiently extensive stretch of AT-rich DNA (3,4).
Metazoan origins are determined by a complex and
poorly understood set of structural and topological
features of DNA and chromatin in which DNA
sequence motifs do not have a major role (5-7). In some
contexts, any DNA sequence can function as an origin
(8,9). This complexity may allow for a greater flexibility
of origin selection to coordinate DNA replication with
other cellular processes such as transcription (10), metab-
olism (11,12) and differentiation (13-15). Nonetheless,
replication does initiate at specific chromatin sites in
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most eukaryotes and some origin sequences can direct ini-
tiation of replication when inserted into certain ectopic
locations (8,16-20). In mammals, these sites can be
either highly localized (21,22) or part of a broad
de-localized ‘initiation zone’ (23-26).

Clearly, our understanding of replication origins,
particularly in mammalian cells, would be greatly
improved if genome-scale methods could be applied to
identify large numbers of origins (27). Recently, several
studies have isolated small nascent DNA strands and
mapped their positions across segments of the human
(28-30) and mouse (31) genomes. However, due to their
extremely low abundance, small nascent strands must be
carefully prepared to avoid contamination from random
breaks in DNA generated during sample preparation
(27,32) which may explain the poor overlap between
published data sets (28). A complementary method is to
map the sites of pre-RC protein binding using chromatin
immunoprecipitation (ChIP) followed by microarray
analysis. Pre-RC assembly begins with the binding of the
hetero-hexameric origin recognition complex (ORC) to
origin DNA followed by the Cdc6 and Cdtl dependent
recruitment of the hetero-hexameric MCM2-7 helicase
complex. ORC is highly conserved but its origin recogni-
tion mechanisms are highly divergent. Budding yeast ORC
preferentially binds to the ACS, while fission yeast ORC
binds AT stretches through a specialized AT-hook in the
ORC4 subunit (4,33,34) and Drosophila ORC may recog-
nize DNA partly through its ORC6 subunit (35). In
general, metazoan ORC does not show measurable
sequence specificity in vitro although it has an increased
affinity for negatively supercoiled DNA (6,36) suggesting
that processes that generate superhelical tension such as
nucleosome removal may contribute to origin specifica-
tion. In fact, ORC binds to Nucleosome free regions
(NFRs) in both budding yeast and Drosophila (1,37,38),
suggesting that nucleosome organization may be a
defining feature of origins in all eukaryotes. In the case
of the Saccharomyces cerevisiae ARS1 sequence, the
presence of a well-positioned nucleosome adjacent to the
origin NFR was shown to be essential for ORC to
nucleate pre-RC assembly and for origin activity (39,40).

To date, there have been no reports in the literature of
genome-scale ChIP for mammalian pre-RC proteins (27).
The reasons for these difficulties are not clear, but could
include the lack of high quality antibodies or availability
of epitopes within chromatin, a large number of pre-RC
binding sites making enrichment in the complex mamma-
lian genome difficult, transient non-specific chromatin
interactions, or a small cell cycle window for site-specific
pre-RC binding (27,41,42). Here, we have taken novel
combination of approaches to identify sites of mammalian
ORC and MCM binding that address several of these
possible explanations. First, to address the problem of
genome complexity, we have examined sites within the
well-characterized Chinese hamster ovary (CHO)
dihydrofolate reductase (DHFR) locus using cells contain-
ing 1000 copies of this locus (43). Replication within the
CHO DHFR locus initiates throughout a broad ~50Kb
initiation zone located in the intergenic region between
the DHFR and 2BE2121 genes (25,44,45) with several

preferential initiation sites (orif, oriff’ and oriy) (46-48).
We employed the high-affinity biotin tag to avoid
concerns about antibody quality and took advantage of
the high degree of cell synchronization we can achieve in
CHO cells in order to map pre-RC proteins during late
G1 phase when they are most likely to be stably bound at
their functional positions. Co-precipitated DNA was
hybridized to a high-density oligonucleotide microarray
such that each 500 bp chromatin fragment is recognized
by approximately 100 unique probes (50 per strand). We
also evaluated the efficiency of initiation at various sites
across the DHFR locus in these same cells using DNA
fiber methods. Finally, we compared the distribution of
pre-RC proteins to nucleosome occupancy. Together,
our results demonstrate significant enrichment of pre-RC
proteins at regions of generally low nucleosome
occupancy that are found within a de-localized region of
initiation (‘initiation zone’).

MATERIALS AND METHODS
Cell culture and synchronization

All cells were grown in Dulbecco’s Modified Eagle
Medium (DMEM, Gibco) supplemented with 10% fetal
bovine serum, Penicillin Streptomycin (Cellgro) and non-
essential amino acids (Cellgro). For synchronization, cells
were plated at 80-90% confluence and incubated for 4 h in
the presence of 50 ng/ml Nocodazole. Mitotic cells were
collected by shake off. A minimum of 95% mitotic cells
were obtained, as determined by metaphase spread
analysis. To evaluate the release of mitotic cells, aliquots
were plated on glass coverslips and pulse labeled with
10uM of BrdU for 30min. Cells were fixed in 70%
EtOH and stained for BrdU as previously described (49).

Cell lines

All cell lines described in this paper were based on our
previously generated CHOC400 cells expressing the tetra-
cycline transactivator (50). Cells were stably transfected
with a plasmid expressing the Escherichia coli Biotin
ligase (BirA) (51) gene linked to the Blasticidin resistance
gene (Bsr) by an IRES sequence, under the control of the
eEFla promoter. The resulting cell line was transfected
with different plasmids carrying subunits of the pre-RC
tagged with the biotin ligase target sequence (BLT) (52) at
the N-terminus (for ORC and mCherry) or with a fluor-
escent protein at the C-terminus for MCM, followed by
the BLT at the C-terminus of the fluorescent protein.
All tagged pre-RC subunits were under the control of a
tetracycline-regulated promoter (tet-off) and were
cultured in the presence of 6pg/ml Doxycycline,
500 pg/ml HygromycinB, 400 pg/ml Zeocin and 2.5 pg/ml
Blasticidin.

Immunoprecipitation and Avidin pulldown

MCM co-IP was done using a nuclear complex co-IP kit
(Active motif cat#54001) according to manufacturer
protocol. ORC avidin-pulldown was preformed as
described in Vashee et al. (53). Complexes were



precipitated using Dynabeads M-280 streptavidin
magnetic beads (Invitrogen) and detected using the

following antibodies: HRP-Streptavidin (ZYMED,
417449), anti-ORC1 (54), anti-ORC2 (Santa Cruz,
sc-13238), anti-ORC4 (BD biosciences, 611170),

anti-MCM2 (BM28, BD Transduction Laboratories,
610700), anti-MCM3 (Cell Signaling, 4012), anti-MCM4
(Santa Cruz, sc-28317), anti-MCM5 (Santa Cruz,
sc-22780), anti-MCM?7 (Santa Cruz, sc-9966) and
anti-B-tubulin (Sigma T4026).

Chromatin avidin pulldown and microarray hybridization

Chromatin was prepared from 2 x 107 cells as previously
described (55). DNA-—protein complexes were precipitated
using Streptavidin beads. The purified precipitated and
input chromatin were amplified using a whole genome
amplification kit (Sigma), labeled with Cy3 and Cys5,
respectively, using the NimbleGen hybridization and
sample tracking control kits according to the manufac-
turer recommended protocol, and hybridized to a
NimbleGen tiling array covering the 121 Kb of the
Chinese hamster DHFR locus (Accession no. BR000241)
with a 45-60nt Tm-matched oligo every 10bp, (three
replicates per strand). The arrays were scanned using the
GenePix 4000B scanner (Molecular Devices). Array data
was normalized using MA2C (56,57) and peaks were
called by false discovery rate with threshold set at 10%.

