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Abstract

We developed cis-X, a computational method for discovery of regulatory noncoding variants in 

cancer by integrating whole genome and transcriptome sequencing data from a single cancer 

sample. cis-X first finds aberrantly cis-activated genes that exhibit allele-specific expression 

accompanied by an elevated outlier expression. It then searches for causal noncoding variants that 

may introduce aberrant transcription factor binding motifs or enhancer hijacking by structural 

variations. Analysis of 13 T-lineage acute lymphoblastic leukemias (T-ALL) identified a recurrent 

intronic variant predicted to cis-activate the TAL1 oncogene, a finding validated in vivo by ChIP-

seq of a patient-derived xenograft (PDX). Candidate oncogenes include the prolactin receptor 

PRLR activated by a focal deletion which removes a CTCF insulated neighborhood boundary. cis-

X may be applied to pediatric and adult solid tumors that are aneuploid and heterogeneous. In 

contrast to existing approaches which require large sample cohorts, cis-X enables discovery of 

regulatory noncoding variants in individual cancer genomes.

Even though noncoding regions constitute over 98% of the human genome1, the role of 

noncoding variants in human cancers remains poorly understood. Recent epigenetic profiling 

studies have shown that more than 80% of the human genome is potentially functional1, and 

that the noncoding genome is enriched for disease-associated germline variants discovered 

by genome-wide association studies (GWAS)2. The oncogenic potential of somatically-

acquired noncoding variants is also becoming increasingly apparent3. Studies have shown 

that different types of noncoding variants can activate neighboring proto-oncogene 

transcription in cis, such as genomic rearrangements4–7, local genome duplication8, and 

sequence mutations9–11. At present, whole genome sequence (WGS) analysis alone has 

limited power for discovery of noncoding regulatory variants12; interpretation of the 

functional impact of noncoding variants is inherently challenging, given the lack of a direct 

read-out analogous to amino acid changes in coding regions13. On the other hand, alteration 

of gene transcription is an expected outcome of regulatory noncoding variants. Therefore, 

adaptation of eQTL-like approaches, which test for association of expression level and 

mutation status have been used for discovery of regulatory noncoding variants in several 

pan-cancer studies5,14. However, these approaches require both recurrence of somatic 

variants and availability of a large cohort of cancer samples.
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Important features shared by regulatory noncoding variants causing aberrant transcriptional 

activation in cis in cancer include allelic bias with high levels of expression of the affected 

allele compared to the other allele, and expression levels of the gene qualifying as statistical 

outliers within a particular tumor type. These features have not been evaluated 

systematically by robust computational pipelines as the key features of noncoding regulatory 

variants in cancer12,14–17. Because many cancer genomes are now analyzed by both WGS 

and whole transcriptome sequencing (RNA-seq)18, it has become feasible to systematically 

identify genes with both aberrant allele-specific expression and outlier high expression. 

Thus, we have developed cis-X (cis-eXpression), a computational tool that analyzes 

individual cancer genomes by systematically identifying candidate oncogenes with these two 

features. The computational pipeline then searches for noncoding genomic abnormalities, 

including copy number variations, structural variations, and point mutations (SNVs and 

indels) occurring within the same topologically associating domain (TAD)19.

As a demonstration of cis-X’s ability to identify oncogenes overexpressed due to noncoding 

variants, here we apply cis-X to 13 pediatric T-lineage acute lymphoblastic leukemias (T-

ALLs) from Shanghai Children’s Medical Center (SCMC), which were analyzed by both 

WGS and RNA-seq. T-ALL represents an ideal model for this demonstration, because it is 

one of the best-studied cancers genomically, with a wealth of existing studies connecting 

various types of somatic noncoding variants with oncogenic activation of transcription 

factors9,20–25. In addition, RNA-seq data generated from more than 260 T-ALLs by the 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project21 

provides an ideal reference data set to establish statistically significant outlier high 

expression patterns for candidate genes identified in our study. We further show that cis-X is 

applicable for finding regulatory non-coding variants in aneuploid solid tumors such as 

neuroblastoma. Our results conclusively demonstrate that cis-X can not only identify known 

and novel regulatory noncoding variants targeting known oncogenes, but also implicate 

putative oncogenes for subsequent studies to establish selective dependency.

Results

Design of cis-X

cis-X was developed for discovery of cis-activating somatic variants in individual cancer 

genomes through integrative variant analysis in WGS and RNA-seq (Figure 1 and Methods). 

Its core components identify candidate cis-activated genes that exhibit combined allele-

specific expression (ASE) and outlier high expression (OHE) to implicate regulatory 

noncoding variants. Allelic imbalance in each tumor was examined for heterozygous 

markers in DNA, including both germline single nucleotide polymorphisms (SNPs) and 

somatic single nucleotide variants (SNVs), across the whole genome (Figure 1).

ASE was determined by measuring statistically significant over-representation of one variant 

allele in RNA-seq for heterozygous markers in tumor DNA. To accomplish that, we first 

compared allelic imbalance in empirical RNA-seq data with the theoretical binomial 

distribution and discovered a constant shift toward imbalance in regions expected to have 

balanced expression. To correct that, we applied a RNA-seq coverage dependent Gaussian 

distribution to measure this deviation, and test the ASE for each marker under the balanced 
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transcription model characterized by the convolution of the two distributions (Gaussian and 

binomial). The convolution model provides a better description of experimentally observed 

gene transcription than other published ASE detection models such as MBASED26 across a 

wide range of RNA-seq coverages (Extended Data Figure 1 and Supplementary Note). A 

multi-marker ASE-run analysis was implemented in addition to single-marker test 

(Methods). Genes would be identified as ASE candidates if they contain exonic or intronic 

ASE variants or overlap with an ASE-run. A simulation analysis showed that the power for 

detecting allelic imbalance with convoluted model in cis-X is dependent on imbalanced 

transcription ratio, aneuploidy, number of heterozygous markers, and the expression level of 

the target gene (Extended Data Figure 2 and Supplementary Note).

For each gene, outlier high expression of a cancer sample of interest was determined by 

comparing its expression level to those of reference samples with the same tissue type 

(Extended Data Figure 3 and Methods). A null distribution of “leave-one-out (LOO)” t-

statistic score27 was established using the reference samples. This was then used for 

determining the FDR of LOO t-statistic score of a cancer sample of interest, and those with 

FDR <0.05 were retained as having significant outlier high expression.

For the candidate genes with ASE and outlier high expression, somatically acquired variants 

within or across their TAD boundaries are considered candidate regulatory noncoding 

variants. These candidate variants are subsequently annotated for their potential to alter 

transcription factor binding motifs and other related sequence features (Methods).

Identification of cis-activated genes in pediatric T-ALL

We applied cis-X to analyze candidate cis-activated genes in 13 patients diagnosed as T-ALL 

at SCMC (Supplementary Table 1) using a reference expression data matrix generated from 

264 T-ALL RNA-seq from the NCI TARGET project.

On average, the T-ALLs had 6,459 expressed protein-coding genes per case, each of which 

had at least one heterozygous variant in DNA (range from 5,321–7,091) that could be used 

to assess ASE (Supplementary Table 2 and 3). From these, an average of 416 genes per 

sample (ranging from 216 to 977) exhibited significantly imbalanced expression from one of 

the two alleles, and thus are ASE genes. By intersecting ASE genes with those which 

showed outlier high expression (Figure 2), we found a total of 222 candidate cis-activated 

genes in these 13 T-ALL cases, ranging from 10 to 31 predicted cis-activated genes per 

sample (Supplementary Table 4a and 4b).

