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Abstract: The pharmacokinetics of vitamin C (vitC) is indeed complex. Regulated primarily by a
family of saturable sodium dependent vitC transporters (SVCTs), the absorption and elimination are
highly dose-dependent. Moreover, the tissue specific expression levels and subtypes of these SVCTs
result in a compartmentalized distribution pattern with a diverse range of organ concentrations of
vitC at homeostasis ranging from about 0.2 mM in the muscle and heart, and up to 10 mM in the
brain and adrenal gland. The homeostasis of vitC is influenced by several factors, including genetic
polymorphisms and environmental and lifestyle factors such as smoking and diet, as well as diseases.
Going from physiological to pharmacological doses, vitC pharmacokinetics change from zero to
first order, rendering the precise calculation of dosing regimens in, for example, cancer and sepsis
treatment possible. Unfortunately, the complex pharmacokinetics of vitC has often been overlooked
in the design of intervention studies, giving rise to misinterpretations and erroneous conclusions.
The present review outlines the diverse aspects of vitC pharmacokinetics and examines how they
affect vitC homeostasis under a variety of conditions.
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1. Introduction

Humans rely solely on dietary intake for the maintenance of the body pool of vitamin C (vitC).
In contrast to the vast majority of vertebrates, in which l-gulonolactone oxidase catalyzes the final step
in the biosynthesis of ascorbic acid, evolutionally conserved deletions have made the corresponding
gene inactive in primates, flying mammals, guinea pigs, and some bird and fish species, thereby
disabling its formation [1]. This evolutionary event may in fact have resulted in an adaptational process
where our ability to prevent vitC deficiency has been improved by various measures changing the
pharmacokinetics, including more efficient absorption, recycling, and renal reuptake of vitC compared
to vitC synthesizing species [2,3].

The absorption, distribution, metabolism, and excretion of vitC in humans is highly complex
and unlike that of most low molecular weight compounds. The majority of intestinal uptake, tissue
distribution, and renal reuptake is handled by the sodium-dependent vitC transporter (SVCT) family
of proteins [4] that cotransports sodium ions and ascorbate (ASC) across membranes with the ability
to generate considerable concentration gradients [5,6]. It is the differential expression, substrate
affinity, and concentration dependency of the SVCTs between organs that gives rise to the unique
compartmentalization and nonlinear pharmacokinetics of vitC at physiological levels [7].

The hydrophilic nature of ASC and the likely resulting absence of passive diffusion across
biological membranes has puzzled pharmacologists. However, two decades ago, active transport of
vitC was found to be essential for life, when Sotiriou et al. showed that SVCT2 knockout mice die
immediately after birth from respiratory failure with severe brain hemorrhage [8]. Acknowledging the
role of SVCTs in vitC homeostasis has naturally sparked an interest in possible differences in SVCT
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activity between individuals and potential impact on vitC status. Thus, a number of polymorphisms
have been identified, and these may affect the pharmacokinetics of vitC significantly. Although not
investigated in clinical studies yet, pharmacokinetic modelling has suggested that several of the
identified SVCT alleles result in a lower plasma steady state level and consequently completely altered
homeostasis [9] with the lowest saturation level leading to permanent vitC deficiency, i.e., a plasma
concentration < 23 µM [10,11].

In contrast to the physiological concentrations achievable by oral ingestion, pharmacological
concentrations, i.e., millimolar plasma concentrations, can be reached by parenteral administration, mostly
intravenous infusion [12]. Interestingly, the pharmacokinetics of vitC appears to change from zero to first
order following high-dose infusion displaying a constant and dose-independent half-life [13].

A final factor contributing to the complexity of vitC pharmacology is its metabolism. Low
molecular weight drugs and xenobiotics are normally metabolized by a combination of phase I and II
enzymes leading to oxidized and conjugated metabolites with increased water solubility and enhanced
clearance. VitC takes part in numerous physiological reactions as an electron donor [14]. Acting both
as a specific cofactor or antioxidant, ASC is oxidized to the ascorbyl radical, which subsequently may
undergo dismutation to form ASC and dehydroascorbic acid (DHA) [15]. Although DHA has a half-life
of only a few minutes [16], it is normally reduced back to ASC by enzymatic means, an intracellular
process that is both efficient and quantitative in healthy individuals. However, it has been shown that
the recycling process may be inadequate during disease and among smokers, for example, resulting
in an increased turnover of vitC [17,18]. Thus, increased intake of vitC may be necessary to achieve
homeostasis in high-risk individuals.

The present review outlines the pharmacokinetics of vitC under various conditions and discusses
how it affects the vitC status.

2. Pharmacokinetics of Vitamin C

Pharmacokinetics constitutes the description of absorption, distribution, metabolism, and excretion
of drugs. Pharmacokinetics is based on a number of theoretical models, all of which have a set of
assumptions that need to be fulfilled for their validity. Compared to a typical orally administered low
molecular weight drug, vitC differs in multiple ways with respect to pharmacokinetic properties [19].
Unfortunately, lack of proper attention to particularly the nonlinearity of vitC pharmacokinetics has
led to misinterpretation of a major part of the clinical literature as reviewed elsewhere [11,19,20]. In the
following, the kinetics of vitC is explored in more detail.

