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A B S T R A C T

Purpose: We designed a paired controlled study to investigate the role of the suprascapular nerve (SSN) in rotator
cuff healing using a rat tear model, and we hypothesised that rotator cuff healing is impaired in the absence of a
healthy SSN.
Methods: Bilateral supraspinatus tenotomy from the great tuberosity was performed for 36 Wistar rats, which was
then repaired immediately. A defect on the SSN was made on the right side, and a sham surgery was performed on
the SSN at the left side. Twelve rats were sacrificed for biomechanical (six rats) and histological (six rats) testing,
evaluated at 3, 6, and 9 weeks after surgery.
Results: The bone–tendon junction on the nerve-intact side showed significantly better biomechanical charac-
teristics than the nerve-injured side in terms of maximum load, maximum stress over time, stiffness at 9 weeks,
and Young's modulus at 3 and 9 weeks. On the nerve-injured side, significantly smaller fibrocartilage layers and
muscle fibres could be obtained over time. In addition, on the nerve-injured side, inferior bone–tendon interface
formation was obtained in terms of cell maturity, cell alignment, collagen orientation, and the occurrence of
tidemark and Sharpey's fibres through 9 weeks. In addition, neuropeptide Y was secreted in the nerve-intact group
at 6 and 9 weeks.
Conclusion: This study showed the inferior healing of the bone–tendon junction on the nerve-injured side
compared with the nerve-intact side, which indicates that the SSN plays an important role in rotator cuff healing.
Surgeons should pay more attention to SSN injury when treating patients with rotator cuff tear.
Introduction

Rotator cuff repair is becoming a well-established procedure with the
development of science and technology. However, the retear rate after
repair, especially for large to massive tear, is high with obvious com-
plications [1–3]. To reduce the retear rate, several clinical studies have
identified risk factors, which could lead to retear after repair. These
factors include patients' age, initial tear size, degree of muscular atrophy
and fatty infiltration, surgical technique, and inappropriate postoperative
rehabilitation [1,4–7]. On the other hand, basic science studies have
shown that the high retear rate is associated with poor regeneration of
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the tendon-to-bone interface [8–11]. The aforementioned clinical risk
factors have also been identified in clinical transitional animal studies
partially or completely [12–15]. However, the factors influencing the
occurrence of rotator cuff retear still remain unclear [4].

By using a rabbit model, Rowshan et al. [16] reported chronic cuff
tears could induce a neurological injury. Several studies also have sug-
gested that rotator cuff tear is one of the causes of suprascapular nerve
(SSN) neuropathy [17–19]. Even during rotator cuff repair surgery,
sometimes there is a risk of injury of the SSN by over-advancing torn
rotator cuff [18]. After injury of the SSN, a series of changes in the muscle
take place, such as muscle atrophy, followed by fatty infiltration [16,
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20–22]. Clinically, the degree of muscle atrophy and fat infiltration is
highly negatively related to rotator cuff healing and positively related to
the retear rate after repair [4,7].

Currently, there is no evidence identifying that SSN neuropathy can
affect rotator cuff healing after rotator cuff repair. The role of the SSN in
rotator cuff healing remains unknown. As injury of the SSN can lead to
muscle atrophy and fat infiltration, we hypothesised that rotator cuff
healing is impaired in the absence of a healthy SSN. The purpose of this
study was to test this hypothesis using SSN injury and a rotator cuff tear
model in rats.

Materials and methods

Experimental design and sample size calculation

The study was approved by the Institutional Animal Care and Use
Committee. As per previous data [3,23] and to generate a power of 0.8
with significance at the 0.05 level [24], it was estimated that 6 rats were
required in this study. In addition, it was estimated that 6 rats for each
time point were necessary for histological observation as per previous
studies [3,25]. The observation time points were set at 3, 6, and 9 weeks.
Finally, 36 male Wistar rats (8 weeks old, weighing approximately 287 g)
were included in the study. Of the 12 rats, at each time point, 6 were used
for biomechanical testing, whereas the other 6 were sacrificed for his-
tological evaluation.

