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Predicting the in‑game status 
in soccer with machine learning 
using spatiotemporal player 
tracking data
Steffen Lang  1*, Raphael Wild2, Alexander Isenko2 & Daniel Link1,3

An important structuring feature of a soccer match is the in-game status, whether a match is 
interrupted or in play. This is necessary to calculate performance indicators relative to the effective 
playing time or to find standard situations, ball actions, and other tactical structures in spatiotemporal 
data. Our study explores the extent to which the in-game status can be determined using time-
continuous player positions. Therefore, to determine the in-game status we tested four established 
machine learning methods: logistic regression, decision trees, random forests, and AdaBoost. The 
models were trained and evaluated using spatiotemporal data and manually annotated in-game 
status of 102 matches in the German Bundesliga. Results show up to 92% accuracy in predicting 
the in-game status in previously unknown matches on frame level. The best performing method, 
AdaBoost, shows 81% precision for detecting stoppages (longer than 2 s). The absolute time shift 
error at the start was ≤ 2 s for 77% and 81% at the end for all correctly predicted stoppages. The mean 
error of the in-game total distance covered per player per match using the AdaBoost in-game status 
prediction was − 102 ± 273 m, which is 1.3% of the mean value of this performance indicator (7939 m). 
Conclusively, the prediction quality of our model is high enough to provide merit for performance 
diagnostics when teams have access to player positions (e.g., from GPS/LPM systems) but no human-
annotated in-game status and/or ball position data, such as in amateur or youth soccer.

Match events are a fundamental component of soccer performance analysis1. Competition information providers 
(CIP) collect in professional soccer more than one thousand events per match, e.g., standard situations, passes, 
shots, dribbles, fouls, and the ball status (= ball goes out of play or comes into play). Based on this data, coaches 
develop match strategies, media companies enhance their coverage, and science explores the performance struc-
ture in soccer. The event data collection is usually done by human data loggers and therefore takes much time 
and effort. Hence, this data exist only for professional matches, less so during training or for amateurs.

Recent years have seen the rise of position-detection systems, which introduced a second type of informa-
tion: spatiotemporal tracking data. Although semi-automatic optical tracking systems have been used to track 
player positions in professional matches2, cheaper and more obtainable automatic tracking systems, using global 
positioning systems (GPS) or radar-based local positioning measurement systems (LPM)3, are commonly used 
for training and amateur matches. However, collecting ball position data is only possible using optical tracking 
systems, but these need high manual operation effort and are therefore only available in professional soccer. 
Recently, some LPM systems provide balls with integrated sensors (e.g., Kinexon Corp.), but it is not common 
in soccer so far. Therefore, the vast majority of teams lack ball position information and the ball status since 
they use GPS tracking4.

However, the ball status is one of the most basic information during a soccer match and a fundamental pre-
requisite for match analysis. There are two reasons: First, the amount of time where the ball is in-play within a 
match varies greatly, and so are the intensity and distances covered by players5,6. Hence, performance indicators 
for longitudinal analysis must be calculated relative to the effective playing time. Second, the ball status is essential 
in order to interpret player activity relative to the match context. Science has proposed numerous approaches for 
extracting advanced tactical concepts from positional data, for instance, offensive tactical performance7, attacking 
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style8, synchrony between teams and players9, expected position value10, or pressing behavior11. Without the ball 
status, it is impossible to derive meaningful performance indicators from these concepts.

In this paper, we address this lack of ball status data and metrics based on it and build a machine learning 
(ML) model to derive this information. Since ball positions are not easily available, we used only player posi-
tions, which are affordable to collect and have high accuracy12. We hypothesize that the ball status and other 
events can be derived from these data because player movement behavior, e.g., speed, acceleration, orientation, 
depends on ball status. Our approach contributes to three real-world problems: First and most important, the 
undeveloped performance analysis in professional soccer teams’ training or semi-professional soccer matches. 
Here, player position collection with GPS or LPM systems is common, but no manual ball status or event log-
ging. Providing the ball status solely from a low-cost tracking system, e.g., GPS, empowers all teams from youth 
and amateur leagues in their analyses without high investments. Second, our approach can support CIPs ball 
status logging, because it is only one of many data logger tasks, and particularly in live situations cognitively 
challenging. Providing a ball status estimation, the operator must not detect each ball status toggle, but only 
correct wrong algorithm assignments. This hastens the process and reduces mental stress. Third, the ball status 
is a precondition for detecting events based on positional data. Without, it is impossible to differentiate between 
a pass during a match and kicking the ball to the set piece execution spot within an interruption. Our approach 
provides a component without any human interaction, which can be used for the event detection processing 
pipelines based on, e.g., broadcasting video feeds.