2.1. Oral Route of Administration

Oral ingestion of food or supplements is the primary route of administration for vitC. VitC is
ubiquitous in nature and particularly fruits and vegetables contain relatively large amounts of ASC [21].
For healthy individuals, it is possible to get sufficient amounts of vitC through the diet provided it
contains high amounts of vitC-rich sources [22,23]. However, in many diseases and in people with
very poor vitC status including smokers, for example, the dietary intake may be insufficient to provide
adequate amounts of vitC [19,24,25].

2.1.1. Absorption

VitC exists primarily in two forms in vivo, ASC (reduced form) and DHA (oxidized form), of which
the former is by far the predominant [26]. Due to the efficient intracellular recycling of DHA to ASC by
most cell types, the total available vitC capacity is considered the combined pool of ASC and DHA [27].
With regard to vitC, three potential modes of membrane transport exist: passive diffusion, facilitated
diffusion, and active transport [6].

For most low molecular weight drugs, simple diffusion is the primary means of membrane
transport. However, vitC is predominantly represented by its anionic form (>99.9%) at neutral pH
and is highly water-soluble. As such, it will only be able to diffuse across the plasma membrane at a
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relatively slow rate even in the presence of a considerable concentration gradient. However, in the
milieu of the stomach (pH 1) or small intestine (pH 5), the proportion of unionized ascorbic acid
increases to 99.9% and 15%, respectively, and under these local conditions, passive diffusion could
perhaps play a more significant role in vitC uptake. Studies in individuals with normal vitC status
have reported similar times to maximal plasma concentration following oral administration of ascorbic
and erythorbic acid, respectively [28,29], even though erythorbic acid, an isoform of ASC with low vitC
activity, is poorly transported by epithelial SVCT1 [30]. However, it remains undisclosed if passive
diffusion of ASC contributes significantly to its absorption from these compartments.

Facilitated diffusion across membranes occurs through carrier proteins but like passive diffusion,
it depends on an electrochemical gradient. DHA has been shown to compete with glucose for transport
through several glucose transporters [31,32]. While only present in negligible amounts in the blood of
healthy individuals [17,33], intestinal concentrations are presumably much higher, most likely due
to the absence of intracellular recycling and relatively higher concentration in foodstuffs. This may
explain the repeated finding of similar bioavailability of ASC and DHA as vitC sources [2,34–36].
Moreover, this could explain the observation of equal absorption rates of ascorbic and erythorbic acid
from the intestine as dehydroerythorbic acid would be expected to pass through glucose transporters.
DHA uptake is expectedly inhibited by excess glucose, while the maximal rates of uptake for ASC and
DHA are similar when glucose is absent [37].

Finally, concentration gradient-independent active transport plays a significant role in vitC
absorption. As early as the 1970s, it was observed that the bioavailability of ASC is highly
dose-dependent [38]. Increasing oral doses were shown to lead to decreasing absorption fractions
and it was concluded by several authors that intestinal ASC absorption is subject to saturable active
transport [38,39]. Malo and Wilson discovered that DHA and ASC are taken up by separate mechanisms
in the intestine and that uptake of ASC is sodium-dependent [37]. This coincided with the discovery
and characterization of the SVCT family of transporters by Tsukaguchi et al. [4]. They subsequently
showed that the intestine contains the low affinity/high capacity active transporter SVCT1 [30]. Thus,
ASC is efficiently transported across the apical membrane of the intestinal epithelial cells via active
transport but its release into the blood stream is less well understood. As intracellular vitC is effectively
kept reduced, facilitating further uptake of DHA, efflux to the blood through glucose transporters is
unlikely to provide a significant contribution. As mentioned above, the intracellular pH of 7.0 renders
the anionic ASC predominant (99.9%) and given its hydrophilic nature, passive efflux of ascorbic acid
via simple diffusion will be relatively slow. However, as the cellular release of vitC to the blood stream
is vital for the absorption process and must occur to a high extend considering the rapid uptake of
vitC (plasma Tmax of about 3 h [29]), it strongly implies the existence of yet undiscovered channels
or transporters facilitating vitC efflux. It has been proposed that ASC efflux may occur through
volume-sensitive anion channels in the basolateral membranes of epithelial cells [6]. In the brain,
however, studies in human microvascular pericytes have shown that volume-sensitive anion channels
are apparently not involved in the ASC efflux from these cells and may therefore not represent a
general mechanism of basal ASC efflux [40]. A schematic overview of intestinal vitC absorption is
shown in Figure 1.
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Figure 1. Ingested vitamin C (vitC) is absorbed across the intestinal epithelium primarily by 
membrane transporters in the apical brush border membrane, either as ascorbate (ASC) by sodium-
coupled active transport via the SVCT1 transporter or as dehydroascorbic acid (DHA) through 
facilitated diffusion via GLUT1 or GLUT3 transporters. Once inside the cell, DHA is efficiently 
converted to ASC or transported to the blood stream by GLUT1 and GLUT2 in the basolateral 
membrane, hereby maintaining a low intracellular concentration and facilitating further DHA uptake. 
ASC is conveyed to plasma by diffusion, possibly also by facilitated diffusion through volume-
sensitive anion channels or by yet unidentified active transporters; the precise efflux mechanisms 
remain unknown. Modified from [5]. 