Nucleosome mapping

Nuclei were prepared by extraction in buffer A (Tris—Cl
pH 8, 15mM, NaCl 15mM, KCl 60 mM, EDTA 1 mM,
EGTA 0.5mM, Spermidine 0.5mM) supplemented with
0.2% NP-40 (58). Nuclei were resuspended to a concen-
tration of 10® nuclei/ml in reaction buffer (CaCl, 60 mM,
NaCl 750mM, Diluted 10x in buffer A) supplemented
with 30units/ul MNase (Warthington) and incubated at
25°C for 5min. The reaction was terminated by addition
of equal volume of 2x stop buffer (Tris—CI pH 8, 50 mM,
NaCl 100mM, SDS 0.1%, EDTA 100mM, RNaseA
10 pg/ml, Spermidine 1mM, Spermine 0.3mM). The
sheared chromatin was incubated with proteinase K and
DNA was extracted with Phenol/Chloroform. The
purified DNA was separated on 2% agarose gel and the
band representing mono-nucleosomal DNA was cut from
the gel and extracted using gel extraction kit (Qiagen) (59).
The mono-nucleosomal DNA was labeled and
co-hybridized to the same array described above with
total randomly sheared genomic DNA as control. Array
data was smoothed by LOESS regression and scaled in R.

For southern hybridization MNase digested DNA was
prepared as described above (digestion was with 15, 30 or
60U/ul) and separated on agarose gel. DNA was
transferred to Hybond-XL membrane (Amersham).
Probes were labeled with **P-dCTP using the random
primer DNA labeling kit (Invitrogen). Sequence based
nucleosome prediction was preformed using a support
vector machine (SVM) model (60). High scores represent
sequences with high nucleosome positioning.
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DNA combing and morse code detection

Nascent DNA was labeled as previously described (12).
Genomic DNA was extracted and combing was
performed as described (61). Production of silanized cover-
slips for combing was performed as described (62). Morse
code probes were designed as described (63). Primer pairs
we used for PCR (using CHOC400 DNA as template) were
as follows: probe 1, ¥-CAGCCTGATCCTTACACAAC-
3 and 5Y-CAACTAGGGACCAAGCATTC-3'; probe 2,
5-AGTGGGAGCTGGTATAGATG-3" and 5-AGCAG
CGTTCAGACTGTT-3; probe 3, 5-AGAGGTGGCCG
TAAAGTATC-3 and 5-TCCCTGCACCAGGCTATA
TC-3'; probe 4, 5-GAGCGAATACCAGCATCAAC-3
and 5-CTGTCACAATCTGTGCCTACTC-3'; probe 5,
5-CCCACCACACAGACACATTATC-3 and 5-GTGA
CACCACCTCTCATGAA-3'. In situ hybridization was
performed as described (12). Immunodetection was per-
formed as described (63), with the following succession of
layers for the detection of nascent DNA and DHFR
probes: (1) Alexa-488-conjugated streptavidin
(Invitrogen); (ii) Biotin-conjugated rabbit anti-streptavidin
(Rockland); (iii) Alexa 488-conjugated streptavidin
(Invitrogen), mouse anti bromodeoxyuridine (BrdU) (BD
Biosciences) and rat anti-bromodeoxyuridine (AbD
Serotec); (iv) Biotin-conjugated rabbit anti-streptavidin
(Rockland), Alexa 350-conjugated goat anti-mouse
(Invitrogen) and Texas Red-conjugated donkey anti-rat
(Jackson ImmunoResearch); (v) Alexa 488-conjugated
streptavidin (Invitrogen), Alexa 350-conjugated donkey
anti-goat (Invitrogen) and mouse anti-single-stranded
DNA (Millipore); (vi) Cy5.5-conjugated goat anti-mouse
(Abcam); (vii)) Cy5.5-conjugated donkey anti-goat
(Abcam). Images were acquired with an Eclipse 90i
(Nikon) epifluorescence microscope connected to a
CoolSNAP HQ CCD camera and run by Metamorph
software (Molecular Devices) with a 60x objective.
Image analyses were performed with Photoshop and
Illustrator (Adobe).

RESULTS

Generation of BirA expressing cells for specific protein
biotinylation

We employed a previously developed system (64—67) that
takes advantage of the extremely high affinity
avidin-biotin interaction (dissociation coefficient of
107'°M (68)) to avoid concerns about the quality of
antibodies for immunoprecipitation of pre-RC proteins.
Hygl6 (a CHO cell line expressing the Tetracycline
transactivator) (50) was stably transfected with the
sequence specific E. coli BirA biotin ligase and the result-
ing line was then transfected with different pre-RC com-
ponents tagged with an optimized peptide substrate for
BirA, herein referred to as the biotin ligase target (BLT)
(52). We have previously demonstrated that toxicity of
pre-RC proteins due to over-expression can be overcome
by silencing the expression of the proteins during selection
of stable cell lines using the tet-repressible promoter in the
presence of Doxycycline (Dox). Once cell lines are
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established, proteins can be induced by Dox removal and
clones expressing low non-toxic and homogeneous levels
of the proteins can be selected for further study (54,69).
Cell lines expressing tagged ORC subunits were also stably
transfected with GFP under the control of the tet-
promoter to assist in monitoring induction, while the
tagged MCM subunits were expressed as fluorescent
fusion proteins that allowed for direct monitoring of
induction. Upon expression, BLT-tagged proteins
(Protein X, Figure 1A) are biotinylated by the constitu-
tively expressed BirA enzyme. To verify the specificity of
biotinylation, BirA-expressing (G14D2 BirA) and
non-expressing parental (G14D2) cell lines were transient-
ly transfected with fluorescent mCherry protein tagged
with both BLT and HA. Expression of mCherry was
detected in both cell lines using an anti- HA antibody
(Figure 1B, top left), while BLT-tagged mCherry was
detected by Avidin-HRP only in the BirA expressing
cells (Figure 1B, bottom left) and could be pulled down
by Streptavidin conjugated beads only from the BirA
expressing cells (Figure 1B right).

BLT tagged ORC and MCM assemble into native
complexes

To verify that the BLT and/or fluorescent tags did not
interfere with the ability of the tagged proteins to form
complexes with native proteins, we precipitated the tagged
subunits using Streptavidin conjugated beads and moni-
tored complex formation by immunoblotting with
antibodies against the endogenous subunits. Tagged
proteins were precipitated from nuclear extracts following
induction and the resulting precipitated proteins were
separated by SDS-PAGE. As expected, none of the
endogenous ORC subunits was precipitated in cells
expressing BLT-tagged mCherry, which was used as a
negative control. Tagged wt ORCl and ORC4 cach
co-precipitated with two other endogenous subunits, but
not with their endogenous counterparts, indicating they
were assembled into the complex by replacing the
endogenous protein (Figure 1C). The tagged MCM7
similarly pulled down the endogenous MCM2, MCM3,
MCM4 and MCMS5 but not the endogenous MCM?7
(Figure 1D, top).

A prior report found that specific binding sites for the
chromatin remodeling complex Isw2 were difficult to
identify using ChIP-chip due to a non-specific scanning
mode for this protein. However an Isw2 mutant that
could bind but not hydrolyze ATP was enriched at
Isw2-regulated promoters, probably due to trapping of
the ATP-bound form at sites where it is functionally
engaged (70). Since both ORC and MCM contain
AAA-type ATPase domain that bind and hydrolyze
ATP and this activity is required for their function
(71-82), we reasoned that similar ATPase mutants in
these subunits might enrich pre-RC proteins at functional
binding sites. We engineered a point mutation in the
walker A motif of ORC1 (K529R) that is equivalent to
the Isw2 mutation, as well as mutations in the ORCI1
(R699E) and ORC4 (R209A) arginine finger shown to
effect ORC ATP hydrolysis but not ATP or DNA

binding in yeast (71,83). However, the ORCI1 walker A
and ORC4 arginine finger mutants abolished interaction
with other subunits under our experimental conditions
(Figure 1C), and therefore could not be used for pre-RC
mapping, whereas the ORC1 arginine finger mutation
retained the ability to form a complex with ORC. In
addition, we generated an ATPase deficient MCM
mutation (MCM7KA) similar to one that was shown to
support pre-RC assembly but not origin activation in
Xenopus egg extracts (78). This mutant was incorporated
into the complex similar to the wild-type protein
(Figure 1D, bottom).