Until now, no studies have reported the estimation of the in-game status solely using player data in high-
frequency output. There are studies on deriving events from soccer data, i.e., video streams, event data, and 
tracking data. Although most previous research focused on the automatic detection of events in video streams 
using computer vision methods13–15, we focused on spatiotemporal tracking data. Gudmundsson and Wolle16 
extracted ‘ball-in’ and ‘ball-out’ events using both player and ball data. Wei et al.17 performed the same research 
using an ML approach as an interim step for further analyses. They fed a decision tree classifier with players or 
ball positions to detect the ball status in 4 s chunks. Subsequently, they used this generated information to analyze 
highlights and non-highlights and set-piece types for sequences of in-play and stoppages, respectively. Richly 
et al.18 used player and ball tracking data of the German Bundesliga to detect passing events consisting of a kick 
and a reception. They trained a neural network of three layers with a single output neuron and showed that it 
detects events well. Despite extracting events with ML methods, Link and Hoernig19 proposed a heuristic model 
using ball and player positions. They extracted the individual ball possession (IBP) of players to evaluate the 
time a player has the ball under his control. They stated that IBP is an important prerequisite for further analyses 
and performance indicators20, since, without it, determining events that happen and assigning them to players is 
impossible. In a follow-up study, Link and Lang21 applied IBP to extract ball actions (events of a player with the 
ball) from spatiotemporal data. They used IBP, field position, player trajectories, and ball status to classify the 
IBP, e.g., standard situation, cross, or pass. More recently, but similarly, Vidal-Codina et al.22 extracted match 
events from positional data. Summarizing, each of these studies used ball positions and status, and consequently 
are not yet applicable to amateur teams.

Against this background, our study evaluated whether the ball status can be determined from player positions 
only. Therefore, we apply four different well-known ML algorithms: decision trees, random forests, AdaBoost 
and logistic regression. The ability to find higher order relations within data and to extract information brings 
ML into a good position to solve the lack of ball status data. Our dataset comprises positional information of 
all players on the field in 102 matches of the German Bundesliga, including the ball status, which serves as the 
ground truth to train and test the ML models. This study is designed two-fold: First, we tested the ability of these 
four well-established ML models to predict the ball status by evaluating them using (I) frame-by-frame prediction 
and (II) stoppage prediction. Second, we investigated whether these models can be used in soccer performance 
analyses. Hence, (III) for video analysis tasks, we considered the time shift error to the real stoppages starting 
and ending points depending on their type (e.g., Free kick, Throw-in) and (IV) we evaluated the application of 
the estimated ball status for deriving performance indicators.

Methods
Dataset.  This study used 102 German professional soccer Bundesliga (82) and Bundesliga 2 (20) matches 
from 31 of 34 rounds of the season 2017/18. Each match data contains the positional data of players (x/y) and 
ball (x/y/z) recorded in 25 fps, event data, and basic match information, e.g., player/team names, and playing 
positions. Positional data was collected semi-automatically using an optical tracking system (TRACAB, Chyron-
hego, NY) and in-game information was collected manually by human observers23. The accuracy of the tracking 
system was validated by Linke et al.12. All 36 teams are represented with a minimum and maximum of two to 
twenty matches. Each team had home and away matches, except one which had only away matches available. 
We split the dataset into training (45 matches), validation (10), and test (47) sets with only Bundesliga matches 
considered in the training and validation set. Consequently, all Bundesliga 2 matches were included in the test 
set. To analyze our dataset in terms of class distribution, we compared the number of stoppages per match, total 
duration, and stoppage types (Kick-off, Goal kick, Free kick, Corner kick, Penalty kick and Throw-in) with other 
studies24,25 and found them to be similar. The dataset split was designed in a stratified fashion so that the number 
of stoppages, their length, and their types occurred with similar probability in each split.