To assess the sensitivity of cis-X, we compared the predicted cis-activated genes with 15 T-

ALL oncogenes known to be cis-activated by chromosomal translocations, upstream 

deletions, or small noncoding insertions or SNVs20 identified by paired tumor-normal WGS 

analysis. This benchmark gene set includes TAL1/2 (n=7), LMO1/2/3 (n=7) and TLX3 
(n=1). cis-X identified 14 of the 15 (93.3%) of the benchmark genes (Figure 2). Only one 

cis-regulated LMO2 gene was missed because LMO2 expression in the sample did not reach 

statistical significance as an over-expressed outlier.
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Identification of somatic noncoding regulatory variants

We next searched for somatic genomic aberrations that could cause cis-activation of the 222 

candidate cis-activated genes identified by cis-X (Methods). Of the 222 candidate genes, 33 

had somatic alterations located within their TADs that cis-X predicted as candidate causal 

variants for cis-activation of the candidates (Figure 2). These included 18 structural 

alterations affecting 14 unique genes, and 12 point mutations (SNVs/indels) targeting 11 

unique genes (Supplementary Table 5a and 5b). As expected, we were able to detect the 

known noncoding variants for well-recognized T-ALL oncogenes including those activating 

TAL1/2, LMO1/2 and TLX3. While point mutations generally have a single regulatory 

target, SVs can potentially affect the expression levels of multiple targets in the 

neighborhood. For example, cis-X identified both ABTB2 and TMEM38B as cis-activated 

by structural variants; however, both genes were adjacent to known proto-oncogenes in the 

same TAD (LMO2 and TAL2 respectively) and thus were potentially co-regulated by an 

aberrant enhancer. In addition to frequently dysregulated transcription factors, LMO3 
exhibited aberrantly high levels of mono-allelic expression due to a translocation between 

LMO3 and the TCRB locus in a single T-ALL (Extended Data Figure 4a and 4b). LMO3 
activation is rare in T-ALL, having been previously identified in only a single T-ALL by 

chromatin conformation capture-on-chip (4C) technology28. Similarly, this is the only tumor 

with LMO3 activation in the current study, and LMO3 was not expressed in any of the 264 

T-ALLs used to construct the reference gene expression matrix. Consistent with the 

functional similarity to LMO1/2, LMO3 activation in this T-ALL yielded an expression 

pattern similar to other TAL/LMO driven T-ALLs (Extended Data Figure 4c).

In addition to identifying known noncoding abnormalities, analysis by cis-X has led to the 

discovery of novel noncoding variants which may affect gene regulation. For example, a 

recurrent noncoding mutation was detected in two T-ALLs that had cis-activated TAL1 yet 

did not harbor any previously known regulatory variants. We also detected noncoding 

variants predicted to cause cis-activation of novel genes such as PRLR in this cohort.

A recurrent intronic mutation activating TAL1 expression

cis-X identified mono-allelic high expression of TAL1 in two T-ALLs; both harbor a 

recurrent heterozygous C to T mutation located in intron 1 of TAL1 (chr1, g.47696311C>T, 

hg19, Extended Data Figure 5a). The TAL1 expression levels in these two T-ALLs were 

comparable to those carrying known regulatory insertions or structural variations (Figures 3a 

and 3b). The mutation was predicted to introduce a de novo binding motif for YY1, a 

transcription factor recently found to contribute to enhancer-promoter interactions similar to 

those mediated by CTCF29. Luciferase assays revealed transcriptional activity of the mutant 

allele was enhanced 1.6-fold (p=0.003, two-sided t-test) compared with the reference allele 

(Figure 3c). The same mutation was also evident in additional three T-ALLs in an 

independent cohort (data not shown). The recurrent presence of this somatic mutation in 

concert with aberrantly high TAL1 expression levels from one allele, along with enhancer 

activity demonstrated by luciferase assays, provide multiple lines of evidence supporting this 

as a novel pathogenic noncoding sequence mutation in T-ALL.
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We further investigated this noncoding mutation in a patient-derived xenograft (PDX) mouse 

model generated from one of the patient samples (SJALL018373) containing this mutation. 

We performed H3K27Ac and YY1 ChIP-seq analysis on genomic DNA from this PDX 

tumor to assay enhancer activity and transcription factor binding caused by this mutation in 

the native three-dimensional genomic architecture of these leukemia cells. An active 

enhancer defined by H3K27Ac was observed around the noncoding mutation (Figure 3d), 

but was absent in both normal T cells and those T-ALL cell lines neither carrying this 

mutation nor expressing TAL1 (Extended Data Figure 5b). Notably, significant allelic 

imbalance was observed within this active enhancer, as all H3K27Ac ChIP-seq reads 

contained the mutant allele (Figure 3d, mutant to wild-type allele ratio is 11:0, p=9.8×10−4, 

two-sided binomial test), indicating that the enhancer was only present on the mutant allele 

but not on the wildtype allele. Importantly, YY1 ChIP-seq analysis of the PDX showed a 

sharp peak at the mutant site with the mutant allele present in nearly all aligned reads 

(Figure 3d, p=1.5×10−8, two-sided binomial test), validating YY1 binding at this mutant 

enhancer site.

cis-activation of PRLR in T-ALL by upstream deletion

PRLR, which encodes the prolactin receptor, was one of the cis-activated candidate genes 

identified by cis-X, and showed both allele-specific expression and outlier high expression 

in a T-ALL sample SJALL043558_D1 (Figure 4a and 4b). A matching 546.7Kb focal 

deletion located 63.5Kb distal to the transcription start site of PRLR was detected in this 

tumor. This large focal deletion spans the entire locus of SPEF2 as well as part of IL7R, both 

of which are protein coding genes. However, PRLR is the only cis-activated candidate gene 

identified in the 1Mb-region surrounding the deletion (Figure 4b, Extended Data Figure 6a 

and 6b), implicating PRLR dysregulation as the target of this noncoding structural variation. 

Notably, PATRUN and PATFYZ, the two T-ALLs in the NCI TARGET cohort with high 

PRLR expression (Figure 4b), also harbor somatic focal deletions in the same region (Figure 

4c). The deletions included the nodal CTCF binding sites forming the boundary of the 

insulated neighborhood containing the PRLR gene, as defined by ChIA-PET interactions in 

Jurkat cells4, a T-ALL cell line with no somatic alteration in this region (Figure 4c). An 

active enhancer could be observed beyond the breakpoint of the deletion furthest upstream 

of PRLR in tumors with positive IL7R transcription (Extended Data Figure 6c). The deletion 

disrupts the boundaries of the insulated neighborhood between PRLR and IL7R, bringing 

the active enhancer from the adjacent insulated neighborhood to PRLR promoter, thus cis-

activating PRLR.