Model set-up

Both shoulders of each rat were used in the experiment. Anaesthesia
was induced through intramuscular injection of 50 mg/kg of zolazepam
and tiletamine (Zoletil 50; Virbac, Carros, France) and 10 mg/kg of
xylazine (Rompun; Bayer HealthCare, Leverkusen, Germany). An
approximately 2-cm incision was made on the top of the trapezius par-
allel to the scapular spine, and subcutaneous tissue was divided. An
approximately 1.5-cm split of the trapezius was made just on the top
suprascapular notch, and then, the split was retracted using micro-
retractors to expose the entrance of the SSN to the supraspinatus. An
approximately 5-mm defect in the SSN was made before directing a
branch to the subscapularis muscle on the right side (Fig. 1), while sham
surgery (exposing the SSN only) was performed on the left side. Then,
supraspinatus tenotomy from the great tuberosity was performed on both
shoulders and was subsequently repaired using 5-0 Prolene sutures
(Ethicon; Johnson & Johnson, New Brunswick, NJ, USA) using a modi-
fied Kessler suture method. A detailed description of the surgical
Figure 1. Illustration of the nerve defect model. Before directing a branch of
the nerve to the subscapularis, a nerve defect (approximately 5 mm) was made.
The small figure located at the top shows the harvested nerve.
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procedure has been depicted by a previous study [23]. After surgery,
bupivacaine hydrochloride (0.05 mg/kg) was administered to the sur-
gical site. Free cage activity was managed until the rats were sacrificed
via asphyxiation using carbon dioxide.

Biomechanical testing

After sacrifice, the supraspinatus muscle and tendon of each shoulder
along with the humeral head were harvested. Before testing, the Prolene
sutures were removed. The proximal two-thirds of the supraspinatus
muscle was removed, and the remaining muscle and tendon were firmly
fixed using a 4-0 black silk suture (Tokodental, Surabaya, Indonesia) to
prevent slipping from the tendon and muscle part when testing was
performed. The prepared samples were then preserved at �20�C and
thawed at room temperature on the day of biomechanical testing. Before
testing, a caliper was used to measure the width and length of the
bone–tendon junction. Subsequently, the whole tendon part secured with
running sutures was firmly clamped using a big needle holder. The hu-
merus and needle holder were fixed using a custom fixture clamping
system (Instron, Norwood, MA, USA). Based on a similar previous study,
the uniaxial testing condition was set using an Instron 3344 material
testing machine (Instron) [26]. The tendon was loaded until it pulled
apart from the bone or ruptured at its midsubstance. Data from the tensile
load to failure testing were automatically collected using a data acqui-
sition system on a personal computer.

Muscle histological analysis

The biopsy specimens of the supraspinatus muscle were obtained
from a site 1 cm proximal to the insertion of the supraspinatus after
repair. After sacrifice, the muscle was fixed in 10% neutral buffered
formalin and subsequently embedded using paraffin. Sagittal sections
(thickness: 3 μm) were stained using haematoxylin and eosin (H&E).
Images of muscle histology were obtained using an inverted microscope
(Nikon TS100; Nikon, Melville, NY, USA). The cross-sectional area of the
muscle fibre was outlined and measured by two blinded investigators
using ImageJ software (NIH, Bethesda, MD, USA) under 200� magnifi-
cation using 3 randomised views of each slide.

Tendon–bone histological analysis

After sacrifice, the humeral head–attached supraspinatus tendon was
fixed in 10% neutral buffered formalin for 24 h and subsequently
decalcified for 24 h (Formical-2000; Decal Chemical Corporation, Tall-
man, New York, USA), processed, and embedded in paraffin [12]. Cor-
onal sections (thickness: 3 μm) of tendon–bone at the middle of the
tendon insertion of each shoulder were placed on glass slides and stained
using H&E, Masson's trichrome, and safranin O. After staining, all sides
were assessed by two blinded investigators. Histological images were
obtained using an inverted microscope (Nikon TS100; Nikon).