Models.  Four ML algorithms were used: logistic regression (LR), as a baseline binary classifier, and three 
tree-based classifiers: decision trees (DT), random forests (RF), and AdaBoost (AD), as they have only a few 
hyperparameters to train and are known for good results26,27. For the experiments here, the implementations for 
these algorithms were provided using the scikit-learn library (v0.20.3) for Python28. We ran our experiments on 
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a 32-core processor with 64 GB RAM. Apart from the LR training, no limit on training time or the number of 
iterations to stop a run was assigned. Thus, the algorithms ran until they terminated naturally. For LR, a maxi-
mum number of interations was set, which was left as the default (100).

Data preprocessing.  From the raw data, we derived a set of features for each time frame in a match with 
a frequency of 25 fps. First, we reduced the dataset for each frame to only contain data for the 22 players on the 
pitch. When less than 22 active players are present, the remaining values are filled with zeros. The players were 
sorted according to the match sheet, which depends on the players’ position and whether they play for the home 
team. The spatial coordinates of all players were flipped in the second half to reverse side switching after halftime. 
Additionally, training data were augmented by switching the home and away team information because home 
team players are always listed first. This doubles the available training data and removes the home advantage, 
which could influence the predictions. Each sample now contains information for 22 players and their positions, 
speed, and acceleration.

Next, we augment each sample with features from the past and future frames to provide more context infor-
mation to the models. More precisely, each sample contained additional information of 0.4, 0.8, 2, 4, 20, 40, and 
80 s frame from both the past and the future. The reason for this choice of values is to provide information about 
the players’ actions immediately before and after the current situation as well as some long-term context, leav-
ing the selection of important information to the learning algorithm. We evaluated their impact on the section 
‘Evaluation of ML models’.

We provided unscaled data for the DT, RF, and AD models. The values of each feature in LR were linearly 
transformed such that their empirical mean and standard deviations are zero and one, respectively. Decision 
trees, however, are based on a comparison of values29. Since the aforementioned transformation does not change 
the order of values, it does not affect the predictions of a decision tree. Hence, normalization is not applied to 
DT, RF, and AD.

Summarizing, all models used the same input features: the basic feature set for each frame sample was 
enhanced by 14 time shifts, both 7 from the past and future. And the four individual features of all 22 players on 
the field are each player’s x- and y-coordinate in meters, velocity in m/s, and acceleration in m/s2. Resulting in 
each sample consisting of 1320 (15 × 4 × 22) input features.

Hyperparameter search.  Each learning algorithm requires parameterization that influences the training 
process and significantly affects performance. Since there is no one-fits-all configuration for a single model, we 
ran a hyperparameters search for each model individually. For our study, we used a grid search for LR and AD 
and a random search30 for RF and DT due to their several hyperparameters configurable via the scikit-learn 
library28. All configured parameters of the hyperparameter search, as well as the best candidates, are described 
in detail in Appendix.

Another hyperparameter, as a part of postprocessing, is the kernel size of the median filter (see ‘Evaluation 
of ML models’),which is model-independent and is applied for stoppage evaluation only. That is, the search for 
the optimal kernel size is performed for each model with the best-found hyperparameters for frame-by-frame 
prediction. The inspected range of kernel sizes is from 1–901 frames.

Evaluation.  We evaluated the performance of the final models using four approaches. First, a frame-wise 
evaluation, which compares the ball status in the ground truth to the prediction in each frame. As performance 
metrics, we computed the accuracy and F1-Score for each model. Furthermore, we compared the prediction 
to a random guessing approach per match by taking the percentage of in-game frames, we refer to this as the 
knowledge gain. It is calculated for each match using the prediction accuracy minus the percentage of in-game 
frames. However, this frame-wise performance does not necessarily translate into correctly identified match 
interruptions since all consecutive frames must have the same value for a stoppage. For example, a single ball-in 
detection in a long streak of ball-out labels creates two stoppages instead of a single one.

Consequently, and secondly, model performance was evaluated stoppage-wise. The basic idea is to extract 
stoppages from the original data and predictions by searching for a matching pair between them. Stoppages are 
extracted by identifying the frames at which the match was interrupted and resumed, where the first and last 
frames with the ball-out label define the start and end of a stoppage, respectively. A suitable metric to compare 
predicated stoppages with actual ones is the intersection over union (IoU), which is common in object detection 
benchmarks31,32. The IoU is computed for a pair of real and predicted stoppages as the overlap time between them 
divided by the overall time covered by both stoppages, i.e., the overlap time plus the sum of the non-overlapping 
durations. For our paper, two stoppages are matched if their IoU is at least 50%, which guarantees that each real 
stoppage is matched only with one predicted stoppage and vice versa.