These findings implicate PRLR as a candidate oncogene in T-ALL. PRLR is known to 

activate signaling through JAK2, which in turn activates the STAT5, MAPK and AKT 

signaling pathways30,31. Notably, all three T-ALLs with cis-activated PRLR are of the TLX1 
(PATFYZ) or TLX3 (SJALL043558_D1 and PATRUN) subtypes known to be enriched for 

mutations that activate JAK-STAT signaling pathways21.

cis-activating noncoding variants in neuroblastoma

We applied cis-X in neuroblastoma (NBL) to test the broad applicability of cis-X on solid 

tumors with complex genomes. First, we analyzed matched WGS and RNA-seq data 
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generated from four NBL cell lines, with a focus on finding regulatory copy number 

aberrations and structural variants in aneuploid genomes (Methods, Extended Data Figure 

7a). The gene-specific reference expression matrix was built with a cohort of 123 NBL 

samples from the NCI TARGET project18,32. Using the same parameters applied in T-ALL 

analysis, cis-X identified a total of 342 cis-activated candidates in the four NBL cell lines, 

ranging from 25 to 117 per sample. Detected candidate noncoding variants consisted of 22 

structural variants affecting 17 unique genes (Supplementary Table 6 and Extended Data 

Figure 7b). Notably, TERT was identified to be cis-activated by inter-chromosome 

translocations in three cell lines, replicating previous findings of TERT activation in 

NBL33,34 and other tumors35,36.

To assess the performance of cis-X on heterogeneous tumor samples, we analyzed 90 NBL 

primary tumor samples with matching RNA-seq and WGS from the TARGET cohort 

(Supplementary Table 7), 42 of which had positive immune cell infiltration signature based 

on prior analysis18. With a focus on TERT, we found that among the 10 samples identified 

to have TERT cis-activation by structural re-arrangements, 6 had immune cell infiltration 

signatures and 6 had amplifications at the TERT region (Extended Data Figure 8). These 

results demonstrate that cis-X can identify regulatory variants in cancer genomes of 

aneuploidy and tumor heterogeneity.

cis-X analysis of adult melanoma

To evaluate the performance of cis-X on adult cancer, we ran the pipeline on 38 TCGA 

melanoma that have both paired tumor-normal WGS and tumor RNA-seq (Supplementary 

Table 8)37. ATAC-seq and H3K27Ac Chip-seq generated from melanoma and normal 

melanocytes cell lines38–41 were used as input for annotating candidate non-coding variants. 

However, the two well-known TERT promoter mutations (i.e. chr5, g.1295228C>T and 

g.1295250C>T, hg19)10,11 were not detected by cis-X because mutation-positive samples 

lack outlier high TERT expression (FPKM: median 0.095, range 0.012–0.528) in contrast to 

TERT cis-activation (FPKM: median 3.326, range 0.903–8.088) by re-arrangement detected 

in neuroblastoma samples (Extended Data Figure 9).

We identified 89 candidate genes predicted to be cis-activated by non-coding variants 

(Methods), 66 of which involve SNVs associated with UV-like mutational signature 

(Supplementary Table 9 and Methods). Among the 14 candidate noncoding structural 

variants was a deletion predicted to cis-activate CDKN2A in sample TCGA-DA-A1HY-06, 

which appeared to be paradoxical given that CDKN2A is a known tumor suppressor gene. 

The CDKN2A locus encodes two proteins translated in different reading frames: p16Ink4a, a 

negative regulator of CDK4/6 of the RB pathway; and ARF, a negative regulator of MDM2 
of the TP53 pathway. The deletion in TCGA-DA-A1HY-06 is distinct from the other 

CDKN2A deletions in that it removes only the exon 1β and the flanking intronic region 

unique to ARF but retains the full reading frame of p16Ink4a (Figure 5a). Notably, RNA-seq 

data showed close-to-null expression of ARF but very high expression of p16Ink4a (Figure 

5b, c). This is consistent with previous studies of mouse models which found up-regulation 

of p16Ink4a in pre-B lymphocytes and keratinocytes lacking exon 1β42,43. TCGA-DA-

A1HY-06 also has the highest expression of the CDKN2A loci of the entire cohort, 
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suggesting that the elevated expression of p16Ink4a was not caused by loss of competition for 

alternative usage of exon 1β. It is possible that p16Ink4a cis-activation in TCGA-DA-

A1HY-06 was caused by the loss of a repressive element around exon 1β identified recently 

by CRISPR screening44 and further functional experiment is needed to investigate this 

possibility. Importantly, mono-allelic expression of the somatic mutation p.Pro81Leu in exon 

2 (Figure 5c) known to disable p16Ink4a binding to CDK4/6 and to cause cytoplasmic mis-

localization of p16Ink4a 45,46 indicates that cis-activation of the mutant p16Ink4a allele likely 

contributed to the tumorigenesis of this melanoma sample.

Discussion

We have developed a novel computational method cis-X, which systematically identifies 

genes in individual cancer genomes that exhibit both unusually (outlier) high levels of 

expression and allelic bias such that one allele was expressed at significantly higher levels 

than the other. cis-X enables discovery of somatically acquired noncoding regulatory DNA 

alterations that operate in cis to activate the expression of neighboring proto-oncogenes on 

the same allele in individual human cancers. This design overcomes two major limitations of 

existing approaches (i.e. hotspot analysis or mutation-expression association test): the 

requirement for a large cohort of samples, which is usually only attainable in a pan-cancer 

study and the requirement that non-coding variants are recurrent to achieve statistical 

significance. By contrast, cis-X can be applied to identify activated oncogenes in individual 

cancer samples. This was demonstrated in our discovery of LMO3 and PRLR in a single 

case in the 13 T-ALLs from SCMC and the finding of PRLR cis-activation was subsequently 

replicated in two T-ALLs in TARGET by utilizing the copy number variation data generated 

from SNP arrays. Cis-X analysis can also unveil heterogeneity in the disruption of normal 

gene regulation by different variant types (i.e. point mutations or structural alterations) 

dispersed in multiple regions. For example, our finding of the TAL1 intronic mutation is 

located 8.7 kb distal to the previously identified somatic insertion hotspot upstream of 

transcription initiation9 and the two regulatory mutations we found that activate LMO2 are 

53 kb apart24,25. This capability becomes especially important in precision medicine where 

genome analysis is applied in a case-specific way.