Pre-RCs are enriched in the initiation zone

Pre-RCs are assembled during telophase (69,84,85),
followed by the selection of a subset of these pre-RCs to
function as origins at the origin decision point (ODP) (86).
Cells that receive the appropriate mitogenic signals subse-
quently activate Cdk activity, phosphorylate the
petinoblastoma (pRb) tumor suppressor protein, pass
through the restriction point and rapidly initiate S phase
(87,88). During S phase, pre-RCs are either converted to
active replication complexes upon initiation or are cleared
from chromatin during passage of the replication forks
(3). Hence, we reasoned that the post-ODP stages of Gl
phase, after origin selection but prior to origin activation
during S phase, would be the best cell cycle window to find
chromatin enriched with positioned pre-RCs. For this
reason, chromatin avidin pulldown (ChAP) was
performed with cells synchronized at 5 h after mitosis, pre-
viously demonstrated to represent the post-ODP,
pre-R-point stage of G1 phase (88,89). Immunostaining
for BrdU positive cells was used to verify cell synchrony
(Figure 1E). Input and precipitated DNA were labeled
and co-hybridized to a high-density NimbleGen tiling
array (one probe every 10bp). Normalization and peak
determination was performed using ‘model-based
analysis of two color arrays’ (MA2C), a method that
normalizes log, fold enrichment by probe sequence and
signal distribution between ChIP (or ChAP in our case)
and control, and assigns each probe a normalized,
window-smoothed MA2C score (57).

Results for wtORCI are shown in Figure 2A with peak
calls for all other subunits shown at the top by the colored
rectangles. The majority of peaks for all pre-RC proteins
were identified in the intergenic region between the DHFR
and the 2BE2121 genes, in the region of the previously
mapped initiation zone (25,44,45), consistent with a
prior mapping of Mcm binding sites using a cosmid
array (90). The highest density of pre-RC peaks was
found around position 60000 in the region that was
shown to contain the major initiation sites (oriff and
oriff’). Additional peaks for wtORC1 and wtMCM7
were detected throughout the initiation zone. However,
ATPase mutants of these proteins and ORC4 were
detected at a subset of these peaks. Many of the additional
peaks found with wtORC1 and wtMCM?7 were visible
with the ATPase mutants and ORC4 but were below the
peak determination threshold (Figure 2B), suggesting that
these sites are also likely to bind ORC and MCM but with



Nucleic Acids Research, 2011, Vol. 39, No.8 3145

A B Avidin
Tet Off ot
et Q
o & "

L BirA BLT-X I & 0"@@ & C;\@v
V v - 4 BLTmChemnyHA
Remove - --
/\‘ Tagged protein
- ! AVidjn_I_IRP

C D
Input Pulldown
& & o & & Aidin
2 D D PP Ingut Pulldown
Q& FEEL o & S ESE ¥ = & mEm-MOM7-BLT
OO © O O S

Tagged protein

non specificy-

=

B o

+ 4+ MEmM-MCM7KA-BLT

&

%
| | o B-Tubulin “IMCM7
D | ——
MCM2
E 601 MCM3
MCM4
| I 55 W VCM5
w [ pTubuin
g 40 +
g
= 30T
[%2}
o
o
?2 20
m
2 Cells harvested for ChIP

10 4+ \

0 2 4 6 8 10 12
Time after release (hrs)

o

Figure 1. Establishment of in vitro protein biotinylation system. (A) Schematic of the experimental system used to generate specifically biotinylated
proteins. Block arrows represent genes and ovals represent the expressed transgenic protein (X). The Biotin Ligase Target (BLT) tag is shown as a
black rectangle. (B) Parental cell line (G14D2) and E. coli biotin ligase (BirA) expressing cells (G14D2 BirA) were transfected with a BLT and
HA-tagged mCherry. The tagged protein was expressed in both cell lines (top panel left) but was biotinylated (left bottom panel) and could be pulled
down by Streptavidin beads only in the BirA expressing cell line (right panels). The lower molecular weight band is most likely a degraded protein
lacking the N-terminus but retaining the C-terminal HA tag. (C) Cells expressing various tagged ORC subunits (indicated above each lane) were used
for avidin pulldown and probed with antibodies against ORC1 (top), ORC2 (second panel) and ORC4 (third panel). B-Tubulin (bottom) was used as
loading control. Note that due to the large size of ORCI, the tagged protein migrates only slightly slower than the endogenous protein. (D) Cells
expressing BLT-tagged MCM7 (+) or no tagged protein (—) were used for avidin pulldown and probed with antibodies against MCM?7 (top),
MCM2, MCM3, MCM4 and MCMS. B-Tubulin (bottom) was used as a loading control. In (C) and (D), the thin arrow indicates the tagged subunits
while the thick arrow indicates the endogenous protein. (E) Mitotic cells were released and pulsed labeled with BrdU for 30 min at different time
points. The fraction of BrdU positive cells was determined by immunofluorescence (error bars represent the standard deviation of three independent
experiments). The arrow indicates the point in late G1 when cells were collected for pulldown.
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lower efficiency. Three sites were identified where all five
proteins co-localized near this region. Cell lines expressing
BLT-tagged mCherry, which is not expected to bind DNA
were used as negative controls for ChAP. Only three peaks
were called in the mCherry ChAP, none of which overlap
with the pre-RC peaks (Figure 2C). Enrichment at one of
the peaks for each protein was verified by qPCR
(Supplementary Figure S1)

Initiation sites surround pre-RC binding sites

Although the CHO DHFR locus is one of the most
well-studied initiation zones, different results have
provided different interpretations of the frequency with
which replication initiates at different sites within the
zone, often referred to as ‘origin efficiency’ (30,42). The
most direct means to evaluate origin efficiency is by
examining the location and frequency of initiation sites
on individual DNA fibers, and this method has not been
applied to study initiation at the CHO DHFR locus.
Hence, to evaluate how frequently replication initiates
near pre-RC assembly sites, DNA fibers were used to
examine the pattern of replication initiation at the DHFR
locus (Figure 3 shows representative fibers; all fibers can be
seen in Supplementary Figure S2). Both asynchronously
growing cells, and cells that were synchronized at the
A
n N8 1 DHRR

7\
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orify’
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G1/S boundary with aphidicolin were pulse labeled with
the nucleotide analog IdU for 20min and then chased
with CldU for an additional 20 min. DNA molecules
were stretched and the labels were detected with IdU- and
CldU-specific antibodies (12). Fibers were aligned to the
DHFR locus using the ‘Morse Code’ method, in which a
series of unevenly spaced FISH probes creates a character-
istic linear pattern (63). In fibers prepared from asynchron-
ous cells the majority of initiation events were found in the
same location as the strongest pre-RC ChAP peaks
(Figure 3A) close to the previously described main initi-
ation region (orif}/p’). However, there was clearly a broad
distribution of sites within the entire initiation zone and
some initiation sites were even detected within the genes.
Similar results were obtained with cells synchronized with
aphidicolin  (11,47,48),  although initiation in
aphidicolin-arrested cells appears more delocalized, poten-
tially due to the induction of dormant origins upon fork
arrest (11).