A good model should apply to analysis tasks. Hence, the results of performance metrics using the ball status 
prediction must be comparable to those using real data. The IoU metric assigns a predicted stoppage to the cor-
responding ground truth interruption, even when the overlap is imperfect. Subsequently, a shift in the correct 
starting and ending points for each stoppage exists, which affects its application in video analysis tasks.

Third, we checked whether the predicted stoppages’ starting and ending points did not differ much from the 
ground truth. We calculated the shifts between real and predicted points for the start and end. A fundamental 
task in video analysis is to analyze standard situations, thus, we assumed that our predictions should be in a 
range within ± 2 s. In that case, a practitioner could easily find and add time marks to analyze the execution of 
a standard situation.

Fourth, we evaluated the quality of the performance indicator Total Distance Covered (TDC) in the effective 
playing time (TDCE). TDC is one of the most common performance indicators for estimating workload33–35. 
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TDCE represents the running activity when the ball is in-play and can be interpreted as the match intensity. Since 
the error in predicting the ball status introduces an error to TDCE, we checked whether this error is acceptable 
for performance analysis. Therefore, we calculated TDCE for each player three times per match using the ball 
status based on (1) ground truth, (2) AD prediction and 3) a naïve approach and compared them. For the naïve 
approach, we calculated an approximation for TDCE by taking the real TDC by the player for the whole match 
and the mean percentage of the effective playing time in all matches. In our test matches, the mean percentage of 
the effective playing time was 59.6 ± 6.0% (Min. = 47.4%, Max. = 69.7%). To reduce noise, only field players who 
played a full match were included in the analysis.

Results
Evaluation of ML models.  Frame‑by‑frame prediction accuracy.  Table  1a shows the average F1-Score 
and accuracy of our models against all 47 test matches. Here AD shows the best results in accuracy (ACC) with 
0.92 ± 2.1 and F1-Score with 0.93 ± 2.4 overall. The other models ranged from ACC = 0.87–0.91. The individual 
match prediction accuracies for each model are described in detail in Appendix. AD showed the best accuracy 
in 44 of 46 matches. Its prediction outperforms the naïve approach and the knowledge gain ranges from 0.20 to 
0.44 (Mean = 0.32 ± 0.05).

To better understand what information in the input data influences a model’s decisions, there are methods to 
identify the importance of each feature30. We used the random forest feature importance, where the importance 
of a feature is computed as the information gain in each split based on this feature and weighted by the amount 
of training data reaching this split. We focused on the estimates of feature importance in the final AD model 
since it had the best accuracy. The above metric applies to all RF methods, including AD36.

For more insightful feature analysis results, we group in Fig. 1 the features by their feature class, e.g., type 
of value and time shift. Feature importance was defined for each value between zero and one, meaning that the 
higher the value, the higher the influence, which all together sums to one. Figure 1a) provides evidence that no 
single type of value trivially determines the model’s output, but the decision is spread out over all value types. 
Figure 1b) shows the features grouped using the associated time shift. Again, considerable importance was 
assigned to each group, meaning that all features are important for prediction. Nevertheless, there is a trend 
toward data being more important if it is close to the prediction point. However, the model puts no particularly 
strong weight on features referring to the exact time of the prediction (time shift = 0). This indicates that the 
model takes more information from the coarse situation than from the precise moment. Additionally, within 4 s 
around the prediction point, more importance was assigned to features referring to past moments.

Stoppage prediction accuracy.  As a second evaluation step, we tested whether the models can predict stoppages 
as a sequence of frames where the ball is out of play. To create stoppages from our prediction model, we use a 
median filter. The filer is parametrized to a window of 3.64 s (i.e., 91 frames) to smoothen the raw ball status 
predictions and afterwards we computed IoU to the ground truth stoppages. This window has been empirically 
evaluated on the validation set to maximize the F1-Score. We excluded stoppages shorter than 2 s from our 
analysis since they are considered unimportant to performance analysis and concern only 1.3% of all stoppages. 
Additionally, we focused on the AD model as it shows by far the best results in F1-Score for the 2 s length for 
further analyses. AD has a 12% higher mean F1-Score overall matches (F1 = 0.80 ± 0.06) compared to the other 
three models ranging from 0.68 ± 0.05 (RF) to 0.61 ± 0.06 (LR) (Table 1b). AD surpassed their stoppage predic-
tions in 42 of 47 matches, as described in the Appendix.