By effectively utilizing the genetic variation data in WGS and interrogating associated 

expression status in RNA-seq, cis-X can identify the cis-regulated candidate genes within a 

single cancer genome and has the flexibility to analyze RNA-seq data mapped by different 

algorithms (Supplementary Note). One potential limitation is posed by a lack of 

heterozygous variants in a gene; this can be ameliorated to some extent by the ASE-run 

analysis implemented in cis-X, which enables utilization of informative markers flanking the 

genes. Meanwhile, broad adoption of total RNA sequencing could further increase the power 

of cis-X, as transcribed intronic variants from unspliced RNA can provide additional 

informative markers for ASE analysis. In addition to the number of heterozygous variants, 

imbalanced transcription ratio (effect size), aneuploidy, and the expression level of the target 

gene can all affect the power for detecting ASE (Supplementary Note). Currently cis-X is 

designed only for identifying cis-activating candidates that exhibit outlier high expression 

and will miss regulatory variants causing down-regulation as reduced expression of one 

allele can be caused by many alternative mechanisms such as imprinting or nonsense 
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mediated decay (NMD) due to the presence of truncation variants. Additionally, it may not 

be effective in detecting regulatory noncoding variants on sex chromosomes due to scarcity 

of bi-allelic expression in normal cells, or in detecting variants that do not cause outlier high 

expression (Supplementary Note). Despite these limitations, cis-X provides an approach that 

complements the existing recurrence-based methods in detecting cis-activating somatic 

variants and can be applied for analyzing solid tumors that may have extensive aneuploidy 

and heterogeneity (Figure 5, Extended Data Figure 8).

Functional genomics data including three-dimensional genome architecture and epigenetic 

profiling of regulatory elements could provide valuable information to noncoding variant 

prediction. We have incorporated TAD structure for defining regulatory territory of a given 

cis-activated candidate in noncoding variant discovery, as this is relatively stable across 

different tissue types47. In the current implementation, the TAD structure of the human 

embryonic stem cells (H1) is used as the default because a good fraction of proto-oncogenes 

are actively transcribed during the embryonic stage48. This can be replaced by custom TAD 

data generated from a matching cellular context provided by a user. On the other hand, 

epigenetic data such as H3K27Ac ChIP-seq used for enhancer profiling can be highly 

specific to a tissue type, a cell lineage or presence of a regulatory variant. For example, the 

novel intronic TAL1 mutation identified by cis-X in T-ALL patient samples resulted in an 

active enhancer present only in the H3K27Ac ChIP-seq data generated from the PDX model 

but not in other publicly available data sets (Figure 3 and Extended Data Figure 5b). 

Therefore, the ideal data set for non-coding variant annotation is the epigenetic data 

generated from a matching sample such as PDX, which can be supplied as a custom input 

for cis-X analysis (Figure 1). Given the challenges in acquiring a matching epigenetic data 

set, epigenetic profiling data of the ROADMAP project49, considered to be the most 

comprehensive epigenetic data resource, is used as an alternative for variant annotation by 

cis-X.

Experimental validation of predicted noncoding variant candidates is an important step in 

the discovery of bona-fide regulatory noncoding variant. Ideally, such experiments should be 

carried out in patient-derived xenograft (PDX) model as demonstrated in our validation of 

the novel TAL1 intronic variant in a T-ALL patient sample (Figure 3). However, in vivo 
validation may not always be feasible or possible as not all tumors can be engrafted 

successfully50. In vitro reporter assays can be an alternative approach, but the results may be 

confounded by lack of the matching transcriptional regulatory network and the high-order 

genomic architecture required for accurate assessment of the regulatory function. In an 

attempt to perform a preliminary validation on the 12 SNV/indel candidate non-coding 

variants identified in T-ALL, we found that the read-out from the luciferase report assay in 

Jurkat (Supplementary Note), a commonly used T-ALL cell line, contains false negatives as 

well as reduced read-out signal. This experience highlights the importance of in vivo 
validation in interpreting the functional impact of a candidate noncoding variant.

Our experience in applying cis-X in T-ALL demonstrates that this method effectively 

identifies noncoding variants that are known to activate oncogene expression in this tumor, 

and more importantly enables the discovery of both novel candidate oncogenes and the 

somatically acquired genomic abnormalities that mediate their high levels of expression. 
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Analysis of WGS and RNA-seq data using cis-X, which complements the recurrence-based 

methods employed by the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium 

in a recent study12, will lead to new insight on the noncoding driver variants that cause 

oncogenic activation. The publicly available cis-X software provides a powerful approach 

for investigating the functional role of noncoding variants. We expect it will spur extensive 

laboratory investigations and functional studies, both to assess the level of tumor cell 

dependency on the activated oncogene, and to establish experimentally the mechanisms 

underlying aberrant transcriptional activation.

Online Methods

cis-X analysis

The cis-X computational pipeline is designed to analyze somatically acquired regulatory 

noncoding variants from individual tumor genomes. The workflow for cis-X includes the 

following steps.

Modeling balanced transcription. To query heterozygous genetic variations in DNA that 

exhibits allelic imbalance in RNA expression we first define i, a value of imbalance, to 

quantitatively measure ASE:

i =  
Ra − Rb
Ra + Rb

Where Ra and Rb denotes RNA-seq read count of allele a and allele db of a heterozygous 

variant in tumor DNA. This value can range from 0, i.e. balanced expression of two alleles 

(Ra=Rb) to 1, mono-allelic expression (Ra = 0 or Rb = 0).

First, we compared the distribution of i collected from the empirical data with the theoretical 

binomial distribution assuming balanced expression, which implies the probability of 

success is equal to the probability of observing one of the alleles, p = 0.5, and a number of 

tries is equal to the coverage in RNA-seq. Our preliminary analysis, which compared the 

empirical WGS and RNA-seq data from 10 T-ALL cell lines (including Jurkat, Loucy, 

Molt3, CCRF-CEM, DND41, DU528, KOPT-K1, P12-ICHIKWA, PF-382 and RPMI-8402, 

unpublished data) with the theoretical binomial distribution, revealed a constant shift of 

empirically measured i towards less balanced transcription (Extended Data Figure 1). We 

reasoned that the shift in empirical data is caused by a combination of sampling bias of the 

two alleles and allelic transcription fluctuations. As a result, the balanced transcription can 

be modeled by convolution of corresponding distributions:

P k, N = B k, N,   p = 0.5 * G k,   μ = 0,   σ = σ N

Where B denotes binomial distribution, G denotes Gaussian distribution, N denotes coverage 

in RNA-seq for a given marker, k denotes the number of reads for one allele observed in 

RNA-seq and p for possibility of transcription of one allele over the other, which equals to 

the variant allele frequency in DNA for balanced transcription (e.g. 0.5 for diploid regions, 

0.33 or 0.67 for regions with 3-copy number). An asterisk denotes operation of convolution.
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To estimate the sigma in Gaussian distribution for balanced transcription, we analyzed the 

WGS and RNA-seq data generated from 10 T-ALL cell lines, as above. To select the 

balanced transcribed variants, we excluded genes with heterozygous variants within 

promoter regions (defined as 2kb upstream transcription start site) or 3’-UTR; known as 

imprinting genes; or overlapping non-diploid regions based on WGS analysis. This resulted 

in a list of 408,257 markers, with which the sigma could be estimated as below:

σ N =   10.8 1 − e− N
105

Where N denotes coverage in RNA-seq.

The model was used to test the null hypothesis: balanced transcription for each individual 

marker as below.

p i =
∑

j = i

N
p j > k wℎen k ≥ N

2

∑
j = 0

i
p j < k wℎen k < N

2

where k denotes tested number of reads, N denotes coverage at tested marker, and p is a 

probability calculated from balanced transcription model.

