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Abstract

With the development of convolutional neural networks, impressive success has been

achieved in remote sensing image super-resolution. However, the performance of super-

resolution reconstruction is unsatisfactory due to the lack of details in remote sensing

images when compared to natural images. Therefore, this paper presents a novel multiscale

convolutional sparse coding network (MCSCN) to carry out the remote sensing images SR

reconstruction with rich details. The MCSCN, which consists of a multiscale convolutional

sparse coding module (MCSCM) with dictionary convolution units, can improve the extrac-

tion of high frequency features. We can obtain more plentiful feature information by combin-

ing multiple sizes of sparse features. Finally, a layer based on sub-pixel convolution that

combines global and local features takes as the reconstruction block. The experimental

results show that the MCSCN gains an advantage over several existing state-of-the-art

methods in terms of peak signal-to-noise ratio and structural similarity.

Introduction

Many remote sensing applications rely on high-resolution (HR) images with rich details, such

as target detection and recognition [1–4], classification [5–9], and segmentation [9, 10]. How-

ever, some remote sensing satellites only provide images with low spatial resolution, which do

not meet practical requirements in real-world scenes. Image super-resolution (SR) attempts to

recover the HR image from the related low-resolution (LR) image. Therefore, SR is an essential

topic in remote sensing. SR methods can be divided into multiple image super-resolution

(MISR) and single image super-resolution (SISR). We pay more attention to the SISR because

it is a well-known ill-posed inverse problem that the same LR images have multiple HR solu-

tions [11].

The SISR problem can be solved by using three different methods: interpolation-based,

reconstruction-based, and learning-based methods. Interpolation-based methods, such as

bicubic interpolation (Bicubic), bilinear interpolation (BI), etc., are simple to implement.

However, their performance is limited to a few smooth images, and their inability to recover

high-frequency information limits their application [12]. The reconstruction-based methods
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perform image SR by employing a model of the degradation relationship between HR and LR

images. However, they could only improve small magnifications because these images are

severely lacking in high-frequency detail information [13, 14]. Yang et al. provide a compre-

hensive review of more SR methods [15]. Learning-based approaches are classified as sparse

representation-based or deep-learning-based. Although sparse representation-based methods

can recover high-frequency information by using prior knowledge, they are computationally

complex and require massive computing resources [12, 16, 17]. Deep-learning-based methods

directly learn an end-to-end mapping between low and high-resolution images, and significant

improvements were observed [18].

Recently, convolutional neural networks (CNNs) have demonstrated remarkable perfor-

mance in the SR problem [19, 20]. Dong et al. propose the SR convolutional neural network

(SRCNN) model that applies CNNs to the SR problem for the first time [19]. Therefore, many

studies pay attention to developing a more efficient network to learn the mapping between LR

and HR images [21–25]. SRCNN was firstly introduced into remote sensing images SR by Lie-

bel and Körner [26]. Li et al. introduce a local-global combined networks (LGCNet) super-res-

olution algorithm for remote sensing images [11]. It employs a “multifork” structure to learn

multilevel representations of remote sensing images, including both local details and global

environmental priors. Qin et al. introduce multiscale convolution neural network (MSCNN)

to implement remote sensing SR [27]. Li et al. propose a Multi-scale residual network (MSRN)

model for SR that takes advantage of multiscale image features [28]. Huan et al. propose a

pyramidal multiscale residual network (PMSRN) model by use of multiscale dilation residual

block and hierarchical feature fusion structure [12]. Li et al. propose a network combining

inception residual attention network (IRAN) and channel attention, spatial attention to obtain

multiscale features [29]. This method can comprehensively learn the features of remote sens-

ing images, but it increases the complexity of the model. These networks are learned knowl-

edge about SR from training data and ignore people’s domain expertise of images, such as

natural image prior and image degradation model.These models outperformed in terms of

peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Nonetheless, all of these

models tend to build deeper and more complicated network structures, implying that training

these models requires more resources, time, and tricks.