2.1.2. Distribution 

The distribution of vitC is highly compartmentalized (Figure 2). Simple diffusion is unlikely to 
play a major role in vitC transport across membranes, at least in the further distribution from the 
blood stream. From a theoretical point of view, ASC plasma steady state concentrations would be 
2.5-fold higher than in tissue as calculated by a dissociation-determined equilibrium. In reality, 
intracellular concentrations of ASC range from about 0.5 to 10 mM compared to the mere 50–80 µM 
in the plasma of healthy individuals [7], confirming a many-fold preference for tissue. Although the 
glucose transporters (GLUTs 1–4 and 8) capable of facilitating diffusion of DHA are widely 
represented throughout the body [31,32,41–43], the negligible amount of oxidized vitC present in 
plasma of healthy individuals precludes that GLUT mediated transport per se is of major importance 
in the diverse distribution of vitC. One apparent exception is erythrocytes that do not contain SVCTs 
but are only able to take up vitC through facilitated diffusion [44–46]. Human erythrocytes are able 
to recycle DHA to ASC and maintain an intracellular vitC concentration similar to that of plasma [18]. 
It has been estimated that the erythrocytes alone are capable of reducing the total amount of vitC 
present in blood approximately once every 3 min [47,48]. Consequently, the recycling capacity of the 
erythrocytes may constitute a substantial antioxidant reserve in vivo. Recent investigations actually 
suggest that ASC is necessary for the structural integrity of the erythrocytes and that intracellular 
erythrocyte ASC is essential to maintain ASC plasma concentrations in vivo [49,50]. However, 
collectively speaking and considering the quantitative importance of mechanisms, ASC is primarily 
distributed via active transport.  

Figure 1. Ingested vitamin C (vitC) is absorbed across the intestinal epithelium primarily by membrane
transporters in the apical brush border membrane, either as ascorbate (ASC) by sodium-coupled active
transport via the SVCT1 transporter or as dehydroascorbic acid (DHA) through facilitated diffusion
via GLUT1 or GLUT3 transporters. Once inside the cell, DHA is efficiently converted to ASC or
transported to the blood stream by GLUT1 and GLUT2 in the basolateral membrane, hereby maintaining
a low intracellular concentration and facilitating further DHA uptake. ASC is conveyed to plasma
by diffusion, possibly also by facilitated diffusion through volume-sensitive anion channels or by yet
unidentified active transporters; the precise efflux mechanisms remain unknown. Modified from [5].

2.1.2. Distribution

The distribution of vitC is highly compartmentalized (Figure 2). Simple diffusion is unlikely to
play a major role in vitC transport across membranes, at least in the further distribution from the blood
stream. From a theoretical point of view, ASC plasma steady state concentrations would be 2.5-fold
higher than in tissue as calculated by a dissociation-determined equilibrium. In reality, intracellular
concentrations of ASC range from about 0.5 to 10 mM compared to the mere 50–80 µM in the plasma of
healthy individuals [7], confirming a many-fold preference for tissue. Although the glucose transporters
(GLUTs 1–4 and 8) capable of facilitating diffusion of DHA are widely represented throughout the
body [31,32,41–43], the negligible amount of oxidized vitC present in plasma of healthy individuals
precludes that GLUT mediated transport per se is of major importance in the diverse distribution of
vitC. One apparent exception is erythrocytes that do not contain SVCTs but are only able to take up
vitC through facilitated diffusion [44–46]. Human erythrocytes are able to recycle DHA to ASC and
maintain an intracellular vitC concentration similar to that of plasma [18]. It has been estimated that
the erythrocytes alone are capable of reducing the total amount of vitC present in blood approximately
once every 3 min [47,48]. Consequently, the recycling capacity of the erythrocytes may constitute a
substantial antioxidant reserve in vivo. Recent investigations actually suggest that ASC is necessary
for the structural integrity of the erythrocytes and that intracellular erythrocyte ASC is essential to
maintain ASC plasma concentrations in vivo [49,50]. However, collectively speaking and considering
the quantitative importance of mechanisms, ASC is primarily distributed via active transport.
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Figure 2. The figure illustrates the highly differential distribution of vitC in the body. Several organs 
have concentration-dependent mechanisms for the retention of vitC, maintaining high levels during 
times of inadequate supply at the expense of other organs. Particularly protected is the brain. In 
addition, the concentration-dependent absorption and re-absorption mechanisms contribute to the 
homeostatic control of the vitC in the body. Modified from [5]. 

Figure 2. The figure illustrates the highly differential distribution of vitC in the body. Several organs
have concentration-dependent mechanisms for the retention of vitC, maintaining high levels during
times of inadequate supply at the expense of other organs. Particularly protected is the brain. In addition,
the concentration-dependent absorption and re-absorption mechanisms contribute to the homeostatic
control of the vitC in the body. Modified from [5].