Allele-specific expressed (ASE) candidate analysis. Heterozygous variants extracted from 

individual tumor genome, were used for allelic imbalance analysis in RNA-seq data. A 

coverage threshold of 10 in both WGS and RNA-seq was applied in the current study. cis-X 

first identifies markers with allele-specific expression signal by comparing variant allele 

frequency (VAF) between genomic DNA and RNA transcripts with the convolution model. 

P-values for individual markers showing imbalanced expression were further combined 

based on gene structure and corrected for multiple testing. Genes with FDR<0.05 and an 

average |VAFDNA - VAFRNA| ≥ 0.3 (a threshold of 0.2 will be used if over 30% of markers in 

the gene fall into CNA/LOH regions) were considered to be ASE candidates. A multi-

marker analysis was implemented in parallel to identify regions with consecutive markers 

that exhibit ASE as ASE-runs. An ASE run requires a minimum of 4 markers showing 

significant ASE or mono-allelic expression and terminates if two or more markers were not 

qualified in these criteria sequentially. Genes overlapping with the ASE-run were considered 

as allele-specific transcribed.

Outlier high expression (OHE) candidate analysis. The expression of a given gene in the 

tumor sample under analysis was compared to a pre-calculated gene-specific reference 

expression matrix with leave-one-out (LOO) test27. Tumors of the same histotype were used 

in constructing the reference expression matrix, ensuring the same cell of origin. For our T-

ALL demonstration project, we built the reference expression matrix from a cohort of 264 T-

ALLs generated by the Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) project21, with matched whole exome sequencing and RNA-seq 
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available. For each gene, bi-allelic expressed samples were selected to build the reference 

expression matrix in order to exclude any sample that could potentially carry a cis-regulatory 

genomic aberration, as indicated by allelic biased expression. Samples with known genomic 

aberrations capable of dysregulating expression of the given gene were also excluded. We 

further applied one round of LOO test for each gene to remove cases with bi-allelic outlier 

expression, which could result from trans-activation. We required a minimum of 10 cases to 

build the reference expression matrix for each gene. For genes that could not meet the 

criteria, the expression value from the cohort as a whole was used. A null distribution of t-

statistic from LOO test was established and used to estimate the false discovery rate in OHE 

analysis. Gene with FDR<0.05 was considered OHE. Genes with both aberrant ASE and 

significant OHE signature with FPKM greater than a user-specified threshold (FPKM>5 was 

used in the T-ALL analysis presented in this study) were considered as cis-activated 

candidates. Potential oncogenes presented in the COSMIC database51 were nominated if 

they showed |BAFDNA - BAFRNA|≥0.4 for over 90% of markers inside the gene and 

significant OHE with FPKM≥1.

Transcription factor binding site (TFBS) analysis for somatic SNV/Indels. The mutations 

were evaluated for potential regulatory function with a combined approach that takes into 

account p value of motif prediction, expression level of the transcription factor in the tumor 

sample and absence of prediction in the reference genome. First, sequences were extracted 

from human genome with twoBitToFa (http://genome.ucsc.edu) and TF motif analysis was 

carried out with the FIMO52 package, with a p-value threshold of 10−3. A total of 614 

human TF binding motifs from the HOCOMOCO53 database were included in this analysis. 

Only mutations that could introduce a transcription factor binding motif that was absent 

from the reference sequence were kept for downstream analysis. We further require the 

predicted transcription factors were highly expressed (FPKM>10) in the individual tumor. 

The combined approach enables the detection of well-document non-coding regulatory 

variants which can be missed by using a stringent p value cutoff alone. For example, in T-

ALL analysis presented in this study, the known validated TAL1 super enhancer mutation 

which introduces a MYB binding motif9 would have been missed if standard false discovery 

rate were applied as the FDR of motif prediction was 0.236. Experimental validation of the 

predicted TF binding motif using an in vivo model may be required for further investigation.

Predict potential regulatory variants for cis-activated candidate genes. The somatic variants 

were assigned to dysregulated genes in the same topologically associating domains19 (TAD) 

defined by human ES cell (H1) Hi-C data as the default. This is because the TAD boundaries 

are relatively stable across different tissue types and independent of gene transcription 

status47; and the cellular linage of H1 is a good model for representing reactivation of proto-

oncogenes normally expressed only in embryo development. Alternatively, TAD structure 

generated from a matching cellular context could be provided by user. For sequence 

mutations, we limited the distance between mutation and the promoter (−2kb to 200bp of the 

RefSeq transcription start site)15 of the potential cis-activated candidate to 200kb, 

mimicking the median length of contact domains in the human genome54. The candidate 

sequence mutations were further annotated with the DNaseI-accessible regulatory regions 

defined by the Roadmap Epigenomics Project49. In addition, user provided functional 

genomics data such as ChIP-seq or ATAC-seq generated from samples with matching tissue 
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and variant context can be incorporated for annotation. In situations where multiple variants 

were present in the same regulatory neighborhood of cis-activated gene, gross alterations 

(e.g. SVs or CNAs) were rated as having higher impact than sequence mutations due to their 

potential for causing enhancer hijacking.

Cis-X was developed under Perl version 5.10.1, java version 1.8.0 and R version 3.1.0.

Simulation of allelic specific expression

A simulation was carried out to emulate the performance of cis-X in identifying the ASE in 

regions with different ploidy. Variables that could affect ASE detection were included in this 

simulation, which included: Copy number (CN) alterations. Both diploid regions and CNA 

regions with 1 or 2 copy gains were simulated; Coverage for each marker in RNA-seq. A 

variety of coverages were tested, ranging from 10 to 500, to represent different level of gene 

expression. On the other hand, a DNA coverage equal to 30 was used as constant in this 

analysis for diploid regions. DNA coverage will increase along with the copy number gains, 

with 45 when CN equals 3 and 60 for CN equals 4; The number of heterozygous markers 

within a single gene ranging from 1 to 20; Imbalance transcription ratio between alleles. An 

imbalance ratio of 1:1 was used to represent the balanced transcription for estimation of the 

false positive rate, while a complete allelic specific expression was represented with a ratio 

of 10000:1. Meanwhile, a set of different allelic imbalance ratio in between were tested, 

including 2:1, 3:1, 4:1, 5:1, 10:1 and 100:1. A number of 2,000 simulations were carried out 

for each combination. Random sampling was performed for the alleles with different 

probabilities controlled by allelic imbalance ratio. The imbalance between DNA and RNA 

was tested with the convoluted balanced transcription model as described above.

Patients and samples

Tumor and paired remission samples were collected from a total of 13 T-ALL patients 

diagnosed as T-ALL from Shanghai Children’s Medical Center (SCMC). The study was 

approved by the SCMC Institutional Review Boards (IRB). Informed consent was obtained 

from parents for all patients.

Whole genome sequencing and analysis

DNA were extracted with QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany, cat. 

51106) according to the manufacturer’s instructions and quantified by agarose gel 

electrophoresis and Qubit ds DNA BR Assay Kit (Life Technologies, Carlsbad, CA, Cat. 