Inspired by the progresses of deep learning, some deep learning models that combined

sparse coding (SC) are proposed [23, 30] and have a wide application in SR. According to the

assumption of SC, HR images can be reconstructed with a sparse representation of the learned

dictionaries. If the dictionaries are properly defined, the LR and HR image patches can be rep-

resented in terms of a pair of overcomplete dictionaries using the same sparse linear coeffi-

cients [23]. The dictionary pair can be learned alternatively with the inference of training

patches’ sparse codes in their joint space [31] or through bilevel optimization [32]. The sparse

coding coefficients are generally solved by the iterative shrinkage and thresholding algorithm

(ISTA), but the results significantly depend on hyperparameters [22]. Because of the relation-

ship between ISTA and neural network, literature [23] proposed a sparse coding based net-

work (SCN) for image SR, which combines domain expertise and deep learning to design

better deep model architectures. Thus, all of SC model parameters can be learned through

training instead of needing analytical solutions. It is proved that sparse coding based super res-

olution can be treated as an end-to-end training of model components by convolutional neural

network [23]. Based on the SCSR algorithm and VDSR network, an image super-resolution

reconstruction algorithm is proposed in [30], which combined with multi-residual network

and multi-feature SCSR (MRMFSCSR). It can improve the image detail information and

maintain the geometric structure information at the same time, developing a better recon-

struction image.
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In summary, the current popular approaches typically have the following problems: 1) Dif-

ficulty in replication: Some SR reconstruction methods contain multiple network layers, which

necessitate the use of complex hardware. Besides, the same model obtains varied performances

by employing alternative training tricks, implying that the gain in performance may not be

due to a change in model architecture, but to the application of some undiscovered training

techniques. Because of these qualities, recurrence of these network models is difficult. 2) Inad-

equacy of features utilization: Most approaches frequently fail to make full advantage of the LR

image attributes with only raising the depth of the network instead. It is critical for the network

to understand how to make full use of these features to rebuild HR images. 3) Ignorance of

domain expertise: The domain expertise can be used to design better deep model architectures,

i.e. sparse coding model, etc. [23]. However, most networks are built with convolutional neural

network, which means all their knowledge about SR are learned from training data. Therefore,

in deep learning-based methods, people’s domain expertise of images, such as natural image

prior and image degradation model, is largely ignored.

This article presents a novel multiscale convolutional sparse coding network (MCSCN) to

solve the mentioned problems. It is shown that domain expertise can improve the SR perfor-

mance [23]. Therefore, we adopt multiscale convolutional sparse coding module (MCSCM)

for MCSCN, which combines the sparse coding and deep learning. Firstly, we use the MCSCM

to obtain the different scales image features, which are referred to local multiscale features. Sec-

ondly, the outputs of each MCSCM are concatenated for global feature fusion. Finally, the

combination of local multiscale features and global features can maximize the use of the LR

image features. Contributions of this paper are as follows:

• Proposing a novel MCSCM. This module extracts multiscale features with stacking dictio-

nary convolutional units, implements multiscale sparse coding using different convolutional

kernel sizes, and adaptively improves image features extraction.

• Combining the convolutional sparse coding with deep learning for image SR. Based on dic-

tionary convolutional units, we can conduct a feed-forward neural network to carry out the

convolutional sparse coding. It can improve performance by consolidating the merits of con-

volutional sparse coding with the domain knowledge of deep neural networks.

• Conducting an objective evaluation on several representative and state-of-the-art SR meth-

ods with remote sensing image datasets.

Materials and methods

In this section, we will give a brief overview of the proposed networks and then present the

details of each part. Fig 1 shows the architecture of the network. We apply a new network that

combines conventional sparse features and deep learning to the image SR. Unlike most patch-

based SR algorithms, our proposed network explicitly accepts LR images as input. Our model

can be divided into three parts: the basic feature extraction (BFE), the multiscale convolutional

sparse coding module (MCSCM) and the reconstruction module. Each of the modules is

described in the following. Given the fact that sparse coding can be effectively implemented

with generalized dictionary convolutional units (DCUs), it is straightforward to build a multi-

layer neural network that extracts the sparse features. So we will firstly describe the DCUs.