Pre-RCs localize to regions of low nucleosome occupancy
throughout G1 phase

In mammalian cells, chromatin organization is a strong
candidate for the determinant of ORC binding since it
allows the generation of very complex and hereditary
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Figure 3. Replication initiates near sites of ORC ChAP peaks: either asynchronously growing cells (A) or cells synchronized at the G1/S border with
aphidicolin (B) were pulse labeled with IdU (blue) for 20 min and then chased with CldU (red) for 20 min each. DNA fibers were prepared and
aligned to each other and to the DHFR map using a combination of unevenly spaced FISH probes (green). Initiation sites for replication within each
fiber were identified as patterns of either red—blue-red (initiation during the IdU label and elongation during CldU), red-blue—empty—blue-red
(initiation prior to the IdU label and elongation during both labels) or red only (initiation during the CldU label). A heat map consolidating the
amount of label associated with each initiation pattern is shown. Arrows mark the position of ORC peaks (grey arrows denotes peaks containing
only the wt ORC and MCM while black arrows denote peaks containing both the wt and the ATPase mutants) the locations of orif, orif’ and oriy
are shown. The appearance of a more de-localized set of initiations in the aphidicolin-arrested cells may result from the induction of dormant origins
upon fork arrest (11). Low initiation activity near the MAR in aphidicolin-arrested cells has been reported before (48). Data represent the results
from 32 and 27 individual fibers for asynchronous and aphidicolin arrested cells respectively, shown in Supplementary Figure SI.
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patterns that are not completely dependent on the actual
DNA sequence. In fact, both budding yeast and
Drosophila ORC bind to NFRs and in budding yeast the
NFR has been shown to be necessary for ORC binding
(1,37,38). To examine the relationship between pre-RC
and NFRs in mammalian cells we mapped nucleosome
positions along the locus. Chromatin was digested with
microccocal nuclease (MNase), which preferentially
cleaves linker DNA between nucleosomes. MNase diges-
tion results in DNA digested into distinct sizes corres-
ponding to oligonucleosomes (Figure 4A). The band
corresponding to the mono-nucleosomal fraction

A B

(Figure 4A, arrow) was extracted and hybridized to the
same microarray used for ChAP experiments. The DHFR
locus contains a well-defined active bi-directional
promoter between the DHFR and Msh3 genes that is
DNasel hypersensitive (91-93) and served as an internal
control for a known NFR. Hybridization of mono-
nucleosomes to the array revealed a prominent NFR at
the promoter flanked by well-positioned nucleosomes
(Figure 4B), confirming the quality of our mono-
nucleosome preparations. No differences in nucleosome
digestion patterns were observed before or after the
ODP (Supplementary Figure S3), demonstrating that
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Figure 4. Mapping nucleosome positions. (A) Chromatin was digested with Microccocal nuclease. Digested DNA was separated on 2% agarose gel
and the mono-nucleosome fraction was extracted and hybridized to NimbleGen tiling array. (B) Nucleosome positions mapped by hybridization of
mono-nucleosome DNA in the vicinity of the DHFR-Msh3 bi-directional promoter are shown. Arrows represent the transcription start sites of the
DHFR and Msh3 genes. Circles indicate a suggested nucleosome arrangement. Black circles indicate positioned nucleosomes (distinct peak with a
size of ~ 150 bp) while grey circles indicate non-positioned nucleosomes. (C) Alignment of ORC1 ChAP (grey) with mono-nucleosomal DNA (black).
(D) Blowup of the region between 50000 and 70 000 containing the majority of the pre-RC’s. (E) The nucleosome scores in the regions of wtORCI
peaks were compared to those of 10 random sets of the same size; the score in the peaks was significantly lower than the random set

(*P =3.076 x 107°).



origin specification at the ODP is not the result of changes
in nucleosome positioning.

We next compared the relative positions of pre-RCs and
nucleosomes (Figure 4C). Inspection of the oriff/p’ region
containing the highest amount of pre-RC binding and ini-
tiation activity (Figure 4D) revealed that pre-RCs do not
align with NFRs but they do assemble near regions of
generally low nucleosome occupancy. In order to verify
the significance of pre-RC alignment to regions of low
nucleosome occupancy, the nucleosome scores of the
regions starting 500 bp upstream and ending 500 bp down-
stream of each wtORCI1 peak were averaged and
compared to a random set containing the same number
of probes. The random set was generated 10 times and the
average of the random sets was compared to the ORC
peaks set using the Welch ¢-test (Figure 4E). The mean
score for the ORC set was —0.11740 while the random
mean was —0.009934. The two are significantly different
(confidence interval = 0.95, r = —5.9445, df = 3158.999,
P =3.076 x 107°) indicating that pre-RCs are indeed
associated with regions of low nucleosome occupancy.

There is a growing appreciation for the role of DNA
sequences in the positioning of nucleosomes and the
ability of sequence information to predict in silico the pos-
itions of nucleosomes (60,94,95). We aligned the scores of
a nucleosome positioning algorithm (60) along the DHFR
locus to the positions of pre-RCs as determined by ChAP
(Figure 5). Consistent with our nucleosome-mapping
results, pre-RCs align with regions with low nucleosome
positioning information, where nucleosomes are not re-
stricted from binding to a specific position. The ability
of nucleosomes to be moved might be important for
origin assembly and/or activity. Combined with the
actual nucleosome mapping data (Figure 4), these data
suggest the possibility that initiation zones—regions of
many scattered inefficient replication origins—are
regions of low nucleosome positioning information
where ORC can more casily compete with nucleosome
binding to assemble pre-RCs at many positions, with
only a few positions favorable enough to be enriched in
ChIP-chip experiments.

An unusual chromatin configuration near ori-gamma

Mono-nucleosome mapping revealed a very weakly-
hybridizing region located between position 82000 and
84000, previously designated as oriy (Figure 6A). Oriy
was originally defined as one of the earliest replicating
regions in the DHFR locus but was never precisely
characterized (47,96). Regions hybridizing poorly to
mono-nucleosome preparations can result from either
very open and accessible chromatin or very protected
chromatin that is highly inaccessible to MNase, either of
which will be under-represented in mono-nucleosome
preparations. To distinguish between these possibilities,
DNA prepared from MNase digested chromatin at differ-
ent time points during the cell cycle was separated by gel
electrophoresis and hybridized to probes representing
three different locations along the DHFR locus: (i) the
bidirectional DHFR/Msh3 promoter region that is
known to be nucleosome-free (93); (ii) a segment of the
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DHFR coding sequence that should be typically arranged
into non-positioned but phased nucleosomes; and (iii) the
oriy segment (Figure 6B). The MNase digestion patterns
were compared to that of bulk chromatin visualized by
ethidium bromide staining of the gel prior to Southern
transfer (Figure 6B, EtBr). Relative to bulk chromatin,
the DHFR/Msh3 promoter displayed the expected access-
ible chromatin pattern visible as a smear with the low
molecular weight bands appearing at low concentrations
of MNase (Figure 6B, probe 1). The DHFR coding region
(Figure 6B, probe 2) gave a pattern indistinguishable from
bulk chromatin, also as expected. However, the large
NFR region was highly protected, remaining largely un-
digested even at the highest MNase concentrations (Figure
6B, probe 3). The bulk of the DNA detected by probe 3 is
~1500bp in size, in agreement with the size of the
mono-nucleosome-free region detected on the array
(Figure 6A, 82500-84000). The relatively small amount
of low molecular weight DNA that was digested by
MNase within this region retained a nucleosome ladder
pattern, indicating the region can be packaged into nu-
cleosomes in some cells or copies of the locus. Since the
ChAP data do not show enrichment of pre-RC proteins,
we conclude that a large unidentified complex is strongly
bound to the DNA close to the region previously defined
as oriy.

DISCUSSION

The mechanism(s) responsible for the selection of replica-
tion origins in metazoa is one of the greatest fundamental
mysteries in molecular biology. Unlike bacteria and single
cell eukaryotes such as yeast that contain a specific repli-
cator sequence element that binds the initiator complex,
metazoan ORC shows no sequence specificity in vitro and
no conserved origin sequence has yet been identified.
Moreover, initiation in metazoa can occur at many sites
distributed throughout large initiation zones, with each
cell utilizing a different cohort of sites. Here, we show
that pre-RC proteins are preferentially enriched at
several specific sites of low nucleosome occupancy within
a broad zone of de-localized initiation activity.