In contrast to epithelial ASC uptake and reuptake mediated by the high capacity/low affinity
SVCT1 (Vmax of about 15 pmol/min/cell and Km of about 65–252 µM [5,30,51]), distribution from
the blood stream to the various tissues is mainly governed by the slightly larger SVCT2 [52]. SVCT2
is a low capacity/high affinity transporter of vitC (Vmax of about 1 pmol/min/cell and Km of about
8–69 µM [5,30,51]) and is widely expressed in all organs [4]. The respective transport capacities and
affinities for vitC fit well with the accepted notion that SVCT1 mediates the systemic vitC homeostasis,
while SVCT2 secures local demands [53]. This is particularly evident for the brain, which upholds one
of the highest concentrations of vitC in the body [7,54]. Transport of vitC into the brain is believed
to take place through SVCT2s located in the choroid plexus [55], although it has been suggested that
other yet undiscovered mechanisms may also be involved [56,57]. However, the pivotal role of SVCT2
in the brain remains undisputed as supported by convincing studies in Slc23a2 knockout mice that
display severe brain hemorrhage and high perinatal mortality [8].

Apart from its remarkably high steady state concentration, the brain also distinguishes itself
by being exceptional in the retention of vitC during states of deficiency [54,58–64]. This retention
occurs at the expense of the other organs and has been proposed to be essential for the maintenance of
proper brain function [63,65,66] (Figure 3). Also, during repletion, the brain, as well as the adrenal
glands, has a remarkable affinity for ASC, and detailed in vivo studies in guinea pigs, which, like
humans, are unable to synthesize vitC, have revealed that these tissues in particular are the fastest to
re-establish homeostasis [7].
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Figure 3. Tissue accumulation of vitC depends on both local and systemic conditions. The ratios are 
based on data obtained from guinea pigs that like human cannot synthesize vitC [7]. (a): During 
sufficiency, tissues accumulate vitC primarily through the sodium-dependent vitC transporters 
(SVCTs) perhaps with a small contribution from influx of DHA, which is rapidly converted to ASC. 
(b): During deficiency, prioritized retainment of vitC occurs in, for example the brain, at the expense 
of other tissues (c): where increased oxidative stress may result in elevated DHA concentrations, 
limited recycling capacity and poor tissue accumulation through DHA influx. 

Figure 3. Tissue accumulation of vitC depends on both local and systemic conditions. The ratios are
based on data obtained from guinea pigs that like human cannot synthesize vitC [7]. (a): During
sufficiency, tissues accumulate vitC primarily through the sodium-dependent vitC transporters (SVCTs)
perhaps with a small contribution from influx of DHA, which is rapidly converted to ASC. (b): During
deficiency, prioritized retainment of vitC occurs in, for example the brain, at the expense of other tissues
(c): where increased oxidative stress may result in elevated DHA concentrations, limited recycling
capacity and poor tissue accumulation through DHA influx.



Nutrients 2019, 11, 2412 7 of 20

The mechanism(s) underlying the highly differential steady state concentrations of vitC in various
tissues remains largely unknown. The potential existence of multiple tissue-specific isoforms of the
SVCT2 has not been confirmed, leading to the assumption that the individual SVCT2 expression level
of the cells of the tissues may define organ steady state levels of vitC subject to plasma availability.
This implies that tissue and cell type composition are mainly responsible. However, in the brain
of guinea pigs, for example, substantial differences in vitC steady state levels have been observed
between the individual regions, with the highest concentrations being found in the cerebellum, which
also appears to saturate first [7]. This does not directly coincide with cerebellum being the most
neuron-rich brain region, although neurons contain the highest concentrations of vitC of the brains
cells. Moreover, regional SVCT2-abundance has mostly been investigated through RNA expression
levels leaving little information on the possible influence of, e.g., post-translational modifications,
activation, and/or relocation of the functional protein to the cell membrane.

2.1.3. Metabolism

In contrast to plants, where a number of ASC derivatives and analogues, including several
glucosides, have been identified, only ASC exists in mammals [67]. The metabolism of ASC is
intimately linked to its antioxidant function. Through its enediol structure (Figure 4) that is highly
resonance stabilized and influenced by the acidity of the molecule, ASC serves as an efficient electron
donor in biological reactions. In supplying reducing equivalents as either a cofactor or free radical
quencher, ASC itself is oxidized to the comparatively stable radical intermediate, ascorbyl free radical,
two molecules of which may be disproportionate at a physiological pH to one molecule of ASC and
one of DHA [21,68]. As mentioned earlier, DHA is efficiently reduced intracellularly by a number of
cell types, thereby preserving the ASC pool. Turnover of vitC is therefore particularly linked to the
catabolism of DHA which occurs through hydrolysis to 2,3-diketogulonic acid and decarboxylation
to l-xylonate and l-lyxonate, both of which can enter the pentose phosphate pathway for further
degradation (Figure 4) [69].
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2.1.4. Excretion and Reuptake