Dictionary convolutional units (DCUs)

Given an image X 2 Rc�h�w
(c = 1 for gray images and c = 3 for RGB images) and q convolu-

tional filters D 2 Rq�c�s�s
, Convolutional sparse coding model (CSC) can be formulated as the
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following problem,

min
z

1

2
kX � D � xk2

2
þ lgðzÞ; ð1Þ

where λ is a hyperparameter, � denotes the convolution operator, z is sparse feature maps, and

g(�) is a sparse regularizer. This problem can be solved by iterative methods, and it is easily

written as

zkþ1 ( proxl=rðzk þ
1

r
DT � ðx � D � zkÞÞ; ð2Þ

where ρ is the step size and DT is the flipped version of D along horizontal and vertical direc-

tions. Note that prox(�) is the proximal operator. If g(�) is the ℓ1-norm, the proximal operator

is also soft shrinkage thresholding function. By the principle of algorithm unrolling, we can

employ convolutional units to replace the filters and extend the proximal operator to activa-

tion function, [22] the Eq (2) can be rewritten as

zkþ1 ¼ f ðBNðzk þ conv1ðX � conv0ðzkÞÞÞÞ; ð3Þ

where we also take batch normalization (BN) into account.

The Eq (3) is called a dictionary convolutional unit (DCU). The implementation of DCU is

shown in Fig 2. For the encoder module, we use convolution layers to maps the feature space

into image space. And for the decoder module, we also use convolution layers to map the

residual between the images and the reconstructed images from image space to feature space.

By stacking DCUs, the original CSC model can be represented as a deep neural network. This

process for CSC model can be regard as an iterative auto-encoder [22].

Basic feature extraction (BFE)

BFE first embeds the LR image into the feature space and then lets the embedding feature pass

through M mapping layers to obtain the output feature. We name the output feature from BFE

Fig 1. Architecture of the proposed MCSCN model. Our network consists of three main parts: BFE, MCSCM, and reconstruction module. We

introduce a MCSCM to complement the information and make full use of the different scales of feature information.

https://doi.org/10.1371/journal.pone.0276648.g001
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as the base feature because we need to reconstruct the SR details by passing the feature through

the MCSCM.

Given the input LR image, ILR 2 Rh×w×c where h and w denote the height and width of the

image, respectively. We first define the embedding feature and M mapping layers as

Fe ¼ Conv
3;n
3�3ðILRÞ ð4Þ

Fi ¼ f i3�3;ReLUðFi� 1Þ; i ¼ 1; 2; � � � ;M; ð5Þ

where Conv3;n
3�3 denotes a 3×3 convolution operation and the number of input and output

channels are 3 and n, respectively. Fe is the embedding feature, f i
3�3;ReLU represents the ith map-

ping layer in BFE, and Fi, Fi−1 are input and output feature of the ith mapping layer.

Besides, we use local residual learning to integrate the features in BFE, so the entire BFE

process can be formulated as

FM ¼ f M3�3;ReLUðf
M� 1
3�3;ReLUð� � � f

1
3�3;ReLUðConv

3;n
3�3ðILRÞÞÞÞ ð6Þ

FB ¼ fLRLðFM; FeÞ; ð7Þ

where fLRL(�) denotes the local residual learning operation and FB indicates the output feature

of the BFE module.

Multiscale convolutional sparse coding module (MCSCM)

As we know, the performance of traditional ISTA algorithm for CSC model highly depended

on the configuration of hyperparameters. The multiscale nature of the image is similar to that

Fig 2. Architecture of DCU. It mainly contains encoder and decoder layers, and we can use different kernel sizes to achieve different scales of

information.

https://doi.org/10.1371/journal.pone.0276648.g002
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of human eyes observing an object. In order to detect the image sparse features at different

scales, we propose multiscale convolutional sparse coding module (MCSCM). This module

consists of numbers of DCUs with different scales in Fig 2. The Basic image feature FB pass

through the stacking dictionary convolutional units (SDCU) with different convolutional fil-

ters (with kernel sizes 3 × 3 and 5 × 5), respectively. The structure outputs P1 and P2 can be

expressed as

Pi ¼ SDCUðFB; YiÞ i ¼ 1; 2; ð8Þ

where SDCU(�) denotes the sparse coding for original feature M0 predicted using the CSC

model with parameter set Θi (i = 1,2), respectively.

Additionally, the output of each SDCU contains distinct sparse features. These sparse fea-

tures contain more information, and the computational complexity will be increased if using

them directly for reconstruction. In order to adaptively make use of these hierarchical features,

the bottleneck layer and 3 × 3 convolution is introduced by Xu et al. [22] and Li et al. [28]. The

output can be formulated as

FLR ¼ o3�3 � ðo1�1 � concatðP1; P2; Þ þ b0Þ þ b1; ð9Þ

where Pi (i = 1,2) represents the output of the ith stacking DCUs, w1×1,w3×3 and b0, b1 represent

1 × 1, 3 × 3 convolution kernels and their biases respectively; Note that concat(�) is the concate-

nation operator.