No. Q32850). 1μg genomic DNA (OD260/280 ratio ranging from 1.8 to 2.0) was diluted 

with 1× low TE buffer to a total volume of 50μl and fragmented by sonication on the 

CovarisS2 (Covaris, Woburn, MA). Fragmented DNA was repaired, ligated with Illumina 

adapters, and size selected, aiming for a 250–300bp product. The size-selected DNA library 

was then PCR amplified for 15 cycles and validated using the Agilent 2100 Bioanalyzer 

(Agilent Technologies, Palo Alto, CA, USA). The library was sequenced on Illumina HiSeq 

X-Ten sequencer following Illumina provided protocols for 2×150 paired-end sequencing.

WGS data were mapped to reference human genome assembly GRCh37-lite with bwa55. 

Somatic variants in each tumor were analyzed by Bambino56 (SNV/Indel), 
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CONSERTING57 (in both paired and tumor-only mode for somatic and germline CNA) and 

CREST58 (SV). The SVs discovered in the neuroblastoma cell lines were further filtered 

against the DGV database59 with AnnotSV60, as well as a local germline rearrangements 

database constructed from analyzing WGS data in the PCGP project to remove common 

structural variants in human genome. The detected somatic aberrations were manually 

curated to further rule out false discoveries.

Transcriptome sequencing (RNA-seq) and analysis

RNA purification, reverse transcription, library construction and sequencing were performed 

at WuXi NextCODE at Shanghai according to the manufacturer’s instructions (Illumina). 

The rRNA-depleted sequencing libraries from total RNA were prepared using Illumina 

TruSeq® Stranded Total RNA Gold Library Preparation Kit following the vendor 

recommendations. Approximately 1ug of total RNA was used as input material, and the 

Ribo-Zero Gold kit was used to remove both cytoplasmic and mitochondrial rRNA. 

Sequencing was performed using a HiSeq 2500 following the 2×125 paired-end sequencing 

protocol.

RNA-seq data were mapped with StrongArm (Michael Rusch, Michael Edmonson, Wen Ji, 

Tim Shaw, John Easton, et al, manuscript in preparation), as previously described61. Gene-

level read count was generated with HTseq-count62, and the number of fragments per 

kilobase of transcript per million mapped reads (FPKM) was calculated on the basis of the 

transcript models in GENCODE v19. Cluster analysis was carried out with Ward’s 

minimum variance method with the same list of genes as used in previous study21.

Patient derived xenograft (PDX)

The mononuclear cells (MNCs) isolated from the patient BM samples were engrafted into 5 

irradiated NOG mice (3–4 week-old female mice, Beijing Vital River Laboratory Animal 

Technology Co., Ltd., Beijing, China) via intravenous (i.v.) injection. Weekly monitoring of 

peripheral appearance of leukemic cells (CD45+) was performed via flow cytometry 

analysis with retro-orbital bleeding. Mice were housed in animal facility with 12h/12h dark 

cycle, 20–26°C temperature, and 40–70% humidity. Experiments were conducted under 

sterile conditions at Crown Bioscience SPF facility, and performed strictly under the Guide 

for the Care and Use of Laboratory Animals of the National Institutes of Health. The 

protocol was approved by the Committee on the Ethics of Animal Experiments of Crown 

Bioscience (Crown Bioscience IACUC Committee).

ChIP-seq and analysis

ChIP and input DNA libraries were performed as previously described63. Briefly, cells were 

cross-linked with 1% formaldehyde for 10min at room temperature and formaldehyde was 

then inactivated by the addition of 125mM glycine for 5min. Sonicated DNA fragments with 

100–300bp were pre-cleared and immunoprecipitated with Protein A+G Magnetic beads 

coupled with Anti-H3K27Ac antibody (ab4729, Abcam) or Anti-YY1 antibody (#61779, 

active motif). 5μg antibody per 1ml volume reaction was added for both antibodies. After 

reverse crosslinking, immunoprecipitated DNAs and input DNAs were end-repaired and 

ligated adapters to the DNA fragments using NEBNext Ultra End-Repair/dA-Tailing Module 
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(E7442, NEB) and NEBNext Ultra Ligation Module (E7445, NEB). High-throughput 

sequencing of the ChIP fragments was performed using Illumina NextSeq 500 following the 

manufacturer’s protocols.

Analysis was carried out with ChIP-seq analysis pipeline on St. Jude Cloud (https://

platform.stjude.cloud/tools/chip-seq). Briefly, the reads were aligned to the human genome 

(GRCh37-lite) with bwa55 (v0.7.12), then ambiguously-mapped and duplicate reads were 

removed. Fragment length was estimated based on a cross-correlation plot generated by 

SPP64 (v1.10.1). MACS65 (v2.1.1) was used to call the peaks. The results were filtered 

against known false positive peaks using the ENCODE black list66.

Visualization of ChIP-seq and ChIA-PET data on GenomePaint

Results from ChIP-seq experiments and the interactions from ChIA-PET data were 

visualized on GenomePaint (https://proteinpaint.stjude.org/genomepaint, Xin Zhou, Jian 

Wang, Jaimin Patel, Marc Valentine, Ying Shao, et al, manuscript in preparation). 

Interactions from ChIA-PET data generated from previous study4 were used. Wiggle files 

for the following ChIP-seq data were downloaded from GEO (https://

www.ncbi.nlm.nih.gov/geo/): CTCF in Jurkat cell (GSM1689152), H3K27Ac for CD3 

primary cells (GSM1058764), Native CD4+ T cells (GSM772835), CD8 primary cells 

(GSM1102781), LOUCY (GSM2037788) and KOPT-K1 (GSM2318734). Wiggle files were 

transformed into bigwig format with wigToBigWig from UCSC genome browser.

Analysis of neuroblastoma cell lines and patient samples by cis-X

Reference expression matrix was constructed from 123 TARGET neuroblastoma RNA-seq 

samples18,32, following the same process as described above. WGS and RNA-seq data from 

four neuroblastoma cell lines, GIMEN, NB16, NB1643 and KELLY, were analyzed with cis-

X as described above. For patient samples, we used somatic SVs identified in 90 pediatric 

neuroblastoma samples with paired tumor-normal WGS and tumor RNA-seq data in 

TARGET project18 as the input for cis-X. The curated somatic SNVs, indels, SVs and CNVs 

and the germline SNPs characterized in our prior pan-cancer analysis18 were analyzed for 

candidate noncoding driver variants.

Analysis of adult melanoma by cis-X

A total of 38 adult melanoma cases with paired tumor-normal WGS and tumor RNA-seq 

data generated in TCGA project67 were analyzed. Raw data were downloaded from GDC 

(https://portal.gdc.cancer.gov/legacy-archive/search/f). For RNA-seq, the fastq files were 

mapped to GRCh37-lite as described above. For WGS data, the downloaded aligned BAM 

files were firstly transformed to fastq with bedtools68 (v2.25.0) and processed as described 

above. Epigenetic dataset included five ATAC-seq data from five melanoma cell lines and 

twelve H3K27Ac ChIP-seq data from nine melanoma and two normal human melanocyte 

cell lines39,41,69,70. The ChIP-seq data were processed as described above. ATAC-seq data 

were mapped to GRCh37-lite with bwa55 (v0.7.15). Ambiguously-mapped and duplicated 

reads were removed subsequently with Picard (v2.6.0, http://broadinstitute.github.io/picard). 