H&E staining was used for the pathological analysis of the bone-
–tendon interface as a whole. The cellularity of the fibrocartilage was
assigned a score of þ through þþþþ, with þ being <50 cells/high-
power field (HPF) of view, þþ being 50–100 cells/HPF of view, þþþ
being 100–150 cells/HPF of view, and þþþþ being >150 cells/HPF of
view. Fibrocartilage maturity was assigned a score of þ through þþþþ,
with þþþþ being marked mature, þþþ being moderate mature, þþ
being mild mature, and þ being immature [27,28]. Fibrocartilage cell
alignment was assigned a score of þ through þþþþ, with þ being no
cells in a row, þþ being mild lining of cells in a row, þþþ being mod-
erate lining of cells in a row, and þþþþ being marked lining of cells in a
row like native bone–tendon junction [27,28]. Tidemark and Sharpey's
fibres were assigned a score of – through þþ, with � being no, þ being
yes but not clear, and þþ being very clear. Safranin O staining was
performed to analyse the fraction of the fibrocartilage area between the
repaired tendon and bone. The images were obtained at 200�
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magnification, and subsequently, the fibrocartilage areas were carefully
outlined and measured using ImageJ software (NIH). Masson's trichrome
staining was performed to analyse the organisation of collagen in be-
tween the repaired tendon and bone. The semiquantification method was
used in this study. Collagen organisation was assigned a score of þ
through þþþþ, with þþþþ being >75% collagen was well organised,
þþþ being 50–75% collagen was well organised, þþ being 25–50%
collagen was well organised, and þ being <25% collagen was well
organised. Masson's trichrome–stained samples from 6 normal rats were
used as normal controls and were assigned a score of þþþþ, indicating
that >75% collagen was well organised [27,28].

Neuropeptide Y (NPY) immunohistochemical staining of bone-to-
tendon healing was performed to detect NPY secretion in the two
groups. Sections were dewaxed and rehydrated in a graded ethanol se-
ries. Intrinsic peroxidase activity was blocked by immersion in distilled
water 3 times for 3 min each. The antibodies and dilutions were used:
NPY (1:100, 12833-1-AP; Proteintech Group, Chicago, IL, USA). The
slides were incubated for 1 h at room temperature and washed in phos-
phate -buffered saline. The antigen–antibody reaction was visualised
using diaminobenzidine as a chromogen (GK346810; Novocastra,
Newcastle, UK), following the manufacturer's recommendations. For the
negative control, the primary antibody was replaced with nonimmune
serum [29].

Data analysis

Statistical analysis was performed using the paired t test for inter-
group comparisons at each time points and one-way analysis of variance
for intragroup comparisons between the 3-, 6-, and 9-week results. A P
value of <0.05 was denoted statistically significant.

Results

Gross observations

There were no infections of rats observed in either of the groups at 3,
6, and 9 weeks. After removing the adhesive tissue under the acromion,
the bone–tendon junction was exposed. A thinner and narrower bone-
–tendon junction formation was found on the nerve-injured side than
that observed on the nerve-intact side (Fig. 2A and B).

Biomechanical testing

The bone–tendon junction on the nerve-injured side showed signifi-
cantly superior biomechanical properties in terms of maximum load to
failure and maximum stress at 3, 6, and 9 weeks (Fig. 3A and B). At 9
weeks, a significant difference was found between the two groups in
terms of stiffness (Fig. 3C). The bone–tendon junction on the nerve-intact
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side showed better Young's modulus at 3 and 9 weeks than that on the
nerve-injured side (Fig. 3D). The load to failure site was always located at
the bone–tendon junction during the early healing phase in the nerve-
intact side. However, it tended to move to the bone structure, especially
bone tunnels for the transosseous suture passing from 6 to 9 weeks.
Conversely, the load to the failure site was always located at the bone-
–tendon junction from 3 to 9 weeks on the nerve-injured side. A load to
failure example is shown in Fig. 2C. Detailed information regarding the
load to the failure site is summarised in Table 1.

Histological evaluation

Muscle atrophy and fat infiltration
Significant muscle atrophy was found on the nerve-injured side at all

time points compared with the nerve-intact side (Table 2). At 3 weeks
after the surgery, muscle atrophy was observed on the nerve-injured side.
At 6 weeks, fibrosis occurred in the atrophiedmuscle. Finally, at 9 weeks,
apparent fat infiltration into the atrophied muscle was observed (Fig. 4).

Bone–tendon interface formation
At 3 weeks, the bone–tendon junction on the nerve-intact side showed

the presence of dense immature fibrocartilage cells, better cell alignment,
cell activity, and clear Sharpey's fibres. Compared with the nerve-injured
side, more mature fibrocartilage cells lined in a row crossing the clear
tidemark from6 to 9weeks in the nerve-intact side. Decreased cell density
and clear Sharpey's fibres were also found on the nerve-intact side from 6
to 9 weeks. Sharpey's fibres were not obtained on the nerve-injured side
over time; however, tidemark occurred at 9 weeks on the nerve-injured
side (Fig. 5). Detailed information is summarised in Table 3.