To check whether the selected AD model has a bias in its prediction when working with different leagues, 
we split the test set into the first and second league. The results show almost no difference between the leagues 
average F1-Scores (Bundesliga: F1 = 0.80 ± 0.05, Bundesliga 2: F1 = 0.79 ± 0.07). This speaks to the generalizability 
of our model.

Evaluation of application for performance analysis.  Starting and ending point prediction accura-
cy.  It is important to have information on the position of stoppages in the video footage for video analysis. 

Table 1.   Prediction results for A) frame-wise and B) stoppage-wise prediction of the four chosen ML models 
in 47 test matches. Accuracy, Precision, Recall, and F1-Score in percent with standard deviation. In B) only 
stoppages with a minimum duration of 2 s are considered. The best results are bold.

Logistic regression Decision tree Random forest AdaBoost

A) frame-wise prediction

Accuracy 86.7 (± 2.0) 84.6 (± 1.9) 89.3 (± 2.0) 92.0 (± 2.1)

Precision 88.3 (± 3.9) 85.8 (± 4.3) 88.1 (± 4.0) 93.4 (± 2.6)

Recall 89.4 (± 3.4) 88.8 (± 3.0) 94.6 (± 2.2) 93.0 (± 4.0)

F1 Score 88.7 (± 2.3) 87.2 (± 2.3) 91.2 (± 2.3) 93.1 (± 2.4)

B) stoppage-wise prediction

Precision 58.9 (± 7.6) 68.6 (± 7.2) 68.8 (± 6.4) 81.1 (± 7.4)

Recall 64.5 (± 6.7) 61.6 (± 6.4) 67.4 (± 5.6) 78.9 (± 5.7)

F1-Score 61.2 (± 6.1) 64.7 (± 5.8) 67.9 (± 5.1) 79.8 (± 5.8)
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First, we split all correct stoppages (true positives) into four groups according to their total length because we 
assumed that prediction accuracy depends on stoppage length. We differentiated between the groups with less 
than 10, 20, 30, and equal or more than 30 s. However, no significant differences between these four groups were 
found. Second, we checked the length of shifts. Here, in more than 51% (start) and 58% (end), the deviation from 
the real point was ≤ 1 s, and more than 78% (start) and 80% (end) of all stoppages had ≤ 2 s shift (Fig. 2). The 
mean absolute shift was 1.79 ± 3.44 s (99% CI [1.65, 1.94]) for the starting points and 1.68 ± 3.47 s (99% CI [1.54, 
1.83]) for the ending points.

Next, we checked whether the model predicted specific interruptions better. Here, we compared all six stop-
page types (Kick-off, Goal kick, Free kick, Corner kick, Penalty kick, and Throw-in) using their recall for our 
best model with the minimum duration of 2 s. Note, a stoppage is type ’Kick-off ‘ when the match proceeds with 
a Kick-off after the stoppage. Additionally, we checked whether the model has problems detecting the starting 
and ending points of specific types (Table 2). The recall varies between the types from 0.92 (Kick-off) to 0.74 
(Throw-in). The mean absolute start and end shifts differ only slightly within four types (Corner kick, Goal kick, 
Throw-in, and Free kick) between 1.42–2.00 s (start) and 1.54–1.87 s (end). However, that is not the case for the 
Kick-off and Penalty kick. This is attributed to their low frequency in our dataset and longer stoppage duration.

Figure 1.   Boxplots (left y-axis) and sums (right y-axis) of mean decrease in impurity per feature in the feature 
class (A) Type of value and (B) Time shift in seconds.