Aligned reads were transformed to bedpe format with bedtools68 (v2.25.0) and only 

nucleosome-free fragments (fragment length<109) were kept for peak calling using 
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MACS265 (v 2.1.1), with default parameters. The resulting peaks from ChIP-seq and ATAC-

seq of melanoma cell lines were combined for annotating the cis-activated candidates 

detected by cis-X. Candidate variants were manually curated to remove false positives. 

Variants with hard-to-define target genes were excluded, such as SVs involved in 

chromothripsis with many-to-many mapping of SVs and target genes. SNVs with UV-like 

signature (i.e. cosmic signature 7) were identified and labeled accordingly.

Cell culture

Jurkat cell were cultured in suspension system at 37oC/5%CO2 for in complete RPMI 

media, containing 10%FBS, 2mM Glutamine, 100U/ml Penicillin, and 100μg/ml 

Streptomycin. Mycoplasma contamination was tested negative.

Luciferase assay

DNA fragments were synthesized from IDT (Integrated DNA Technologies) and loaded into 

the pGL3-Promoter Vector (Promega, E1761). 1×106 Jurkat cells were resuspended in 100μl 

of nucleofector solution mixture (Lonza, Amaxa cell line nucleofector kit V), then 1.5μg of 

each reporter vector and 0.5μg of pRL-TK Renilla control luciferase reporter vector 

(Promega) were added. Cells with reporter plasmid DNA were electroporated into Jurkat 

cells using program X-005 on Lonza Nucleofector 2b (Lonza) and resuspended in 2ml of 

RPMI medium supplemented with 10% FCS and penicillin-streptomycin. After being 

incubated at 37°C/5%CO2 for 48 hours, cells were collected by centrifugation and luciferase 

activities were measured using the Dual-Luciferase Reporter Assay system (Promega, 

E1960). For each putative enhancer, experiments were performed in triplicates and 

replicated independently for 3 or 2 times (Supplementary Note). Cell numbers and 

transfection efficiency were normalized to Renilla luciferase activity.

Statistics and reproducibility

Statistical difference between mutant and reference sequences in luciferase assay was 

performed by two-sided t-test. Each experiment was replicated by at least two independent 

experiments. Overrepresentation of mutant allele than reference allele in H3K27Ac and YY1 

ChIP-seq data was performed with two-sided binomial test. Analysis were performed with 

Prism version 8.0 and R version 3.1.0.

Reporting Summary

Further information on research design is available in the Life Sciences Reporting Summary 

linked to this article.
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Extended Data

Extended Data Fig. 1. Transcription imbalance modeling.
Cumulative distribution of transcription imbalance under binomial transcription model 

(dotted line), beta-binomial model as implemented in MBASED (solid line), balanced 

transcription model (dashed line) and experimentally observed data (dots). Different RNA-

seq coverages (N=10, 50 and 100) are shown separately.
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Extended Data Fig. 2. Simulation analysis of allele-specific expression detection in cis-X.
Each panel represents a simulation of allelic imbalance ranging from 1:1 (no allele-specific 

expression) to 10000:1 (complete mono-allelic expression). Percentage of simulations 

identified as allele-specific expression from a group of 2,000 simulations are shown on y-

axis, with plots on each panel representing simulation results with different imbalanced 

transcription ratio between two alleles. The imbalanced ratio of 1:1 represents the false 

positive rate was showed on the top, while plots in the other lines represent false negative 

rates of detecting transcription imbalance at various allelic ratio. Coverage for the markers in 

RNA-seq is shown on the x-axis. Each column, labeled by a distinct color, represents a 

distinct ploidy group (i.e. copy number alterations), while shape of each plot represents the 

number of markers within a gene for assessing allele-specific expression.
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Extended Data Fig. 3. Workflow for constructing the gene-specific reference expression matrix.
Workflow for constructing the gene-specific reference expression matrix.
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Extended Data Fig. 4. LMO3 activation in T-ALL.
(a) Allele specific expression of LMO3 in T-ALL SJTALL013797_D1. Eight heterozygous 

variants are present in LMO3 locus in this tumor, with the B-allele fractions from WGS and 

RNA-seq plotted on the top of the wiggle plot. (b) Outlier high expression of LMO3 was 

observed in this sample compared to the NCI TARGET T-ALL cohort (n=264 samples). (c) 

Gene expression based clustering of the combined cohort of 13 SCMC T-ALLs and 264 NCI 

TARGET T-ALLs showed that SJTALL013797_D1 is clustered with other T-ALLs driven 

by TAL/LMO activation. The same genes from the previous study (Liu et al. Nature 

Genetics, 2017) were used in clustering the combined cohort. Colors on the top track 

represent different T-ALL subtypes.
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Extended Data Fig. 5. Somatically acquired noncoding mutation activating TAL1 in T-ALL 
sample SJALL018373.
(a) The heterozygous C to T mutation (indicated by arrow, with mutant allele T shown in 

red) was only present in the tumor DNA but not in the remission sample from whole genome 

sequencing data. (b) H3K27Ac profile from ChIP-seq at TAL1 locus. The active enhancer 

present in the mutation positive PDX sample (as shown in Figure 3d) was absent from 

normal T cells (CD3, CD4 and CD8) or from the T-ALL cell line (LOUCY) with no TAL1 
expression.
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Extended Data Fig. 6. Activating deletion upstream PRLR.
Expression (FPKM on y-axis) of SPEF2 (a) and IL7R (b) in the T-ALLs. The 3 tumors 

carrying the focal deletions (SJALL043558_D1, PATFYZ, and PATRUN) are labeled. (c) 

H3K27Ac profiles from ChIP-seq show active enhancer upstream of IL7R in the PDX 

(derived from patient SJALL018373) and a T-ALL cell line (KOPT-K1) having high IL7R 
transcription; both samples have the wild-type allele at this locus.
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Extended Data Fig. 7. Analysis of pediatric neuroblastoma with cis-X.
(a) Copy number variations identified in the four neuroblastoma cell lines. The blue and red 

colors represent the deletion and amplifications, respectively, identified in these cell lines. 

(b) Circos plot showing the cis-activating structural rearrangements identified in NBL cell 

lines by cis-X. The copy number alterations in each genome are shown in the inner track, 

with blue lines representing a copy number of 1 and red a copy number of three. The cis-

activating structural variants are shown as links in the middle of the plot, with purple links 

representing inter-chromosome translocations and green for intra-chromosome 

translocations. The target genes activated by these rearrangements are labeled on the outer 

track of each plot.
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Extended Data Fig. 8. TERT cis-activation by somatic non-coding variants in neuroblastoma.
The analysis was based on 90 NBL primary tumor samples with matching RNA-seq and 

WGS from TARGET, 42 of which had positive immune cell infiltration signature based on 

prior analysis (Ma et al, Nature, 2018). (a) Samples with somatic copy number alterations 

(CNA, marked by red or blue blocks) or/and structural variations (SVs, marked by circles) at 

TERT locus. All except for one (PARAMT, marked #) were detected by cis-X as cis-

activated candidates. Samples marked with * have immune cell infiltration signature. 