Metachromasia
A significantly larger area of fibrocartilage stained with safranin O

was detected on the nerve-intact side than that detected on the nerve-
injured side at 3, 6, and 9 weeks (Table 4). Furthermore, the cartilage
matrix–like component and viable matrix in the bone–tendon junction
increased over time on both sides (Fig. 6).

Collagen organisation
Collagen fibre, albeit disorganised, was found on the nerve-intact side

3 weeks after surgery. However, not many collagen fibres were found in
the fibrocartilage area on the nerve-injured side. At 6 weeks, a better
organised fibre was found in the bone–tendon junction on the nerve-
intact side than that observed at 3 weeks after surgery. On the nerve-
injured side, the presence of fibres was confirmed; however, they were
not very well organised. Collagen fibres on both sides were better
organised at 9 weeks than earlier. However, more clear fibres and
fibrocartilage cells in between fibres were identified on the nerve-intact
side (Fig. 7).
Figure 2. The gross observation of a paired sam-
ple. (A) The upper one is a sample from the nerve-
injured side, whereas the lower one is from the nerve-
intact side. The double yellow lines indicate the width
of the bone–tendon junction. The nerve-injured side
showed a narrower bone–tendon junction. (B) The
upper one is a sample from the nerve-injured side, and
the lower one is from the nerve-intact side. The dou-
ble yellow lines in (A) and (B) indicate the thickness
of the bone–tendon junction. The nerve-injured side
showed a thinner bone–tendon junction. (C) The load
to the failure site is always located at the bone–tendon
junction on the nerve-injured side. However, the
failure site is located at the bone side on the nerve-
intact side at 6 weeks. The red arrow points out the
load to failure at the bone––tendon junction, and the
green arrow points out the load to failure at bone site.
NEDE ¼ samples from the nerve-intact side; NEIN ¼
samples from the nerve-injured side.



Figure 3. Biomechanical results. (A) Maximum load to failure. (B) Maximum stress. (C) Stiffness. (D) Elastic: Young's modulus. * ¼ significant difference. NEDE ¼
samples from the nerve-intact side; NEIN ¼ samples from the nerve-injured side.

Table 1
Failure site of the biomechanical test.

Time Group Failure site (n)

Bone Bone––tendon junction

3 weeks NEDE 0 6
NEIN 0 6

6 weeks NEDE 0 6
NEIN 3 3

9 weeks NEDE 1 5
NEIN 4 2

NEDE ¼ samples from the nerve-injured side; NEIN¼ samples from the nerve-
intact side.

Table 2
Quantitative analysis of size of the muscle fibre stained with H&E.

Time point
(weeks)

Nerve-injured side (μm2) Nerve-intact side (μm2) P1

3 43.8 � 7.8 72.8 � 6.3 <0.001
6 37.4 � 2 78.9 � 3.9 <0.001
9 30.9 � 4.3 84 � 3.9 <0.001
P2 <0.001 0.008

H&E ¼ haematoxylin and eosin.
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Neuropeptide Y
There is no significant difference between the two groups in terms of

NPY secretion, as per NPY staining, 3 weeks after surgery. However,
significant NPY staining was found from 6 to 9 weeks in the nerve-intact
side compared with the nerve-injured side (Fig. 8).

Discussion

The present study using a rodent model demonstrated that rotator
cuff tear repair has some healing capacity, even after SSN injury. How-
ever, this healing was inferior to repair without SSN injury. Biome-
chanically, significantly inferior maximum load and stress were found at
all time points on the nerve-injured side. Moreover, significantly inferior
stiffness and Young's modulus were identified at 9 weeks on the nerve-
injured side. Histologically, significantly smaller fibrocartilage layers and
muscle fibres were observed at all time points on the nerve-injured side.
In addition, inferior cell maturity, cell alignment, collagen orientation,
and occurrence of tidemark and Sharpey's fibres in the bone–tendon
junction were observed on the nerve-injured side. Corresponding to the
previous histological and histological findings, NPY staining also showed
inferior results at 6–9 weeks in the nerve-injured side. Thus, these find-
ings indicate that the SSN plays an important role in rotator cuff healing
and can be regarded as an independent prognostic factor affecting cuff
healing.



Figure 4. Representative haematoxylin and eosin staining of the muscle at each time point on both sides. Representative muscle haematoxylin and eosin
staining images of samples from the nerve-intact side at 3(A), 6(B), and 9(C) weeks. Representative muscle haematoxylin and eosin staining images of Samples from
the nerve-injured side at 3(D), 6(E), and 9(F) weeks. The arrow indicates the presence fibrosis, whereas the triangle indicates the fat infiltration in the muscle.