Despite the lack of a specific replicator sequence, the
initiation of replication in most eukaryotic systems does
not occur at random sites. This indicates that there is some
mechanism by which pre-RC assembly and/or activation
is focused to certain chromosomal regions but not others.
Chromatin structure is a likely candidate as it can generate
a unique, yet sequence independent, DNA signature.
During metazoan development the genome undergoes
large-scale reorganization as embryonic cells differentiate
to give rise to all the cell types of the adult organism.
Differentiation is also accompanied by changes in the
pattern of replication (13,97,98). The lack of a specific
replicator sequence may allow increased flexibility of
origin positioning to coordinate replication with other
chromosomal functions that differ between cell types
(99). We find that ORC preferentially binds to regions
of low nucleosome occupancy, as previously shown in
yeast and Drosophila (1,31,37,38). At the same time,
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position 82 621-83949) and a control region in the DHFR CDS (probe 2, position 37 623-38 973). The enriched, high molecular weight fraction, seen

with probe 3 is marked by the vertical bracket on the side of the panel.

many NFRs, including a prominent NFR at the Msh3/
DHFR promoter, were not enriched for pre-RCs, suggest-
ing that, as for yeast and Drosophila (1,37), only NFRs
associated with specific additional features are permissive
for pre-RC assembly. Moreover, our results demonstrate
that, even though many replication origins map to tran-
scription start sites in yeast, Drosophila, mouse and human

(1,31,32,37), a strong promoter-associated NFR is not
sufficient to constitute a strong ORC binding site or an
efficient origin of replication.

Our study focuses on a highly de-localized initiation
zone. Previous origin mapping results at the CHO
DHEFR locus have concluded that replication can initiate
at many sites distributed throughout ~50kb, with the
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orif/p’ and oriy regions being somewhat preferred
(48,96,100). Our data agrees with this view of de-localized
initiation with both the highest density of ChIP peaks and
the highest abundance of initiation sites found in the same
region as orif/f’ (Figure 7A). Multiple binding sites
provide enough flexibility that deletion of 40 Kb out of
the 50 Kb of the DHFR initiation zone had no effect on
the overall kinetics of replication in the region (101).
Presumably, pre-RCs in the remaining 10 Kb, some of
which are below the level of our detection, can compensate
for the loss of other pre-RC binding sites, including the
two major sites. A lack of strong positioning information
throughout the initiation zone permits nucleosomes to
occupy different positions in different cells with equal
thermodynamic stability (102). We suggest that this flexi-
bility in nucleosome positioning may facilitate ORCs com-
petition with nucleosomes, allowing ORC to bind many
sites throughout the region. A few of these sites are
occupied at a sufficient frequency as to be detected by
ChAP, for reasons that we still do not understand.
Hence, ORC may not need a strongly positioned NFR
in regions where nucleosome positions are highly
flexible. Highly flexible ORC binding may lead to highly
flexible initiation. Since it is clear that there also exist more
localized sites of initiation in mammalian cells
(21,22,31,32), it will be interesting to determine whether
broad regions of low nucleosome positioning information
are a frequent feature of de-localized initiation zones,
while NFRs may characterize highly localized origins.
Why don’t the strongest sites of pre-RC assembly
predict the precise sites of preferred initiation? The
only high-resolution mapping of initiation sites at the
DHFR locus, restricted to ~10 Kb around the major ini-
tiation site (46) identified two initiation sites lying 5Kb

A

€L

DHFR
MM

AR

/0

orip  orip’

apart (orif and orif’). While these regions do not overlap
our ChAP peaks, both lay within a 1 Kb distance from
one of the peaks where all subunits were detected (Figure
7B). Based on studies in yeasts, it is generally assumed
that replication initiates near the sites of ORC
binding (103,104). However, it is possible that replication
may initiate at sites that are not precisely aligned with
pre-RCs, as suggested by studies at the Drosophila
chorion locus (20) and at some fission yeast origins
(105). Initiation sites may also be partially determined
by structural proteins that cause folding and partial
melting of the DNA (106). The interpretation of our
data described above suggests yet another possibility.
Given that replication initiates at only a subset of
pre-RC assembly sites by an as yet undefined
mechanism, the frequency with which ORC occupies dif-
ferent sites need not reflect the frequency with which
replication initiates at those sites. It is now of
considerable interest to identify more comprehensively
the sites of pre-RC assembly in regions of more localized
initiation of replication versus de-localized initiation
zones.

The mapping of pre-RC proteins to specific sites in
mammalian cells has not previously been reported. In
this work we describe a system for mapping pre-RC
assembly sites in a mammalian system. At present we
do not know whether the biotinylated tag, the synchron-
ization, or the high copy number of the DHFR locus in
our cells was the primary factor allowing us to detect
pre-RC enrichment at specific sites. However, this
method should be casily adaptable to other mammalian
cells or in conjunction with next-generation sequencing
to map pre-RCs at single copy sites or across the entire
genome.
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Figure 7. pre-RC ChIP peaks are in close proximity to the sites of initiation. (A) Summary of results. Arrows indicate the ChAP peaks. Black arrows
represent peaks that contain both wt and mutant ORC and MCM while grey arrows represent peaks with only wt present. The blue rectangle
indicates the area with highest density of labeled fibers. The previously described preferred initiation sites are shown at the bottom. (B) ChAP results
for the region containing the previously described major initiation site. The arrows indicate the peaks in which all tested pre-RC subunits were
detected. The rectangles represent the probes shown in Figure 3 of Kobayashi et al. (46). Among them, the filled rectangles represent the probes that

were mapped to the two initiation sites orif and orif}'.



SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank T. Ryba for assistance with array analysis and
to the members of the Gilbert lab for helpful discussion.
We thank D. MacAlpine for helpful comments on the
article.

FUNDING

National Institute for General Medical Sciences grant
RO1GMO083337 (to D.M.G.) and ROl CA41644 (to
M.M.L.B.). Funding for open access charge: the
GMO083337 grant.

Conflict of interest statement. None declared.

REFERENCES

. Eaton,M.L., Galani,K., Kang,S., Bell,S.P. and MacAlpine,D.M.
(2010) Conserved nucleosome positioning defines replication
origins. Genes Dev., 24, 748-753.

2. Kearsey,S. (1983) Analysis of sequences conferring autonomous

replication in baker’s yeast. EMBO J., 2, 1571-1575.

3. Masai,H., Matsumoto,S., You,Z., Yoshizawa-Sugata,N. and
Oda,M. (2010) Eukaryotic chromosome DNA replication: where,
when, and how? Annu. Rev. Biochem., 79, 89-130.

4. Chuang,R.Y. and Kelly,T.J. (1999) The fission yeast homologue
of Orcdp binds to replication origin DNA via multiple AT-hooks.
Proc. Natl Acad. Sci. USA, 96, 2656-2661.

. Gilbert,D.M. (2004) In search of the holy replicator.

Nat. Rev. Mol. Cell. Biol., 5, 848-855.

6. Vashee,S., Cvetic,C., Lu,W., Simancek,P., Kelly,T.J. and
Walter,J.C. (2003) Sequence-independent DNA binding and
replication initiation by the human origin recognition complex.
Genes Dev., 17, 1894-1908.

7. Aladjem,M.I. (2007) Replication in context: dynamic regulation of
DNA replication patterns in metazoans. Nat. Rev. Genet., 8,
588-600.

8. Lin,H.B., Dijkwel,P.A. and Hamlin,J.L. (2005) Promiscuous
initiation on mammalian chromosomal DNA templates and
its possible suppression by transcription. Exp. Cell Res., 308,
53-64.

9. Krysan,P.J. and Calos,M.P. (1991) Replication initiates at
multiple locations on an autonomously replicating plasmid in
human cells. Mol. Cell. Biol., 11, 1464-1472.