As a highly hydrophilic low molecular weight compound, ASC would be expected to be efficiently
excreted through the kidneys. Indeed, ASC is quantitatively filtered through glomerulus by means of
the hydrostatic pressure gradient and concentrated in the pre-urine subsequently to the resorption of
water (Figure 5). Here, the pH drops to about five, resulting in an increased proportion of unionized
ascorbic acid to that of ASC. The ascorbic acid increase from <0.01% in plasma to about 15% in
the pre-urine, representing a concentration gradient of 1500:1, would for most molecules result in
substantial passive reabsorption but does apparently not occur for ascorbic acid presumably due to its
low lipid solubility. Instead, reuptake of ASC in the proximal renal tubules is controlled by saturable
active transport through SVCT1. However, for individuals with saturated plasma levels, excretion of
surplus vitC is quantitative [70,71].
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Figure 5. In the kidney, vitC is efficiently filtered by glomerulus to the renal tubule lumen. Reabsorption
under vitC deficient conditions is primarily achieved by SVCT1 transporters in the apical membrane
although diffusion from the luminal surface may also contribute to the overall uptake. As in the
intestinal epithelium, ASC is presumably released to the blood stream through diffusion but the extent
and mechanisms of this are not known in detail. GLUT2 transporters are located in the basolateral
membrane enabling transport of DHA to plasma. Under saturated conditions, vitC is quantitatively
excreted. Modified from [5].

The importance of SVCT1 for intestinal vitC uptake and, in particular, for renal reuptake has been
illustrated by Corpe et al. who showed that Slc23a1-/- mice display an 18-fold increased excretion
of ASC, lower body pool and vitC homeostasis, and increased mortality [32]. They also modelled
the effect of known human polymorphisms in the SVCT1 on the plasma saturation level and came
to the astonishing conclusion that the most severely affected SNP (A772G rs35817838) would result
in a maximal plasma concentration of less than 20 µM [32], i.e., a potential life-long state of vitC
deficiency regardless of intake. The renal reuptake of ASC is highly concentration-dependent. Levine
and coworkers have shown in detail that the renal excretion coefficient of ASC ranges from 0 to 1
depending on the individual’s vitC status, i.e., corresponding to quantitative reuptake in individuals
with poor vitC status and quantitative excretion in individuals with saturated status [70,71]. The fact
that the excretion ratio is about 1 for intakes higher than about 500 mg/day in healthy individuals
supports that passive reabsorption of vitC does not play a significant role in the kidneys.

2.1.5. Steady State Homeostasis of Vitamin C Following Oral Administration/Intake

Most low molecular weight drug pharmacokinetics can be modelled by first order kinetics within
their therapeutic range, i.e., a doubling of the dose results in a doubling of the steady state plasma
concentration. However, the dominant role of the saturable active transport mechanisms in the
absorption, distribution, and excretion of ASC results in nonlinear dose-dependent pharmacokinetics.
With increasing vitC intake, the plasma steady state concentration reaches a maximal level of about
70–80 µM [70,71]. From the available literature, it appears that a daily intake of about 200–400 mg of
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vitC ensures saturation of the blood in healthy individuals [20]. During periods of altered distribution
due to temporary physiological needs such as pregnancy or increased turnover during disease or
smoking, higher intakes are needed to maintain sufficient levels.

It may be possible to exceed the homeostatic saturation level of 70–80 µM by several fold through
multiple daily gram doses of vitC. At supraphysiological levels, vitC gradually adheres to first
order kinetics as discussed under intravenous administration. Hence, it is possible to estimate that,
for example, a dose of 2 g of vitC given three times a day is likely to result in a steady state plasma
concentration of about 250 µM (calculations based to data from ref [13]). However, the possible health
benefits from such supraphysiological levels have yet to be documented.

2.1.6. Effect of Dosing Forms and Formulations

Several attempts have been made to bypass the maximum steady state plasma concentration of
about 70–80µM achievable through oral administration. A slow release formulation would theoretically
extend the uptake period resulting in a prolonged and thus increased accumulated uptake thereby
increasing the overall exposure. However, Viscovich et al. did not find any significant differences in
exposure or other pharmacokinetic variables between plain and slow release vitC supplements given to
smokers, neither at study start nor after 4 weeks of supplementation [29]. Another approach to increase
the maximum achievable plasma concentration through oral administration has been liposomes.
The pharmacokinetic properties of a bolus of four grams of liposome-encapsulated vitC were compared
to those of plain vitC and placebo in eleven volunteers in a crossover trial [72]. The authors found a
35% increase in exposure (AUC0–4hours) with a plasma Cmax of about 200 µM after 3 h. Unfortunately,
plasma concentrations were not measured beyond the 4 h time point. In an attempt to show a potential
biological significance of increased plasma vitC status, the participants were subjected to a 20-min
partial ischemia induced by a blood pressure cuff at 200 mm Hg. However, no beneficial effect
on ischemia-reperfusion-induced oxidative stress was observed on lipid peroxidation over that of
the non-encapsulated dose of vitC [72]. Regardless, this technology has shown some promise and
continues to be explored in anticancer therapy, where chemotherapeutics can be delivered together
with vitC for a potentially synergistic effect [73]. In another sophisticated approach, the particular
ability of the brain to take up vitC has been used by linking ASC to the surface of liposomes containing
chemotherapeutics thereby making a brain-specific drug delivery system by using the endogenous
vitC transport mechanisms [74].