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16291  | https://doi.org/10.1038/s41598-022-19948-1

www.nature.com/scientificreports/

Performance indicator accuracy.  Table 3 compares TDCE calculated using the ball status based on ground truth, 
AD prediction, and a naïve approach by reporting common error indicators (mean error, mean absolute error 
(MAE), 99CI, R (Pearson), ICC (two-way random model). Results show that the differences between the TDCE 
of both ground truth and AD are smaller than the differences between the TDCE of both the ground truth and 
naïve approach. For instance, the mean error of AD TDCE was − 102 m, which is 15.6 times smaller than the 
mean error introduced using the naïve approach (1,590 m) and 1.3% of the mean value of TDCE based on the 

Figure 2.   Deviation of time shifts for (A) starting and (B) ending point prediction with AdaBoost model for all 
stoppages found in 47 test matches. In 77% (start) and 81% (end) the shift is between ± 2 s.
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ground truth (7939 m). Similarly, correlation coefficients are much higher when using AD compared with the 
naïve approach.

To interpret the error size considering performance analysis (see Discussion), we used the so-called ‘smallest 
worthwhile change’ (SWC) introduced by Hopkins37. SWC refers to the smallest change of a performance vari-
able within a series of measurements, which has practical meaning in sports. For soccer, the literature suggests 
an SWC of 20% of the within-athlete or inter-athlete variation of a running performance indicator38. Following 
this recommendation, SWC for TDCE is 326 m and is calculated using the standard deviation of ground truth 
TDCE (1631 m).

Discussion
Discussion of results.  The first aim of this study was to test the ability of four ML models to predict the 
ball status. Therefore, we used only the positional data of players and fed them into ML algorithms with the 
assumption that the target information lies in the collective running behavior of the players. Our results sup-
port this belief and showed that all tested ML algorithms provided significantly better results than guessing the 
ball status with a naïve approach in the frame-by-frame prediction (question I) (Table 1a). AD achieved the 
best result with an F1-Score of 0.93 and a mean knowledge gain of 0.32 ± 0.05, whereas the other three models 
ranged from F1 = 0.87 (DT) to F1 = 0.91 (RF). Several promising results were obtained for predicting complete 
stoppages (question II) (Table 1b). Despite the good results of all ML models in the frame-wise prediction, AD 
by far produced the best results for the stoppage prediction, achieving an F1-Score of 0.80 ± 5.8 compared to the 
others ranging from 0.68 ± 0.05 (RF) to 0.61 ± 0.06 (LR). A deeper qualitative analysis detected some systematic 
flaws: First, for false negatives, there is a tendency to miss very short stoppages (2–4 s) of some types (Free kick, 
Throw-in). In these situations, either the median filter smooths too much, or the players’ behavior shows no dif-
ference as the match resumes promptly. The same smoothing problem occurs when a very short sequence of ball 
in-game lies between two stoppages, so the interruptions are stitched together. Second, is the problem of false 
positives, which can be seen within long interruptions where the players show more activity for a short period, 
in turn, leading the model to predict that the ball is in-game. This results in one correct and one false positive 
classified stoppage because the ground truth stoppage is assigned by the IoU metric to one of both and cannot 
be assigned twice. Overall, very short sequences of ball in-game or out-of-game are harder to detect. In these 
moments, the behavior of the players shows less differences, as they anticipate that the match will resume or 
interrupt rapidly. Studies on stoppage types show that the recall differs within types. For Throw-in and Corner 
kick, less recall is attributed due to the result of the median filter because these situations are prone to being fol-
lowed by fast toggling ball status (Table 2).

Table 2.   Prediction quality per stoppage type for 3886 correct predicted stoppages in 47 test matches with 
AdaBoost and minimum stoppage length of 2 s. Absolute time shift to the ground truth of predicted stoppages 
with AdaBoost.

Stoppages Absolute shift [s]

Type n

Length Prediction Start End

Mean [s] Recall [%] Mean (SD) Median 99% CI Min./Max. Mean (SD) Median 99% CI Min./Max.

Overall 3886 21.4 78.9 1.79 (± 3.44) 1.00 [1.65, 1.94] 0.00/69.08 1.68 (± 3.47) 0.84 [1.54, 1.83] 0.00/53.88

Kick-off 153 50.2 91.6 4.80 (± 9.09) 2.60 [2.89, 6.72] 0.04/69.08 0.90 (± 1.21) 0.56 [0.65, 1.16] 0.00/8.68

Penalty 13 61.7 86.7 5.41 (± 13.36) 1.04 [− 5.91, 16.73] 0.2/49.48 10.50 (± 18.62) 0.72 [− 5.28, 26.27] 0.04/53.00

Free kick 1290 26.9 81.3 1.80 (± 2.99) 1.04 [1.58, 2.01] 0.00/37.00 1.87 (± 3.78) 1.00 [1.60, 2.14] 0.00/53.88