10. Mirkin,E.V., Castro Roa,D., Nudler,E. and Mirkin,S.M. (2006)
Transcription regulatory elements are punctuation marks for
DNA replication. Proc. Natl Acad. Sci. USA, 103, 7276-7281.

11. Courbet,S., Gay,S., Arnoult,N., Wronka,G., Anglana,M.,
Brison,O. and Debatisse,M. (2008) Replication fork movement
sets chromatin loop size and origin choice in mammalian cells.
Nature, 455, 557-560.

12. Anglana,M., Apiou,F., Bensimon,A. and Debatisse,M. (2003)
Dynamics of DNA replication in mammalian somatic cells:
nucleotide pool modulates origin choice and interorigin spacing.
Cell, 114, 385-394.

13. Hiratani,I., Ryba,T., Itoh,M., Yokochi,T., Schwaiger,M.,
Chang,C.W., Lyou,Y., Townes,T.M., Schubeler,D. and
Gilbert,D.M. (2008) Global reorganization of replication domains
during embryonic stem cell differentiation. PLoS Biol., 6, e245.

14. Norio,P., Kosiyatrakul,S., Yang,Q., Guan,Z., Brown,N.M.,

Thomas,S., Riblet,R. and Schildkraut,C.L. (2005) Progressive

activation of DNA replication initiation in large domains of the

immunoglobulin heavy chain locus during B cell development.

Mol. Cell, 20, 575-587.

wn

Nucleic Acids Research, 2011, Vol. 39, No.8 3153

15. Zhou,J., Ashouian,N., Delepine,M., Matsuda,F., Chevillard,C.,
Riblet,R., Schildkraut,C.L. and Birshtein,B.K. (2002) The origin
of a developmentally regulated Igh replicon is located near the
border of regulatory domains for Igh replication and expression.
Proc. Natl Acad. Sci. USA, 99, 13693-13698.

16. Paixao.,S., Colaluca,I.N., Cubells,M., Peverali,F.A., Destro,A.,
Giadrossi,S., Giacca,M., Falaschi,A., Riva,S. and Biamonti,G.
(2004) Modular structure of the human lamin B2 replicator.
Mol. Cell. Biol., 24, 2958-2967.

17. Altman,A.L. and Fanning,E. (2004) Defined sequence modules
and an architectural element cooperate to promote initiation at
an ectopic mammalian chromosomal replication origin.

Mol. Cell. Biol., 24, 4138-4150.

18. Liu,G., Malott,M. and Leffak,M. (2003) Multiple functional
elements comprise a Mammalian chromosomal replicator.
Mol. Cell. Biol., 23, 1832-1842.

19. Guan,Z., Hughes,C.M., Kosiyatrakul,S., Norio,P., Sen,R.,
Fiering,S., Allis,C.D., Bouhassira,E.E. and Schildkraut,C.L. (2009)
Decreased replication origin activity in temporal transition
regions. J. Cell Biol., 187, 623-635.

20. Austin,R.J., Orr-Weaver,T.L. and Bell,S.P. (1999) Drosophila
ORC specifically binds to ACE3, an origin of DNA replication
control element. Genes Dev., 13, 2639-2649.

21. Abdurashidova,G., Deganuto,M., Klima,R., Riva,S., Biamonti,G.,
Giacca,M. and Falaschi,A. (2000) Start sites of bidirectional
DNA synthesis at the human lamin B2 origin. Science, 287,
2023-2026.

22. Romero,J. and Lee,H. (2008) Asymmetric bidirectional replication
at the human DBF4 origin. Nat. Struct. Mol. Biol., 15, 722-729.

23.Ina,S., Sasaki,T., Yokota,Y. and Shinomiya,T. (2001) A broad
replication origin of Drosophila melanogaster, oriDalpha, consists
of AT-rich multiple discrete initiation sites. Chromosoma, 109,
551-564.

24. Dijkwel,P.A., Mesner,L.D., Levenson,V.V., d’Anna,J. and
Hamlin,J.L. (2000) Dispersive initiation of replication in the
Chinese hamster rhodopsin locus. Exp. Cell Res., 256, 150-157.

25. Dijkwel,P.A. and Hamlin,J.L. (1995) The Chinese hamster
dihydrofolate reductase origin consists of multiple potential
nascent-strand start sites. Mol. Cell. Biol., 15, 3023-3031.

26. Little,R.D., Platt,T.H. and Schildkraut,C.L. (1993) Initiation and
termination of DNA replication in human rRNA genes.

Mol. Cell. Biol., 13, 6600-6613.

27. Gilbert,D.M. (2010) Evaluating genome-scale approaches to
eukaryotic DNA replication. Nat. Rev. Genet., 11, 673-684.

28. Karnani,N., Taylor,C.M., Malhotra,A. and Dutta,A. (2010)
Genomic study of replication initiation in human chromosomes
reveals the influence of transcription regulation and chromatin
structure on origin selection. Mol. Biol. Cell, 21, 393-404.

29. Lucas,l., Palakodeti,A., Jiang,Y., Young,D.J., Jiang,N.,
Fernald,A.A. and Le Beau,M.M. (2007) High-throughput
mapping of origins of replication in human cells. EMBO Rep., 8,
770-777.

30. Cadoret,J.C. and Prioleau,M.N. (2010) Genome-wide approaches
to determining origin distribution. Chromosome Res., 18, 79-89.

31. Sequeira-Mendes,J., Diaz-Uriarte,R., Apedaile,A., Huntley,D.,
Brockdorff,N. and Gomez,M. (2009) Transcription initiation
activity sets replication origin efficiency in mammalian cells.
PLoS Genet., 5, ¢1000446.

32. Cadoret,J.C., Meisch,F., Hassan-Zadeh,V., Luyten,I., Guillet,C.,
Duret,L., Quesneville,H. and Prioleau,M.N. (2008) Genome-wide
studies highlight indirect links between human replication origins
and gene regulation. Proc. Natl Acad. Sci. USA, 105,
15837-15842.

33. Lee,J.K., Moon,K.Y., Jiang,Y. and Hurwitz,J. (2001) The
Schizosaccharomyces pombe origin recognition complex interacts
with multiple AT-rich regions of the replication origin DNA by
means of the AT-hook domains of the spOrc4 protein.

Proc. Natl Acad. Sci. USA, 98, 13589-13594.

34. Kong,D. and DePamphilis,M.L. (2001) Site-specific DNA binding
of the Schizosaccharomyces pombe origin recognition complex is
determined by the Orc4 subunit. Mol. Cell. Biol., 21, 8095-8103.

35. Balasov,M., Huijbregts,R.P. and Chesnokov,l. (2007) Role of the
Orc6 protein in origin recognition complex-dependent DNA



3154

36.

37.

38.

39.

40.

4

—_

42.

43.

44.

45.

46.

47.

48.

49.

50.

5

52.

53.

54.

55.

56.

Nucleic Acids Research, 2011, Vol. 39, No. 8

binding and replication in Drosophila melanogaster.

Mol. Cell. Biol., 27, 3143-3153.

Remus,D., Beall,E.L. and Botchan,M.R. (2004) DNA topology,
not DNA sequence, is a critical determinant for Drosophila
ORC-DNA binding. EMBO J., 23, 897-907.

MacAlpine,H.K., Gordan,R., Powell,S.K., Hartemink,A.J. and
MacAlpine,D.M. (2010) Drosophila ORC localizes to open
chromatin and marks sites of cohesin complex loading.

Genome Res., 20, 201-211.

Berbenetz,N.M., Nislow,C. and Brown,G.W. (2010) Diversity of
eukaryotic DNA replication origins revealed by genome-wide
analysis of chromatin structure. PLoS Genet., 6, ¢1001092.
Yin,S., Deng,W., Hu,L. and Kong,X. (2009) The impact of
nucleosome positioning on the organization of replication origins
in eukaryotes. Biochem. Biophys. Res. Commun., 385, 363-368.
Lipford,J.R. and Bell,S.P. (2001) Nucleosomes positioned by
ORC facilitate the initiation of DNA replication. Mol. Cell, 7,
21-30.