2.2. Intravenous Route of Administration

Intravenous administration of drugs generally produces a predictable plasma concentration by
avoiding absorption limitations, resulting in 100% bioavailability. For vitC specifically, intravenous
administration bypasses the saturable absorption mechanisms. This virtually removes the upper limit of
the maximum achievable plasma concentration. Parenteral administration of vitC is typically handled
by intravenous infusion. This approach results in a predictable plasma steady state concentration
that will remain constant until infusion is discontinued. For vitC, a linear relationship between
dose and Cmax can be observed for doses up to about 70 g/m2 in humans as complied from clinical
pharmacokinetic studies, resulting in a plasma concentration of about 50 mM (Figure 6, calculations
based on [13,75]). For higher doses, the linearity seems to disappear and resembles a level of
saturation. However, more data are needed to establish if 50 mM constitutes an upper steady state
vitC concentration in plasma.
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Figure 6. Relationship between infusion dose of vitC and plasma Cmax in cancer patients as compiled
from [13,75]. The data suggests that a linear relationship between dose and Cmax exists for doses
between 1 and 70 g/m2 (p < 0.001, r2 > 0.99), while higher doses results do not translate into higher
plasma Cmax.

2.2.1. Distribution

As for all compounds in circulation, the distribution of vitC following infusion depends at least
initially on the vascularization of the various tissues. Whereas the millimolar plasma concentrations
do not seem to affect normal tissue distribution beyond saturation, particular interest has been
devoted the poorly vascularized tumors as ASC has shown to be cytotoxic to cancer cells but not
normal cells at high concentrations in in vitro and in vivo studies, possibly through a pro-oxidant
function [76–78]. Campell et al. [79] measured ASC concentrations in tumor tissue following high-dose
vitC administration in a mouse model and found that daily injections were necessary to delay tumor
growth and suppress the transcription factor hypoxia-inducible factor 1. Interestingly, it was also found
that elimination was significantly delayed in tumor compared to normal tissue [79], which may help in
preserving the effect of ASC in tumors between infusions. In an attempt to mimic tissue diffusion rates
and availability in both normal and tumor tissue, Kuiper and coworkers [80] used a multicell-layered,
three-dimensional pharmacokinetic model to measure ASC diffusion and transport parameters through
dense tissue in vitro. They were able to simulate diffusion under a number of conditions, including
tumors, and concluded that supraphysiological concentrations of ASC, achievable only by intravenous
infusion, are necessary for effective delivery of ASC into poorly vascularized tumors [80]. Using these
data, it was recently rationalized that normal body saturation obtained by adequate oral dosing will be
able to diffuse to cover the distance between vessels in normal well-perfused tissue, and thus provide
sufficient vitC for the entire body. In contrast, this diffusion distance is insufficient to increase the vitC
content of tumors with poor vascularization, which requires above millimolar concentrations plasma
concentrations for effective vitC diffusion [81]. Other than that, very little is known about the organ
and tissue homeostasis following intravenous infusion of high-dose vitC.

2.2.2. Metabolism and Excretion

In normal tissue, metabolism of ASC has not been shown to deviate from the general pattern
illustrated in Figure 4. However, in poorly vascularized tumor tissues, high-dose vitC combined
with the hypoxic tumor environment has been proposed to promote the formation of cytotoxic levels
of hydrogen peroxide, thus providing a putative mode of action and a potential role of ASC in
cancer treatment [26,82,83].



Nutrients 2019, 11, 2412 11 of 20

Following high-dose intravenous administration of vitC, the dose-dependency of the elimination
phase, as evident at levels below saturation as described above, is surpassed [84]. VitC is quickly
eliminated through glomerular filtration with no significant reuptake. This renders the half-life constant
and the elimination kinetics first order [13]. Several pharmacokinetic studies of high-dose vitC have
calculated a constant elimination half-life of about 2 h following the discontinuation of intravenous
infusion [13,75,85]. This suggests that the millimolar plasma concentrations achieved by intravenous
infusion are normalized to physiological levels in about 16 h. In this perspective, the observation
that tumor tissue may maintain an elevated level for as much as 48 h is interesting [79], and may be
mediated by increased stability in the hypoxic tumor environment, but most likely also by the delayed
clearance due to poor vascularization.

3. Factors Affecting Vitamin C Homeostasis and Requirements

As described in detail in the above, vitC homeostasis is tightly controlled in healthy individuals
giving rise to a complex relationship between the steady state levels of the various bodily organs and
tissues. This interrelationship depends primarily on the availability of vitC in the diet and the specific
“configurations” and expression levels of SVCTs of the tissues. However, a number of other factors
may interfere with the body’s attempt control the vitC homeostasis, and some major contributors are
discussed below.