Image reconstruction

The LR inputs of the previous super-resolution methods are often upsampled to the same

dimensions as HR using Bicubic. This approach will increase the computational complexity.

The sub-pixel convolutional operation is widely applied to solve this problem in signal image

super resolution [28, 33]. Furthermore, it is critical to discover a mechanism to combine the

shallow and sparse features. As a result, a structure is constructed using Basic feature FB and

sparse feature of multiscale convolutional sparse model. As shown in Fig 1, the Basic feature

FB and sparse features from MCSCM respectively perform sub-pixel convolutional layer and

rearrange the image tensor with dimensions H × W × Cr2 as rH × rW × C. Then, the features

are reconstructed as SR image after 3 × 3 standard convolution. It is proved that the recon-

struction structure makes use of the original feature information and prevents information

loss [22].

Results and discussion

In this section, we evaluate the performance of our model on several benchmark test datasets.

Firstly, we explain the dataset used in the training and testing process, and then give imple-

mentation details. Secondly, we compare our model with several state-of-the-art methods.

Finally, we introduce the result of our model and give some result analysis.

Datasets

We choose two datasets with plentiful scenes to verify the robustness of our proposed method,

namely aerial image dataset (AID), UCMerced Land Use (UCM).

The AID is a large aerial image dataset that collects sample image from Google Earth

images. It contains more than 10,000 images of 30 land-use scenes, including river, mountain,

farmland, pond, and so on. All the images of each category were carefully selected from differ-

ent countries and regions of the world. Therefore, the diversity in the class of the data has been
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strongly increased. We randomly choose 20% of the total number as the testing set, and the

remaining 80% as the training set.

The UCM dataset was released by the University of California in 2010. It contains 21 types

of remote sensing scenes such as medium residential, airplanes, storagetanks, and parking lots

and so on. Each class includes 100 pictures. We also randomly selected 80% of the images as

the training set and 20% as the testing set.

During testing, we also choose the RSSCN7 dataset and the test dataset with 20 images

(called Test20 for short) used by Fernandez-Beltran et al. as testing set [34].

Implementation details

During training, the image data is augmented by random rotation, and flips to expand the

dataset. We generate the LR images by the Bicubic and extract the LR patches with the size of

48 × 48. We set the training epochs as 1000. We train our model with the ADAM optimizer by

setting the learning rate to 0.0001, β1 = 0.9 and β2 = 0.999. In our model, we use 4 DCUs for

SDCU and the output of MCSCM has 128 features. Our model directly trained and tested in

RGB color space. In addition, the upscaling factors: ×2, × 3 and ×4 are used for both training

and testing. We implement MCSCN with the PyTorch framework and train them using the

NVIDIA RTX 2080ti GPUs.

Evaluation metrics

The evaluation metrics for experiments results contain peak signal-to-noise ratio (PSNR),

structure similarity (SSIM) and spectral angle mapper (SAM). Given a reference images I and

a reconstructed image Î . The widely used metric is PSNR, defined as follows:

RMSEðI; ÎÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K � N

XK

j

XN

i

ðIji � Î
j
iÞ

2

v
u
u
t ð10Þ

PSNRðI; ÎÞ ¼ 20log10

255

RMSE
; ð11Þ

where the index j is used to identify each one of the K image bands and N is the total numbers

of pixels in each image.

The SSIM is calculated as

SSIMðI; ÎÞ ¼
ð2uIuÎ þ c1Þð2sIÎ þ c2Þ

ðu2
I þ u2

Î þ c1Þðs
2
I þ s

2

Î þ c2Þ
; ð12Þ

where uI and uÎ are the mean of I and Î , respectively, s2
I and sigma2

Î are the variance of I and Î ,
respectively and sIÎ is the covariance of I and Î . c1 = (k1 L)2 and c2 = (k2 L)2 are the constants

used to maintain stability. L is the dynamic range of the pixel value and k1 = 0.001 and k2 =

0.003. A higher PSNR and SSIM value represents a better image quality.

SAM considers each spectral band as a coordinate axis, and then it computes the average

angle between the pixels I and Î . Its expression defined as

SAMðI; ÎÞ ¼
1

N

XN

i

arccos
Ii � Î i
kIikkÎ ik

; ð13Þ

note that the ideal value of SAM is 0.
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Loss function

We choose the L1 loss (i.e. mean absolute error) as the loss function, since L2 loss (i.e. mean

square error) penalizes larger errors, but it is more tolerant to small errors, and thus often

results in too smooth results. The L1 loss can be formulated as

L1ðÎ ; IÞ ¼
1

hwc

X

ijk

jÎ i;j;k � Ii;j;kj; ð14Þ

where h, w and c are the height, width and number of channels of the evaluated images,

respectively.