Corner kick 367 26.9 80.7 1.58 (± 3.04) 0.88 [1.17, 1.99] 0.00/34.72 1.81 (± 4.49) 0.68 [1.20, 2.41] 0.00/32.56

Goal kick 568 23.0 79.8 2.00 (± 4.09) 0.88 [1.55, 2.44] 0.00/49.12 1.55 (± 2.52) 0.92 [1.28, 1.83] 0.00/33.08

Throw-In 1495 13.0 74.3 1.42 (± 1.85) 0.92 [1.30, 1.55] 0.00/25.52 1.54 (± 2.82) 0.80 [1.36, 1.73] 0.00/37.40

Table 3.   Total distance covered per player in the effective playing time calculated with in-game status data of 
ground truth, AdaBoost prediction and a naïve approach for 751 players that played only the full match and 
without goalkeepers. Differences between ground truth to AdaBoost prediction and the naïve approach.

Total Distance Covered per player in effective playing 
time

Ground Truth (GT) AdaBoost NaÏve approach

Mean [m] 7939 (± 1631) 8041 (± 1683) 6348 (± 1099)

Mean error to GT [m] − 102 (± 273) 1590 (± 683)

Mean absolute error (MAE) to GT [m] 238 (± 169) 1594 (± 674)

99% confidence interval (MAE) [m] [222 ; 254] [1531 ; 1658]

Inter class coefficient (ICC) 0.985 0.532

R (Pearson) 0.987 0.949
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A comparison of our results with other studies is possible only to a limited extent. To the best of our knowl-
edge, there is only the study by Wei et al.17 that performs a prediction of the ball status. However, since they sliced 
the match into 4 s chunks and predicted whether a chunk was in-game, their task differs to ours. Nevertheless, 
they achieved a mean accuracy of around 90% with player position data and almost 100% with ball position 
data. While their results are exceptional, they did not clarify how they handle stoppages with a duration of less 
than 4 s. Furthermore, there is no mention of whether the prediction accuracy is only for ‘chunk detection’ or 
complete stoppages. Compared with our study, where we achieved an accuracy of 80% for complete stoppages 
and 93% for frame-wise recognition with 25 Hz frequency, our model outperformed the chunk detection with 
higher accuracy and frequency. We assume that they did not predict complete stoppages, as it was not discussed 
in the following analyses. Gudmunsson and Wolle16 achieved an F1-Score of 0.94 for ‘ball-out’ event detection, 
where the ball leaves the field. However, this was achieved under the consideration of the ball and player position 
data. Khaustov and Mozgovoy39 recognized events like passes and shots on goal, but included the ball position 
in their input feature space. They obtained an F1-Score ranging from 0.93–0.99 and 0.86–0.88 for successful 
and unsuccessful passes, respectively. Richly et al.18 predicted passes, consisting of a kick and a reception, but 
did not differentiate between the ball status. Also, they included the ball position in their input feature space.

The analysis of stoppages’ starting and ending point time shifts (question III), shows promising results, where 
the shift was in more than 78% of all stoppages between ± 2 s (Fig. 2). It is in the nature of the IoU metric, the 
longer the stoppage, the more shift error is possible. Nevertheless, checking the deviation of shifts versus the 
length shows no trend in whether the model predicts short or long stoppages better. This means that starting 
and ending points are predicted with the same accuracy within different stoppage lengths, making the model 
feasible for performance analysis, such as video analyses, because practitioners want to find standard situations in 
a video stream. For example, the performance analysis of a Free kick is driven by the execution and the behavior 
of players just before and after the kick. Furthermore, analysts search for tactical patterns in the opponent’s play 
after standard situations. Our model provides an opportunity to solve these tasks, because most of the ending 
points are estimated with an error of less than 2 s.

The last part of the analysis evaluates whether the accuracy of the estimated ball status is high enough to derive 
ball status-related performance indicators (question IV). Here, we used SWC by Hopkins37, who argued that a 
measurement device is ‘useful’ for measuring the performance variable if the random error (noise) of the device 
is below the SWC. When using the AD predicted ball status, the standard deviation of the TDCE error, which 
represents the noise, was 273 m. This is lower than the SWC of 326 m (Table 3). Thus, the ball status estimation 
accuracy is sufficiently high to measure ball status-related performance indicators. The data indicate that the 
naïve approach would lead to a higher error since the standard deviation of the TDCE error (683 m) was higher 
than the SWC, which makes the naïve approach unacceptable for calculating TDCE. This results from the fact 
that the speed of the players is much higher when the ball is in play than otherwise.