3.1. Influence of Polymorphisms

With the acknowledgement of the importance of SVCTs for regulation of vitC homeostasis and the
evolution of genomic sequencing techniques, it has become clear that a large number of polymorphisms
exist that influence the steady state level of vitC. This has been reviewed in detail elsewhere [3],
but little is known about the potential clinical impact of these. A Mendelian randomization study in
83,256 individuals from the Copenhagen General Population Study used a genetic variant rs33972313
in Slc23a1 resulting in higher than average vitC status to test if improved vitC status is associated with
low risk of ischemic heart disease and all-cause mortality [86]. The authors found that high intake of
fruits and vegetables was associated with low risk of ischemic heart disease and all-cause mortality.
Effect sizes were comparable for vitC, albeit not significantly. As mentioned earlier, modelling studies
have proposed that the functionally poorest SVCT allele identified so far (A772G, rs35817838) results
in a plasma saturation level of only one fourth of that of the background population corresponding
to a condition of life-long vitC deficiency [9]. It would indeed be interesting to test how this allele
compares for morbidity and mortality.

3.2. Smoking

Smoking is a major source of oxidants and estimates have suggested that every puff of a
cigarette equals the inhalation of about 1014 tar phase radicals and 1015 gas phase radicals [87].
Not surprisingly, this draws a major toll on the antioxidant defense of the body as demonstrated by a
persistent association between tobacco smoke and poor antioxidant status in general, and poor vitC
status in particular [17,25]. Active smoking typically depletes the vitC pool by 25–50% compared to
never-smokers [88], while environmental tobacco smoke exposure results in a drop of about half that
size [89,90]. The direct cause of the smoking-induced vitC depletion has been investigated, and smoking
cessation has been shown to immediately restore about half of the vitC depletion observed as a result of
smoking [91]. This immediate albeit partial recovery has pointed towards an oxidative stress mediated
depletion of vitC caused by smoking. Moreover, both oxidative stress and ASC recycling are induced
by smoking regardless of antioxidant intake [18,92]. However, the lack of full recovery suggests that
other factors also contribute to the lower vitC status among smokers. Studies have suggested that the
difference in vitC status between smokers and nonsmokers is not related to altered pharmacokinetics
of vitC [28,29]. However, as smokers in general have a lower intake of fruits and vegetables and a
larger intake of fat compared to nonsmokers [93], this may account for the difference in vitC levels
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observed between ex-smokers and never-smokers [19]. Indeed, an analysis of the Second National
Health and Nutrition Examination Survey (NHANES II) confirmed that the vitC intake of smokers is
significantly lower than that of nonsmokers, but also that the increased risk of poor vitC status was
independent of this lower intake [94].

Various attempts have been made to estimate the amount of vitC needed to compensate for
tobacco smoking. Schectman et al. analyzed the NHANES II data, comparing daily intake vs. serum
concentrations of vitC among 4182 smokers and 7020 non-smokers. They estimated by regression
analysis that smokers would need an additional 130 mg/day to overcome the adverse effect of smoking
on vitC status [95]. In a separate analysis, it was concluded that smokers need an intake > 200 mg/day
to lower the risk of vitC deficiency to that of nonsmokers [96]. These results were later indirectly
supported by Lykkesfeldt et al. using a different approach. Measuring the steady state oxidation ratio
of vitC in smokers and nonsmokers, it was shown that in particular smokers with poor vitC status
had an increased steady state oxidation of their vitC pool compared to nonsmokers [17]. The authors
concluded that smokers need at least 200 mg vitC per day to compensate for the effect of smoking on
the oxidation of vitC [17]. These data stand in contrast to previous data by Kallner et al., who used
14C-labelled ASC to estimate the turnover of vitC in smokers [97]. Seventeen male smoking volunteers
between 21 and 69 years of age and weighing between 55 and 110 kg received doses from 30 to
180 mg/day and were instructed to ingest a diet completely devoid of vitC. Urinary excretion of
radioactivity was used to estimate the vitC pharmacokinetics using a three-compartment model. Based
on these data, Kallner et al. concluded that smokers needed only about 35 mg more than nonsmokers
per day to compensate for their habit [97]. This recommendation was later adopted by the Institute
of Medicine in their dietary reference intakes [22]. However, several problems are associated with
the latter study. Namely, radioactivity rather than ASC per se was quantified as a surrogate for vitC
excretion. Moreover, only 17 individuals with considerable variation in age and body composition were
included in the study. Finally, these studies were carried out prior to the identification of the SVCTs
and their importance for the nonlinear pharmacokinetics of vitC at physiological levels. In fact, such a
dose-concentration relationship formally rules out the use of compartment as well as noncompartment
kinetic modelling, as the fundamental assumption of a terminal first order elimination phase is not
fulfilled. Thus, it appears likely that the turnover in smokers may be underestimated by Kallner et al.

3.3. Pregnancy

Several preclinical studies have illustrated the importance of vitC in early development,
in particular that of the brain and cognition [60,63,98–100]. In humans, studies have shown that poor
maternal vitC status results in increased fetal oxidative stress, impaired implantation and increased risk
of complications including preeclampsia [101,102]. It is not clear to what extent vitC supplementation
may ameliorate this risk. The few controlled studies that have been carried out have produced mixed
results [103–106], but unfortunately, none of them have considered vitC status in the recruitment or
group allocation process and they are therefore of limited value.