Ablation experiments

We designed a set of ablation experiments to verify the effectiveness of the MCSCM structure,

including the kernel sizes of the MCSCM and the number of stacked DCU units.

The ablation experiments about the kernel sizes of the MCSCM module are performed on

x4 AID dataset, as shown in Table 1. We test single-scale and multiscale convolution kernel

sizes for MCSCN to explain the impact of multiscale on reconstruction results. The effect of

reconstruction may be improved to 0.57-0.76 dB by employing different scales of convolution

kernels. A small-scale convolution kernel may extract local details, whereas a large-scale con-

volution can extract broader global features [12, 28]. We can gain more plentiful details by

integrating features collected from different convolution kernels. Better results can be obtained

by combining global and local multiscale features.

The ablation experiment about the number of stacked DCUs is shown in Fig 3. It is shown

that the PSNR and SSIM results of 4 stacked DCUs are higher than that of 2 or 6 stacked

DCUs, indicating that the use of 4 stacked DCU units has an effective performance to the pro-

posed structure.

Comparison with the state-of-the-art method

In this subsection, we compare our model with the FSRCNN [35], VDSR [36], LGCNet [11],

EDSR [37] and IRAN [29] on the RSSCN7, UCM and Test20 datasets. The LGCNet and IRAN

are representative SR models for remote sensing images, while the other methods are excellent

models for natural scenes. All these methods are trained and tested under the same conditions

for the sake of fairness.

Table 2 shows the peak-signal-to-noise ratio (PSNR) and the structural similarity (SSIM)

with the up-scaling factors ×2 and ×4 for the methods mentioned above on the RSSCN7 data-

set, including Grass, Field, Industry, RiverLake, Forest, Resident, and Parking. The results in

bold indicate the best performance methods. We have average PSNR gains of 0.126 dB and

0.121 dB for the up-scaling factors ×2 and ×4, respectively. Fig 4 shows the visual effect

obtained by using our method and the compared methods on the RSSCN7 with up-scaling fac-

tor ×4. To improve contrast, a tiny region marked by the red rectangle is enlarged, and the

enlarged image is shown on the right of the images. As observed in the local enlarged image,

Table 1. PSNR comparison of different kernel sizes for the MCSCM.

Scale Kernel sizes PSNR(dB)

Single-scale 3 × 3 29.25

5 × 5 29.06

Multiscale 3 × 3 and 5 × 5 29.82

https://doi.org/10.1371/journal.pone.0276648.t001
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Fig 3. The PSNR and SSIM of the different number of stacked DCUs.

https://doi.org/10.1371/journal.pone.0276648.g003

Table 2. PSNR and SSIM comparison results among different methods. Boldface indicates the best performance and italics indicate the second-best performance.