. Schepers,A. and Papior,P. (2010) Why are we where we are?

Understanding replication origins and initiation sites in
eukaryotes using ChlIP-approaches. Chromosome Res., 18, 63-77.
Hamlin,J.L., Mesner,L.D. and Dijkwel,P.A. (2010) A winding
road to origin discovery. Chromosome Res., 18, 45-61.
Milbrandt,J.D., Heintz,N.H., White,W.C., Rothman,S.M. and
Hamlin,J.L. (1981) Methotrexate-resistant Chinese hamster ovary
cells have amplified a 135-kilobase-pair region that includes the
dihydrofolate reductase gene. Proc. Natl Acad. Sci. USA, 78,
6043-6047.

Dijkwel,P.A. and Hamlin,J.L. (1992) Initiation of DNA
replication in the dihydrofolate reductase locus is confined to the
early S period in CHO cells synchronized with the plant amino
acid mimosine. Mol. Cell. Biol., 12, 3715-3722.

Vaughn,J.P., Dijkwel,P.A. and Hamlin,J.L. (1990) Replication
initiates in a broad zone in the amplified cho dihydrofolate-
reductase domain. Cell, 61, 1075-1087.

Kobayashi,T., Rein, T. and DePamphilis,M.L. (1998) Identification
of primary initiation sites for DNA replication in the hamster
dihydrofolate reductase gene initiation zone. Mol. Cell. Biol., 18,
3266-3277.

Leu,T.H. and Hamlin,J.L. (1989) High-resolution mapping of
replication fork movement through the amplified
dihydrofolate-reductase domain in cho cells by in-gel renaturation
analysis. Mol. Cell. Biol., 9, 523-531.

Wang,S., Dijkwel,P.A. and Hamlin,J.L. (1998) Lagging-strand,
early-labelling, and two-dimensional gel assays suggest multiple
potential initiation sites in the Chinese hamster dihydrofolate
reductase origin. Mol. Cell. Biol., 18, 39-50.

Gilbert,D.M., Miyazawa,H. and DePamphilis,M.L. (1995)
Site-specific initiation of DNA replication in Xenopus egg extract
requires nuclear structure. Mol. Cell. Biol., 15, 2942-2954.
Izumi,M. and Gilbert,D.M. (1999) Homogeneous
tetracycline-regulatable gene expression in mammalian fibroblasts.
J. Cell Biochem., 76, 280-289.

. de Boer,E., Rodriguez,P., Bonte,E., Krijgsveld,J., Katsantoni,E.,

Heck,A., Grosveld,F. and Strouboulis,J. (2003) Efficient
biotinylation and single-step purification of tagged transcription
factors in mammalian cells and transgenic mice. Proc. Natl Acad.
Sci. USA, 100, 7480—7485.

Beckett,D., Kovaleva,E. and Schatz,P.J. (1999) A minimal peptide
substrate in biotin holoenzyme synthetase-catalyzed biotinylation.
Protein Sci., 8, 921-929.

Vashee,S., Simancek,P., Challberg, M.D. and Kelly,T.J. (2001)
Assembly of the human origin recognition complex.

J. Biol. Chem., 276, 26666-26673.

McNairn,A.J., Okuno,Y., Misteli,T. and Gilbert,D.M. (2005)
Chinese hamster ORC subunits dynamically associate with
chromatin throughout the cell-cycle. Exp. Cell Res., 308, 345-356.
Lubelsky.Y., Reuven,N. and Shaul,Y. (2005) Autorepression of
rfx1 gene expression: functional conservation from yeast to
humans in response to DNA replication arrest. Mol. Cell. Biol.,
25, 10665-10673.

Liu,X.S. and Meyer,C.A. (2009) ChIP-Chip: algorithms for calling
binding sites. Methods Mol. Biol., 556, 165-175.

57.

S8.

59.

60.

6

—

62.

63.

64.

65.

66.

67.

68.

69.

70.

7

—_

72.

74.

75.

76.

Song.J.S., Johnson,W.E., Zhu,X., Zhang,X., Li,W., Manrai,A.K.,
Liu,J.S., Chen,R. and Liu,X.S. (2007) Model-based analysis of
two-color arrays (MA2C). Genome Biol., 8, R178.

Sabo,P.J., Kuehn,M.S., Thurman,R., Johnson,B.E., Johnson,E.M.,
Cao,H., Yu,M., Rosenzweig,E., Goldy,J., Haydock,A. et al.
(2006) Genome-scale mapping of DNase I sensitivity in vivo
using tiling DNA microarrays. Nat. Methods, 3, 511-518.
Ozsolak,F., Song,J.S., Liu,X.S. and Fisher,D.E. (2007)
High-throughput mapping of the chromatin structure of human
promoters. Nat. Biotechnol., 25, 244-248.

Gupta,S., Dennis,J., Thurman,R.E., Kingston,R.,
Stamatoyannopoulos,J.A. and Noble,W.S. (2008) Predicting
human nucleosome occupancy from primary sequence.

PLoS Comput. Biol., 4, ¢1000134.

. Michalet,X., Ekong,R., Fougerousse,F., Rousseaux,S., Schurra,C.,

Hornigold,N., van Slegtenhorst,M., Wolfe,J., Povey,S.,
Beckmann,J.S. er al. (1997) Dynamic molecular combing:
stretching the whole human genome for high-resolution studies.
Science, 277, 1518-1523.

Labit,H., Goldar,A., Guilbaud,G., Douarche,C., Hyrien,O. and
Marheineke,K. (2008) A simple and optimized method of
producing silanized surfaces for FISH and replication

mapping on combed DNA fibers. Biotechniques, 45, 649-652, 654,
656-643.

Lebofsky,R., Heilig,R., Sonnleitner,M., Weissenbach,J. and
Bensimon,A. (2006) DNA replication origin interference increases
the spacing between initiation events in human cells.

Mol. Biol. Cell, 17, 5337-5345.

de Folter,S., Urbanus,S.L., van Zuijlen,L.G., Kaufmann,K. and
Angenent,G.C. (2007) Tagging of MADS domain proteins for
chromatin immunoprecipitation. BMC Plant Biol., 7, 47.

van Werven,F.J. and Timmers,H.T. (2006) The use of biotin
tagging in Saccharomyces cerevisiae improves the sensitivity of
chromatin immunoprecipitation. Nucleic Acids Res., 34, €33.
Mito,Y., Henikoff,J.G. and Henikoff,S. (2005) Genome-scale
profiling of histone H3.3 replacement patterns. Nat. Genet., 37,
1090-1097.

Kim,J., Cantor,A.B., Orkin,S.H. and Wang,J. (2009) Use of

in vivo biotinylation to study protein-protein and protein-DNA
interactions in mouse embryonic stem cells. Nat. Protoc., 4,
506-517.

Hsu,S.M., Raine,L. and Fanger,H. (1981) Use of
avidin-biotin-peroxidase complex (ABC) in immunoperoxidase
techniques: a comparison between ABC and unlabeled antibody
(PAP) procedures. J. Histochem. Cytochem., 29, 577-580.
Okuno,Y., McNairn,A.J., den Elzen,N., Pines,J. and Gilbert,D.M.
(2001) Stability, chromatin association and functional activity of
mammalian pre-replication complex proteins during the cell cycle.
EMBO J., 20, 4263-4277.

Gelbart,M.E., Bachman,N., Delrow.J., Boeke,J.D. and
Tsukiyama,T. (2005) Genome-wide identification of Isw2
chromatin-remodeling targets by localization of a catalytically
inactive mutant. Genes Dev., 19, 942-954.

. Takehara,M., Makise,M., Takenaka,H., Asano,T. and

Mizushima,T. (2008) Analysis of mutant origin recognition
complex with reduced ATPase activity in vivo and in vitro.
Biochem. J., 413, 535-543.