During pregnancy, the human fetus relies completely on an adequate maternal vitC intake and
transplacental transport of vitC. Experimental evidence suggests that this transport is primarily
governed by SVCT2 and thus constitutes the primary means of fetal vitC supply [60]. Expectedly,
maternal vitC status has been shown to gradually decline from the 1st to 3rd trimester, a change not
only explainable by the increased volume of distribution but rather by the selective accumulation
across the placenta [107]. Fetal and postnatal steady state concentrations exceed those of the mother,
and both during pregnancy and lactation, most authorities recommend an increased intake ranging
from 10 to 35 additional mg vitC/day to compensate for this increased draw on maternal resources [22].

3.4. Disease

A plethora of disease conditions, including infectious diseases, cancer, cardiovascular disease,
stroke, diabetes, and sepsis, have been associated with poor vitC status (reviewed in [19,20]).
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Considerable epidemiological evidence has shown vitC deficiency to negatively affect independent risk
factors of, for example, cardiovascular disease development [14]. However, causal linkage between
disease etiology and vitC status remains scarce, except for that of scurvy [108]. The decreased vitC
status in disease is often explained by a combination of a sometimes massively increased turnover
due to oxidative stress and inflammation and a decreased dietary intake of vitC associated with
the disease [81,109].

An obvious display of increased vitC turnover in critical illness is that large doses are often
needed to replete the individual to the level of a healthy control. These doses exceed those necessary
to saturate a healthy individual by many-fold [110]. One current example is sepsis patients where
systemic inflammation and oxidative stress presumably increases the expenditure of vitC [111,112].
Recently published data on critically ill patients (n = 44, both septic and nonseptic patients) show
that actual plasma vitC concentrations are on average 60% lower than the values predicted from
patient vitC intake during hospitalization (either enteral or parenterally administered nutrition) [110].
Although several causes of the apparent vitC depletion are likely, e.g., interactions with administered
care and therapeutics potentially affecting vitC bioavailabilty, the data suggest significant alterations
in the pharmacokinetics of vitC in this group of patients, reflected by the discrepancy in the almost
linear course of the plasma concentration curve opposed to the predicted increase over time. Whether
reestablishing normal vitC status in critically ill patients has a significant clinical impact on disease
prognosis remains to be established, but promising results are emerging [113,114] and controlled trials
are under way. A very recent meta-analysis suggests that vitC therapy significantly shortens the stay
of patients in the intensive care unit [115].

In diabetes, reduced levels of plasma vitC is reported in both insulin demanding and noninsulin
demanding diabetic patients [116–119]. A prospective evaluation of older adults in the National
Institutes of Health-American Association of Retired Persons (NIH-AARP) Diet and Health Study
cohort, indicate that the use of vitC supplementation may reduce the risk of diabetes, supporting
further investigations and controlled trials to identify a putative relationship between vitC levels
and diabetes [120]. Supplementation with vitC (500 mg/day) increased insulin sensitivity and the
expression of the SVCT2 transporter in skeletal muscle in type 2 diabetic patients [121], supporting
findings that an intake of high-dose ascorbic acid (above 1 mg/day) exerted a beneficial effect on
maintaining blood sugar homeostasis and decreasing insulin resistance in type 2 diabetic patients [119].
In a randomized controlled cross-over study of type 2 diabetes patients, an intake of 500 mg vitC twice
daily for four months significantly improved glucose homeostasis as well as decreased blood pressure
compared to placebo treated controls, linking vitC supplement to improved blood-sugar balance and
cardiovascular function [122]. Positive effects of vitC on vascular hallmarks linked to diabetes have
previously been indicated; in young diabetes type 1 patients, poor vitC status was linked to increases
in the arterial vascular wall, indicating a putatively increased risk of atherosclerotic disease in these
patients [123]. In type 2 diabetic patients with coronary artery disease, a high-dose supplementation
(2 mg/day) for 4 weeks reduced circulating markers of thrombosis, supporting a beneficial role of
vitC on the vascular system [124]. Collectively, the above evidence suggests that a higher metabolic
turnover of vitC in diabetes can be counter-balanced by supplementation. However, if it also improves
the long-term prognosis remains to be evaluated.

4. Concluding Remarks

The pharmacokinetics of vitC is complex, dose-dependent, and compartmentalized at physiological
levels, while independent of dose and first order at pharmacological levels. The lack of this fundamental
knowledge has left deep traces of design flaws, misconceptions, misinterpretations, and erroneous
conclusions in the scientific literature. Unfortunately, these inherited problems continue to hamper
our ability to properly evaluate the role of vitC in human health and its potential relevance in disease
prevention and treatment. So far, the overtly exaggerated optimistic view that enough vitC can cure
everything has been battling the dismissive negligence of refusal to re-examine the literature based on
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new evidence. The balance between these two extremes needs to be identified in order to realize the
potential of vitC in both health and disease for the future.
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