Discussion of methods and limitations.  To provide a basic foundation, we started by classifying each 
frame into a binary state. We chose four well-known classification algorithms to keep the workload and comput-
ing time in check. However, other classification algorithms, e.g., k-nearest neighbor or Naive Bayes, could also 
be applied and provide interesting results. It seems worth to try more complex ML algorithms like (recurrent) 
neural networks18,40,41 or change the input features to more complex ones. For our feature selection, we only 
selected the existing information, without generating new ones, to reduce computing time and keep it simple. 
However, different approaches that preserve the correspondences between features and players, and help with 
the generalization are conceivable. In our case, neither a specific feature nor value type class (x/y-coordinate, 
speed, acceleration, time shifts) shows a significant increase in importance compared with others (Fig. 1). We 
have shown that the time shifts around the prediction point [− 4 s, + 4 s] have higher feature importance for the 
ball status compared with other time shifts. Notably, the behavior of the players, seconds before the ball goes 
out or comes in, is more relevant for the model than the moment itself or the long-term information. Here, 
one could think about including trajectory heatmaps or vectors as input features to give the algorithm a better 
understanding on time depending behavior.

Adding more information around the events where the ball status swaps, e.g., the centroids of the teams17 or 
the centroid of the defense and attacking lines, could improve the prediction quality. Furthermore, it can be useful 
to introduce the essence of a stoppage into the algorithm, e.g., the minimum, maximum, distribution, and mean 
length. The feature corresponding to one player changes each time there is a substitution or the player is sent off. 
Instead, considering the playing position of each player gives the model a better understanding of which players 
may behave the same way in certain situations. Hence, it would be necessary to assign a defined playing position 
to each player data array after the match, which increases the effort for the analysts in post-match production.

We checked whether the model performance differed between leagues, which was not the case. One can argue 
that showing validity for the first and second leagues does not necessarily mean that the model works for lower 
leagues. However, we assume, that there are not too much differences which cause serious problems, but many 
similarities in general movement patterns, e.g., slowing down when the ball goes out-of-game and vice versa. 
Furthermore, we have not shown that our model works on other datasets. Nevertheless, we assume no problems 
by using data of other system classes since the position accuracy (LPM) and speed (GPS) are in a similar range42.

Discussion of application.  By providing the in-game status, our solution opens up the field for deeper 
and more detailed analyses for all teams that only have player tracking data (e.g., from GPS or LPM) without a 
dedicated ball position and no human data logger. Our solution provides the precondition for extracting higher 
tactical constructs from the positional data of players. Albeit the extraction of position data from broadcasting 
video feeds becomes easier in the future, our model is suitable for working with such data. Moreover, even with a 
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rough ball position derived from a video feed, our model can be easily retrained to incorporate this information, 
thereby leading to better prediction quality17. We assume that including the ball position would lead the models 
to nearly 100% accuracy, as most of the interruptions, i.e., Kick-off, Corner kick, Penalty kick, and Throw-In, 
are by default depending on the ball position. More generally, we showed the applicability and potential of using 
ML on sports data. We believe the future will bring a completely automated extraction of events using a few low-
cost data sources, like GPS tracking and a one-camera system. This will provide affordable deeper analyses for 
amateur teams. We believe our study is the first to use only the player position data to extract the ball status in 
high frequency, which is fundamental information about the ball and the match in soccer.

Conclusion
Our data show that the trained AD model provides an appropriate technological solution for determining in-
game status from time-continuous player positions only. The AD model can predict more than 78% of stoppages’ 
starting and ending points with a time shift error of less than 2 s, which should be good enough for video analysis 
tasks. By taking TDC as an example, our analysis shows that ball status-related performance indicators can be 
calculated with an acceptable error. In scenarios where teams have only access to player positions (e.g., from 
GPS/LPM systems) but not to a human-annotated ball status and/or ball position data, i.e., in amateur or youth 
soccer, our approach can enhance match analysis.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to the authors are 
not the owner of all data, but they are available from the corresponding author on reasonable request.
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