Figure 5. Representative haematoxylin and eosin staining of the tendon–bone interface formation of the two groups. Tendon-to-bone interface formation at
3(A), 6(B), and 9(C) weeks in the nerve-intact side. Tendon-to-bone interface preservation at 3(D), 6(E), and 9(F) weeks in the nerve-injured side. Magnification, 100
�. Arrows indicate Sharpey's fibrefibers; FC ¼ fibrocartilage; mFC ¼ mineralized fibrocartilage; TM ¼ tidemark.

Table 3
Histomorphology for fibrocartilage area of bone––tendon junction formation.

Time Group Cellularity Cell maturity Cell alignment Collagen orientation Tidemark Sharpey's fibre

3 weeks NEDE þþþþ þ þ þ — —

NEIN þþþþ þ þþ þþ — þþ
6 weeks NEDE þþþ þþ þ þþ þ —

NEIN þþ þþþ þþþ þþþ þþ þþ
9 weeks NEDE þþ þþþ þþ þþþ þ þ

NEIN þ þþþþ þþþþ þþþþ þþ þþ

NEDE¼ samples from the nerve-intact side; NEIN ¼ samples from the nerve-injured side.
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Currently, the retear rate after rotator cuff repair remains high in
clinical practice, especially in large and massive rotator cuff tears, and
poses a serious challenge to orthopaedic surgeons [6,30,31]. Several
clinical studies have attempted to identify the prognostic factors affecting
rotator cuff healing through review of cases of retear after rotator cuff
repair [4,32–35]. The severity of muscle atrophy and fat infiltration is
widely recognized as an independent risk factor predicting retears after
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rotator cuff repair, even in small- to medium-sized tears [34]. However,
thus far, there is no consensus regarding the causes of muscle atrophy and
fat infiltration. It is believed that tear and retraction of the cuff leads to
disuse muscle atrophy and fat infiltration. However, SSN injury can also
result in similar muscle atrophy and fat infiltration after cuff tear. This
kind of superimposed effect may not be easily differentiated using the
currently available nerve examination methods [17,36,37]. Thus, it may



Table 4
Quantitative analysis of fibrocartilage area stained with safranin-O.

Time point
(weeks)

Nerve-injured side (μm2) Nerve-intact side (μm2) P2

3 67,691 � 6,577 275,792 � 28,636 <0.001
6 200,070 � 28,630 523,099 � 28,986 <0.001
9 454,992 � 30,785 790,057 � 36,318 <0.001
P1 <0.001 <0.001
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cause the low incidence of SSN injury diagnosis after rotator cuff tear. In
addition, basic science studies have shown that SSN injury causes muscle
changes when the cuff is torn by using an injury of the nerve to make a
massive rotator cuff tear animal model, mimicking the clinical massive
tear in humans [21,38,39]. By using a rabbit model, Rowshan et al. [16]
reported chronic cuff tears could induce a neurological injury. Thus, we
infer that many SSN injury cases with rotator cuff tear are easily covered
up by rotator cuff tear, which often goes unrecognized [17]. As we all
Figure 6. Representative Safranin O staining of bone-to-tendon healing on both
9(C) weeks on the nerve-intact side. A positive area becomes larger from 3 to 9 week
weeks on the nerve-injured side. The positive area becomes larger from 3 to 9 week

Figure 7. Representative Masson's trichrome staining of bone-to-tendon healin
on the nerve-intact side. Gradual bone-to-tendon healing at 3(D), 6(E), and 9(F) we
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know that the chronic model usually includes muscle atrophy and fatty
infiltration, in this study, loss of mechanical loading was caused by SSN
injury rather than the tear because an acute model was used. Futhermore,
from our study, we found the level of NPY, which is good for tissue
healing, decreased after SSN injury. Thus, SSN injury is the primary cause
explaining the inferior healing capacity.