Samples highlighted in gray are used to illustrate allele-specific expression (ASE) below. (b) 

Examples of ASE detected in neuroblastoma with or without infiltrating immune cells. 

Variant allele fraction in DNA (by WGS) and RNA (by RNA-seq) of SNPs, depicted as bar 

graph, demonstrates that ASE analysis is not affected by the presence of immune cell 

infiltration signature in tumor samples.
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Extended Data Fig. 9. TERT expression in melanoma and neuroblastoma.
TERT expression in adult TCGA melanoma (MEL) samples (n=38), pediatric 

neuroblastoma (NBL) patient samples from TARGET project (n=90) and cell lines (n=4) 

analyzed in this study. The MEL samples were color-coded by TERT promoter mutation 

status while the NBL samples were marked by the status of cis-activation, infiltrating 

immune cells and cell-lines as depicted in figure legend.
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Figure 1. 
cis-X workflow. cis-X is designed to perform integrated analysis of WGS and RNA-seq data 

generated from an individual tumor genome. It integrates allele-specific expression and 

outlier high expression as key signatures of cis-activated genes to seed discovery of 

regulatory noncoding variants in the context of three-dimensional architecture of the 

genome. Functional genomics data such as ChIP-seq generated from samples with matching 

tissue of origin and variant context can be provided by the user for enhancing candidate 

variant annotation. SV, structural variant. CNA, copy number aberration.
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Figure 2. 
Candidate cis-regulated genes identified by cis-X in 13 pediatric T-ALLs. Each dot 

represents a cis-activated candidate gene identified in a single tumor that passes the allele-

specific expression test (y-axis) and outlier high expression test (x-axis). The significance of 

genes showed outlier high expression and higher transcription from one allele compared to 

the other are shown on X and Y-axis, separately, as -log10(q-value) after multiple-testing 

correction (Methods). The cis-activated candidates nominated from ASE-runs alone are 

shown at the bottom of the plot. The horizontal and vertical lines in blue represent q-value of 

0.05. The candidates are color-coded into different groups based on the cis-activating 

genomic aberrations and candidate gene status.
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Figure 3. 
Discovery and validation of a recurrent intronic noncoding mutation activating TAL1 
oncogene. (a) Allele specific expression of TAL1 in the two T-ALLs carrying a recurrent 

somatic mutation in intron 1 of TAL1. ASE status was determined by the mono-allelic 

expression of heterozygous germline/somatic variants labeled on top of the wiggle plot, with 

blue and red representing the reference and alternative alleles, respectively. Arrow indicates 

position of the novel noncoding C>T mutation. (b) Expression of TAL1 in the two T-ALLs 

(shown in red text) carrying the novel mutation is comparable to those carrying known cis-

activating regulatory variants of TAL1, including the insertion upstream of TAL1, STIL-
TAL1 deletion, and other rearrangements in TAL1 locus as shown in different colors. (c) 

Luciferase assay shows increased transcription activity in cells that transformed with the 

mutant T allele compared to the wild type C allele. Data are presented as mean value +/− 

standard deviation (n=3 independent experiments). Two-sided t-test is performed. (d) The 
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mutation introduces transcription factor YY1 binding and an active enhancer at TAL1 locus 

in vivo, defined by YY1 and H3K27Ac ChIP-seq profiling generated from patient-derived 

xenograft of the patient carrying this mutation. The YY1 binding and enhancer are only 

detected on the mutant allele as all reads under the peaks from the ChIP-seq experiment 

carry the mono-allelic mutant T allele (red), as shown at the bottom. By contrast, the tumor 

DNA harbors a heterozygous C to T mutation (Extended Data Figure 5).
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Figure 4. 
A putative oncogene PRLR in T-ALL identified by cis-X. (a) Allele specific expression of 

PRLR in T-ALL SJALL043558_D1. Twelve heterozygous germline/somatic variants in this 

locus all exhibit mono-allelic expression as indicated by their reference allele (blue color) 

and non-reference allele (red color) fraction in WGS and RNA-seq displayed on top of the 

RNA-seq wiggle plot. (b) Outlier high expression of PRLR found in sample 

SJALL043558_D1 (red) together with additional two T-ALLs (orange) from NCI TARGET 

T-ALL cohort (n=264 samples). PRLR expression level (FPKM) was plotted on y-axis. (c) 

Focal deletions identified in all 3 T-ALLs exhibiting outlier PRLR expression shown in (b). 

Cohesin ChIA-PET interactions and CTCF binding profile (blue) collected from Jurkat 

cells4 show the insulated neighborhood structure of the wild-type PRLR locus, as no somatic 

alterations were detected in this region in Jurkat cells. Candidate boundaries of the insulated 

neighborhood affected by the deletions detected in three T-ALL patient samples are 

indicated by boxes.
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Figure 5. 
Cis-activation of p16Ink4a in melanoma. (a) Somatic deletions at CDKN2A locus detected in 

38 TCGA melanoma samples. The deletion in sample TCGA-DA-A1HY-06 (marked in red) 

is unique as it removes only the unique exon (exon 1β) of ARF without affecting the p16Ink4 

locus. (b) Expression of CDKN2A locus measured by FPKM in the melanoma cohort color-

coded by deletion status. The red dot represents TCGA-DA-A1HY-06 which harbors the 

unique exon 1β deletion. (c) RNA-seq expression of CDKN2A locus in sample TCGA-DA-

A1HY-06 which shows expression of exon 1β is almost undetectable suggesting the sample 

is ARF-null but p16Ink4 intact. The arrow points to the coverage of exon 1β estimated to 

have <2% level of that of exon 1α. Mono-allelic expression of CDKN2A p.Pro81Leu 

mutation suggest that cis-activation occurred on the mutant allele.

Liu et al. Page 34

Nat Genet. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Results
	Design of cis-X
	Identification of cis-activated genes in pediatric T-ALL
	Identification of somatic noncoding regulatory variants
	A recurrent intronic mutation activating TAL1
expression
	cis-activation of PRLR in T-ALL by upstream deletion
	cis-activating noncoding variants in neuroblastoma
	cis-X analysis of adult melanoma

	Discussion
	Online Methods
	cis-X analysis
	Simulation of allelic specific expression
	Patients and samples
	Whole genome sequencing and analysis
	Transcriptome sequencing (RNA-seq) and analysis
	Patient derived xenograft (PDX)
	ChIP-seq and analysis
	Visualization of ChIP-seq and ChIA-PET data on GenomePaint
	Analysis of neuroblastoma cell lines and patient samples by cis-X
	Analysis of adult melanoma by cis-X
	Cell culture
	Luciferase assay
	Statistics and reproducibility
	Reporting Summary

	Extended Data
	Extended Data Fig. 1
	Extended Data Fig. 2
	Extended Data Fig. 3
	Extended Data Fig. 4
	Extended Data Fig. 5
	Extended Data Fig. 6
	Extended Data Fig. 7
	Extended Data Fig. 8
	Extended Data Fig. 9
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.