Brewster,A.S., Wang,G., Yu,X., Greenleaf, W.B., Carazo,J.M.,
Tjajadia,M., Klein,M.G. and Chen,X.S. (2008) Crystal structure
of a near-full-length archacal MCM: functional insights for an
AAA+ hexameric helicase. Proc. Natl Acad. Sci. USA, 105,
20191-20196.

. Bochman,M.L., Bell,S.P. and Schwacha,A. (2008) Subunit

organization of Mcm2-7 and the unequal role of active sites in
ATP hydrolysis and viability. Mol. Cell. Biol., 28, 5865-5873.
Speck,C. and Stillman,B. (2007) Cdc6 ATPase activity regulates
ORC x Cdc6 stability and the selection of specific DNA
sequences as origins of DNA replication. J. Biol. Chem., 282,
11705-11714.

Moreau,M.J., McGeoch,A.T., Lowe,A.R., Itzhaki,L.S. and
Bell,S.D. (2007) ATPase site architecture and helicase mechanism
of an archaeal MCM. Mol. Cell, 28, 304-314.

Jenkinson,E.R. and Chong,J.P. (2006) Minichromosome
maintenance helicase activity is controlled by N- and C-terminal



71.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87

88.

89.

90.

motifs and requires the ATPase domain helix-2 insert.

Proc. Natl Acad. Sci. USA, 103, 7613-7618.

Costa,A., Pape,T., van Heel, M., Brick,P., Patwardhan,A. and
Onesti,S. (2006) Structural studies of the archaecal MCM complex
in different functional states. J. Struct. Biol., 156, 210-219.
Ying,C.Y. and Gautier,J. (2005) The ATPase activity of MCM2-7
is dispensable for pre-RC assembly but is required for DNA
unwinding. EMBO J., 24, 4334-4344.

Speck,C., Chen,Z., Li,H. and Stillman,B. (2005)
ATPase-dependent cooperative binding of ORC and Cdc6 to
origin DNA. Nat. Struct. Mol. Biol., 12, 965-971.

Pape,T., Meka,H., Chen,S., Vicentini,G., van Heel, M. and
Onesti,S. (2003) Hexameric ring structure of the full-length
archaeal MCM protein complex. EMBO Rep., 4, 1079-1083.
Gomez,E.B., Catlett, M.G. and Forsburg,S.L. (2002) Different
phenotypes in vivo are associated with ATPase motif mutations
in Schizosaccharomyces pombe minichromosome maintenance
proteins. Genetics, 160, 1305-1318.

Bochman,M.L. and Schwacha,A. (2010) The Saccharomyces
cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to
the function of the putative Mcm?2-7 ‘gate’. Nucleic Acids Res.,
38, 6078-6088.

Bowers,J.L., Randell,J.C., Chen,S. and Bell,S.P. (2004) ATP
hydrolysis by ORC catalyzes reiterative Mcm?2-7 assembly at a
defined origin of replication. Mol. Cell, 16, 967-978.
Dimitrova,D.S., Prokhorova,T.A., Blow,J.J., Todorov,I.T. and
Gilbert,D.M. (2002) Mammalian nuclei become licensed for DNA
replication during late telophase. J. Cell Sci., 115, 51-59.
Dimitrova,D.S. and Gilbert,D.M. (1999) The spatial position and
replication timing of chromosomal domains are both established
in early G1 phase. Mol. Cell, 4, 983-993.

Wu,J.R. and Gilbert,D.M. (1996) A distinct G1 step required to
specify the Chinese hamster DHFR replication origin. Science,
271, 1270-1272.

. WuJ.R., Keezer,S.M. and Gilbert,D.M. (1998) Transformation

abrogates an early Gl-phase arrest point required for
specification of the Chinese hamster DHFR replication origin.
Embo J., 17, 1810-1818.

Wu,J.R. and Gilbert,D.M. (1997) The replication origin decision
point is a mitogen-independent, 2-aminopurine-sensitive, G1-phase
event that precedes restriction point control. Mol. Cell. Biol., 17,
4312-4321.

Sasaki,T., Ramanathan,S., Okuno,Y., Kumagai,C., Shaikh,S.S.
and Gilbert,D.M. (2006) The Chinese hamster dihydrofolate
reductase replication origin decision point follows activation of
transcription and suppresses initiation of replication within
transcription units. Mol. Cell. Biol., 26, 1051-1062.
Alexandrow,M.G., Ritzi,M., Pemov,A. and Hamlin,J.L. (2002) A
potential role for mini-chromosome maintenance (MCM) proteins
in initiation at the dihydrofolate reductase replication origin.

J. Biol. Chem., 277, 2702-2708.

9

—

92.

93.

94.

95.

96.

97.

98.

99.
100.

10

—_

102.

103.

104.

105.

106.

Nucleic Acids Research, 2011, Vol. 39, No.8 3155

. Pemov,A., Bavykin,S. and Hamlin,J.L. (1995) Proximal and

long-range alterations in chromatin structure surrounding the
Chinese hamster dihydrofolate reductase promoter. Biochemistry,
34, 2381-2392.

Shimada,T., Inokuchi,K. and Nienhuis,A.W. (1986) Chromatin
structure of the human dihydrofolate reductase gene promoter.
Multiple protein-binding sites. J. Biol. Chem., 261, 1445-1452.
Azizkhan,J.C., Vaughn,J.P., Christy,R.J. and Hamlin,J.L. (1986)
Nucleotide sequence and nuclease hypersensitivity of the Chinese
hamster dihydrofolate reductase gene promoter region.
Biochemistry, 25, 6228-6236.

Segal,E. and Widom,J. (2009) What controls nucleosome
positions? Trends Genet., 25, 335-343.

Rando,0.J. and Ahmad,K. (2007) Rules and regulation in the
primary structure of chromatin. Curr. Opin. Cell Biol., 19,
250-256.

Anachkova,B. and Hamlin,J.L. (1989) Replication in the
amplified dihydrofolate-reductase domain in cho cells may
initiate at 2 distinct sites, one of which is a repetitive sequence
element. Mol. Cell. Biol., 9, 532-540.

Hyrien,O., Maric,C. and Mechali,M. (1995) Transition in
specification of embryonic metazoan DNA replication origins.
Science, 270, 994-997.

Ryba,T., Hiratani,I., Lu,J., Itoh,M., Kulik,M., Zhang.J.,
Schulz,T.C., Robins,A.J., Dalton,S. and Gilbert,D.M. (2010)
Evolutionarily conserved replication timing profiles predict
long-range chromatin interactions and distinguish closely related
cell types. Genome Res., 20, 761-770.

Gilbert,D.M. (2005) Origins go plastic. Mol. Cell, 20, 657-658.
Handeli,S., Klar,A., Meuth,M. and Cedar,H. (1989) Mapping
replication units in animal cells. Cell, 57, 909-920.

. Mesner,L.D., Li,X., Dijkwel,P.A. and Hamlin,J.L. (2003) The

dihydrofolate reductase origin of replication does not contain
any nonredundant genetic elements required for origin activity.
Mol. Cell. Biol., 23, 8304-814.

Pugh,B.F. (2010) A preoccupied position on nucleosomes.

Nat. Struct. Mol. Biol., 17, 923.

Bielinsky,A.K. and Gerbi,S.A. (2001) Where it all starts:
eukaryotic origins of DNA replication. J. Cell. Sci., 114,
643-651.

Bielinsky,A.K. and Gerbi,S.A. (1999) Chromosomal ARSI has a
single leading strand start site. Mol. Cell, 3, 477-486.

Ogawa,Y ., Takahashi, T. and Masukata,H. (1999) Association of
fission yeast Orpl and Mcm6 proteins with chromosomal
replication origins. Mol. Cell. Biol., 19, 7228-7236.

SchrollLA.L. and Heintz,N.H. (2004) Chemical footprinting of
structural and functional elements of dhfr oribeta during the
CHOC 400 cell cycle. Gene, 332, 139-147.