Interestingly, rotator cuff tear is also a cause of SSN injury [17,40,41].
A cadaveric study conducted by Albritton et al. [19] showed that pro-
gressive medial retraction of the supraspinatus muscle increased tension
on the nerve and angle between the nerve and its motor branch at the
scapular notch. In another cadaveric study, Warner et al. [18] also re-
ported the risk of SSN injury caused by surgeons during repair of massive
rotator cuff tear through over-advancement on the cuff. In addition, a
double-blinded, randomised, controlled clinical trial suggested a positive
correlation between massive rotator cuff tears and suprascapular neu-
ropathy [42]. This evidence supports the present results, indicating that
the SSN plays an important role in rotator cuff healing by affecting the
sides. Metachromasia of tendon-to-bone interface formation at 3(A), 6(B), and
s. Metachromasia of tendon-to-bone interface formation at 3(D), 6(E), and 9(F)
s. Magnification, 100�. FC ¼ fibrocartilage.

g on both sides. Gradual bone-to-tendon healing at 3(A), 6(B), and 9(C) weeks
eks on the nerve-injured side. Magnification 100�. FC ¼ fibrocartilage.



Figure 8. Representative neuropeptide Y immunohistochemical staining of bone-to-tendon healing on both sides. Immunohistochemical staining of neuro-
peptide Y at 3(A), 6(B), and 9(C) weeks on the nerve-intact side. Immunohistochemical staining of neuropeptide Y at 3(D), 6(E), and 9(F) weeks on the nerve-injured
side. Magnification 200�.
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function of the muscle. Once the surgeons are suspicious of rotator cuff
tear combined with SSN injury in a patient, SSN release is recommended.

The aforementioned methods affect rotator cuff healing in an indirect
way (muscle atrophy and fatty infiltration), whereas neuroregulation
affects cuff healing in a direct manner. Neurotrophins, especially the
nerve growth factor, exert effects on the healing process of repaired tissue
by acting on tropomyosin receptor kinase A (trkA)- and p75-specific
nerve growth factor (NGF) receptors [43,44]. Such an effect, which
may shorten the recovery process, has been demonstrated in corneal
ulcers, pressure ulcers, postviral infections, and chemical burns [43].
Ackermann et al. [45] found that although very rare nerve endings can be
identified in the tendon proper, the nerve system around the tendon can
extensively grow into the tendon proper when the tendon is injured, and
this will retract the sprouting nerve fibres after healing. In the present
study, immunohistochemical (IHC) NPY staining gave us a glimpse of
neuroregulation in rotator cuff healing. NPY was affected in the ner-
ve-injured side during the later healing phases, which may indicate
inferior rotator cuff healing. However, the role of neuroregulation in
bone–tendon junction healing remains unclear in detail. We believe that
neuroregulation plays an important role in rotator cuff healing. This
hypothesis will be tested in detail in future studies.

There seems an illogical finding regarding rotator cuff healing and
progressed muscle atrophy. The supraspinatus muscle on the nerve-
injured side showed obvious progression of muscle atrophy and extensive
fatty infiltration at 9 weeks. However, the progress in healing including
increase in biomechanical and histological property of the rotator cuff
still happened over time. A possible explanation may be that only a
certain degree of muscle atrophy and fat infiltration can terminate the
healing process. Clinical studies have suggested that grade 3 and 4
muscle atrophy and fat infiltration may be regarded as risk factors of cuff
retear, rather than those of grade 1 [17]. In our study, muscle dysfunction
may not be enough to terminate the healing process at 9 weeks after
surgery. Another possible explanation is that the healing ability of the
rotator cuff is diversified. Though muscle dysfunction bothers healing,
healing resources from bone or bursae can constantly provide healing
potential to compromise the negative effect from muscle dysfunction
[46].

A few limitations of the present study should be acknowledged. First,
Wistar rats have superior healing ability compared with that observed in
humans. This may decrease the effect of the SSN on rotator cuff healing.
Second, a 5-mm defect was made on the SSN and upper subscapular
nerve, considering the strong reinnervation effect in rats. Unlike the
present nerve injury model, in clinical practice, SSN lesions caused by
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muscular retracting are a common type of injury in the scenario of rotator
cuff tear. Third, neuroregulation examination was not included. Fourth,
an acute injury model was used in the study; however, in clinical prac-
tice, most cases are treated for chronic rotator cuff tear. Studies including
bigger animals with chronic rotator cuff tear and examinations in terms
of neuroregulation are warranted.

Conclusion

This study showed that healing of the bone–tendon junction on the
nerve-injured side was inferior to that observed on the nerve-intact side.
This finding indicates that the SSN plays an important role in healing of
the rotator cuff. It is recommended that surgeons pay more attention to
the SSN when treating patients with rotator cuff tear.
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