Dataset Scale Metric Bicubic FSRCNN VDSR LGCNet EDSR IRAN Ours

Grass ×2 PSNR 34.691 36.599 36.867 36.753 36.156 36.516 36.887

Grass ×2 SSIM 0.9042 0.9315 0.9342 0.9331 0.9392 0.9440 0.9551

Grass ×4 PSNR 30.882 31.537 31.844 31.713 31.065 31.102 31.982

Grass ×4 SSIM 0.7701 0.7932 0.7959 0.7952 0.8077 0.8051 0.8953

Field ×2 PSNR 33.522 34.778 35.01 34.854 35.368 35.607 35.711

Field ×2 SSIM 0.8269 0.8541 0.8611 0.8567 0.8689 0.8739 0.8916

Field ×4 PSNR 30.367 31.051 31.352 31.186 31.591 31.608 31.365

Field ×4 SSIM 0.7015 0.7184 0.7249 0.7215 0.7314 0.7318 0.8488

Industry ×2 PSNR 26.564 28.694 29.426 29.067 29.542 29.715 29.828

Industry ×2 SSIM 0.8442 0.8926 0.9081 0.9201 0.9122 0.9168 0.9179

Industry ×4 PSNR 22.311 23.497 24.012 23.595 24.261 24.294 24.328

Industry ×4 SSIM 0.6163 0.6819 0.7066 0.6918 0.7213 0.7219 0.7233

RiverLake ×2 PSNR 32.112 33.57 33.843 33.827 34.128 34.332 34.417

RiverLake ×2 SSIM 0.8901 0.9245 0.9215 0.9261 0.9327 0.9326 0.9311

RiverLake ×4 PSNR 28.356 29.235 29.504 29.326 29.608 29.557 29.634

RiverLake ×4 SSIM 0.7708 0.7963 0.8016 0.7983 0.8066 0.8072 0.8179

Forest ×2 PSNR 30.191 31.535 31.567 31.601 31.691 31.968 32.018

Forest ×2 SSIM 0.8521 0.8765 0.8719 0.8745 0.8823 0.8869 0.8902

Forest ×4 PSNR 26.256 26.868 26.934 26.879 27.025 27.021 27.033

Forest ×4 SSIM 0.5706 0.6132 0.6189 0.6154 0.6249 0.6247 0.6277

Resident ×2 PSNR 25.562 27.612 28.241 27.936 28.387 28.539 28.616

Resident ×2 SSIM 0.8357 0.8901 0.9012 0.8916 0.9043 0.9084 0.9107

Resident ×4 PSNR 22.019 22.365 22.816 22.511 23.045 23.078 23.126

Resident ×4 SSIM 0.5868 0.6624 0.6872 0.6718 0.7012 0.7034 0.7055

Parking ×2 PSNR 26.079 27.673 28.465 28.129 28.706 28.852 28.931

Parking ×2 SSIM 0.8193 0.8726 0.8879 0.8814 0.8954 0.9011 0.9034

Parking ×4 PSNR 22.453 23.189 23.647 23.402 23.849 23.778 23.821

Parking ×4 SSIM 0.5952 0.6514 0.6754 0.6601 0.6904 0.6919 0.6925

Average ×2 PSNR 29.817 31.494 31.917 31.738 31.997 32.218 32.344

Average ×2 SSIM 0.8532 0.8917 0.8980 0.8976 0.905 0.9091 0.9143

Average ×4 PSNR 26.092 26.820 27.158 26.945 27.206 27.207 27.327

Average ×4 SSIM 0.6588 0.7024 0.7158 0.7077 0.726 0.7266 0.7587

https://doi.org/10.1371/journal.pone.0276648.t002
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our approach produces images with more refined boundaries and richer textures than others.

Obviously, it can be seen that our method is superior to the other compared methods.

Furthermore, we also compare our model on the UCM test images and Test20 dataset with

several methods stated before and additional MRMFSCSR [30] and ESRGAN [38]. Table 3

Fig 4. The visual comparison results magnified by an upscaling factor 4.

https://doi.org/10.1371/journal.pone.0276648.g004
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provides the values of PSNR, SSIM and SAM on the 4 test images from UCM dataset and the

all images from Test20 dataset with up-scaling factor ×4. As a whole, it can be seen that the

PSNR and SSIM of our model outperform the compared approaches. Figs 5 and 6 show the

visual comparison of the previous methods in the Test20 with up-scaling ×3 and ×4, respec-

tively. It is observed that our model produces finer details, and the detailed information of the

reconstructed SR image is more closely match the ground truth images. It demonstrates that

our model achieves competitive performance compared to other methods.

Table 3. PSNR/SSIM comparison on remote sensing test datasets among different methods with up-scaling factor ×4. Boldface indicates the best performance and ital-

ics indicate the second-best performance.

Image Metric Bicubic CSCN FSRCNN LGCNet IRAN ESRGAN MRMFSCSR MCSCN(ours)

Airplane25 PSNR 26.62 28.40 27.86 28.55 29.93 28.68 29.81 29.90
SSIM 0.8903 0.9144 0.9122 0.9285 0.9357 0.9182 0.9329 0.9449

SAM 0.598 0.560 0.541 0.540 0.385 0.391 0.370 0.368

Airplane85 PSNR 27.10 28.52 27.97 28.67 29.61 29.13 29.75 29.78

SSIM 0.8833 0.9084 0.8998 0.9175 0.9300 0.9211 0.9328 0.9391

SAM 0.611 0.608 0.528 0.477 0.360 0.421 0.406 0.352

Overpass02 PSNR 25.52 27.01 26.66 26.89 28.87 28.39 28.86 28.85

SSIM 0.8271 0.8815 0.8583 0.8632 0.8832 0.8865 0.8836 0.8921

SAM 0.675 0.538 0.427 0.358 0.360 0.362 0.366 0.361
Overpass12 PSNR 27.32 28.53 28.67 29.18 29.72 29.22 29.70 29.78

SSIM 0.8551 0.9037 0.8824 0.8953 0.9068 0.8920 0.9066 0.9115

SAM 0.627 0. 594 0.493 0.362 0.357 0.361 0.345 0.338

Test20 dataset PSNR 26.90 28.82 28.31 28.97 29.82 29.19 29.80 29.85

SSIM 0.8632 0.9035 0.8905 0.9034 0.9144 0.9024 0.9126 0.9127
SAM 0.641 0.532 0.480 0.364 0.324 0.320 0.326 0.317

https://doi.org/10.1371/journal.pone.0276648.t003

Fig 5. The comparative results of Test20 dataset magnified by an up-scaling factor 3.

https://doi.org/10.1371/journal.pone.0276648.g005

PLOS ONE Remote sensing image super-resolution using multi-scale convolutional sparse coding network

PLOS ONE | https://doi.org/10.1371/journal.pone.0276648 October 26, 2022 11 / 15

https://doi.org/10.1371/journal.pone.0276648.t003
https://doi.org/10.1371/journal.pone.0276648.g005
https://doi.org/10.1371/journal.pone.0276648


Comparison on model size

We choose some of the state-of-the-art SR approaches for the computation complexity com-

parison, including FSRCNN, VDSR, LGCNet, IRAN, EDSR and ESRGAN. Note that we use

the models and network setting that the authors claimed the best in their experiments. Fig 7

shows the comparison of parameters and PSNR for 4× SR for AID dataset. The right bottom

corner represents good with better PSNR and less model complexity. As one can notice, our

Fig 6. The visual comparison of Test20 dataset SR obtained using different methods with an up-scaling factor 4.

https://doi.org/10.1371/journal.pone.0276648.g006

Fig 7. Comparison between model complexity and image quality. The left vertical axis is the number of parameters, and the right vertical axis is the

size of the model file.

https://doi.org/10.1371/journal.pone.0276648.g007
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method can achieve higher PSNR than EDSR and ESRGAN with much fewer number of

parameters.

Discussion

The limitations of this research

The LR images of the train data are degraded for using bicubic interpolation. Actual LR images

have a different distribution compared to the ones generated synthetically using bicubic inter-

polation. As a result, our methods can’t be used for blind SR. there are very few works whose

target SR rates are higher than 8× [12]. In such extreme upsampling conditions, it becomes

challenging to preserve accurate local details in the image. Therefore, this situation also exists

in our model. The sub-pixel layer may result in some artifacts near the boundaries of different

blocks. On the other hand, it may cause unsmooth outputs [39]. The research of deep learning

in the field of remote sensing image SR can be carried out in the following aspects in the

future:

• There is still a scarcity of specific data sets for remote sensing SR. Future research can be

done to try to create a remote sensing SR dataset with abundant LR and HR images. Besides,

we can also use blind SR methods for remote sensing images.

• Recently, most upsampling methods are the bicubic interpolation. To overcome the short-

coming of this, we can learn upsampling in an end-to-end manner [39]. We will use these

learning-based layers as upsampling methods for our method in the future.

• SR performance can be improved by combining multi-stage and multiscale features. As a

result, it points in the direction of increased SR rates. In the future, we can observe deeper

into these scenarios.

Conclusion

In this paper, we put forward a novel SR model for remote sensing images, which combines

the convolutional sparse coding and deep network. We employ the multiscale sparse coding

module to obtain multiscale sparse features, which we then fuse with global features to derive

abundance features. By using sparse coding knowledge, we can gain considerable improve-

ment over the several deep learning models.

In the future, we plan to apply the MCSCN approach to additional issues where spare con-

volutional coding might be beneficial. The interplay of deep networks for low- and high-level

vision tests will also be investigated. We will also research this model employed in multi-spec-

tral images.
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