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Abstract

Background: There is a lack of reliable biomarkers for major depressive disorder (MDD) in clinical practice. However, several 
studies have shown an association between alterations in microRNA levels and MDD, albeit none of them has taken advantage 
of machine learning (ML).
Method: Supervised and unsupervised ML were applied to blood microRNA expression profiles from a MDD case-control 
dataset (n = 168) to distinguish between (1) case vs control status, (2) MDD severity levels defined based on the Montgomery-
Asberg Depression Rating Scale, and (3) antidepressant responders vs nonresponders.
Results: MDD cases were distinguishable from healthy controls with an area-under-the receiver-operating characteristic 
curve (AUC) of 0.97 on testing data. High- vs low-severity cases were distinguishable with an AUC of 0.63. Unsupervised 
clustering of patients, before supervised ML analysis of each cluster for MDD severity, improved the performance of the 
classifiers (AUC of 0.70 for cluster 1 and 0.76 for cluster 2). Antidepressant responders could not be successfully separated 
from nonresponders, even after patient stratification by unsupervised clustering. However, permutation testing of the top 
microRNA, identified by the ML model trained to distinguish responders vs nonresponders in each of the 2 clusters, showed an 
association with antidepressant response. Each of these microRNA markers was only significant when comparing responders 
vs nonresponders of the corresponding cluster, but not using the heterogeneous unclustered patient set.
Conclusions: Supervised and unsupervised ML analysis of microRNA may lead to robust biomarkers for monitoring clinical 
evolution and for more timely assessment of treatment in MDD patients.
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Introduction
In the United States, the lifetime prevalence for major depres-
sive disorder (MDD) is 20.6% among individuals aged 18 years 
or older. Almost one-half (49%) of the cases have severe and 
39.7% moderate depression (Hasin et  al., 2018). Without early 

treatment, there can be permanent consequences on the 
patient’s brain function that increase their risk of experiencing 
additional depressive episodes (Moylan et al., 2013). Overall, the 
economic burden of MDD is more than US$ 170 billion per year 
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and appears to be increasing over time (Greenberg et al. (2015). 
However, there is still a lack of reliable biomarkers that can guide 
patient monitoring and timely assessment of treatment efficacy.

Increasing evidence suggests that molecular signaling for 
depression is linked with microRNA expression and that the 
dysregulation of microRNA signaling can initiate or exacer-
bate depressive pathophysiology (Hansen and Obrietan, 2013). 
MicroRNAs are small noncoding RNA molecules that play a role 
in the regulation of gene expression and neuronal physiology. 
Smalheiser et  al. (2012) found that the expression of several 
microRNAs was significantly downregulated in the prefrontal 
cortex of depressed suicide individuals compared with matched 
psychiatric control participants. Bocchio-Chiavetto et al. (2013) 
measured the expression of microRNA in 10 depressed individ-
uals before and after treatment with antidepressants. After the 
treatment with antidepressants, 2 microRNAs were significantly 
downregulated and 28 were upregulated. In a recent randomized 
placebo-controlled trial, we identified several microRNA markers 
of duloxetine treatment response that were replicated in 2 inde-
pendent clinical trials, an animal model, and postmortem brain 
samples (Lopez et al., 2017). The findings suggest that there is 
a strong possibility that microRNAs are involved in the patho-
physiology of depression and affect the mechanism of action of 
antidepressants.

Machine learning (ML) algorithms have been created for 
analyzing complex multivariate data with a focus on empirical 
predictive power and generalizability. ML has demonstrated suc-
cess in clinical psychiatry in terms of diagnosis, prognosis, treat-
ment decisions, and biomarker detection (Dwyer et  al., 2018). 
A review of the literature on ML and MDD shows a shortage of 
studies that apply ML methods to analyze microRNA data (Gao 
et al., 2018). However, a recent paper has demonstrated the ef-
fective use of ML in identifying a serum microRNA signature for 
Alzheimer’s disease that could predict disease status with 85.7% 
accuracy (Zhao et al., 2019).

Given the important role of microRNAs in MDD and the ef-
fectiveness of ML in taking advantage of complex data, we aimed 
to explore whether ML analysis of blood microRNA profiles can 
serve as a new approach for biomarker discovery in MDD.

METHODS

Participant Recruitment

The study protocol was approved by the Research Ethics Board 
of the Douglas Mental Health University Institute. Informed 
written consent was obtained from all participants. All partici-
pants were recruited from an outpatient clinic at the Douglas 
Mental Health University Institute in Montréal, Canada, and 
assessed by an experienced psychiatrist using the SCID-I (First 
et al., 2012) following DSM-IV criteria. Patients were all suffering 
from a current major depressive episode (MDE) as part of an MDD. 
Exclusion criteria included comorbidity with other major psy-
chiatric disorders, bipolar disorder, alcohol or substance abuse 
over the last 6 months, or a severe medical condition. None of 
the participants were medicated at baseline. None had received 

fluoxetine or lithium over the last month or any psychotropic 
medication over the last week. Depression severity was deter-
mined using the Montgomery-Asberg Depression Rating Scale 
(MADRS). MADRS measures are based on 10 different symptoms, 
including (1) apparent sadness, (2) reported sadness, (3) inner 
tension, (4) reduced sleep, (5) reduced appetite, (6) concentra-
tion difficulties, (7) lassitude, (8) inability to feel, (9) pessimistic 
thoughts, and (10) suicidal thoughts. The MADRS scores were 
collected at baseline and again after 8 weeks of antidepressant 
treatment.

Sample Processing

Peripheral blood samples were collected at baseline and 
after 8 weeks, and tubes were frozen using a sequen-
tial freezing process. Whole blood for RNA was collected in 
ethylenediaminetetraacetic acid tubes and filtered using 
LeukoLOCK filters (Life Technologies). Total RNA was extracted 
using a modified version of the LeuEkoLOCK Total RNA Isolation 
System protocol and included DNase treatment to remove gen-
omic DNA. The RNA quality was assessed using the Agilent 2200 
Tapestation, and only samples with an RNA integrity number 
≥6.0 were used.

Small RNA-seq

All libraries were prepared using the Illumina TruSeq small RNA 
Library preparation protocol following the manufacturer’s in-
structions. Samples were sequenced at the McGill University 
and Genome Quebec Innovation Centre (Montreal, Canada) 
using the Illumina HiSeq2000 with 50-nucleotide (nt) single-end 
reads. All sequencing data were processed using CASAVA 1.8+ 
(Illumina) and extracted from FASTQ files. The Fastx_toolkit was 
used to trim the Illumina adapter sequences. Additional filtering 
based on defined cutoffs was applied, including (1) Phred quality 
(Q) mean scores higher than 30, (2) reads between 15 and 40 nt in 
length, (3) adapter detection based on perfect-10 nt match, and 
(4) removal of reads without a detected adapter. Additionally, 
we used Bowtie (Song et al., 2014) to align reads to the human 
genome (GRCh37) and ncPRO-seq (Chen et al., 2012) in combin-
ation with miRBase (V20) (Kozomara and Griffiths-Jones, 2013) 
to match them to known microRNA sequences. Furthermore, 
all sequencing data were normalized with the Bioconductor-
DESeq2 package (Love et al., 2014), using a detection threshold 
of 10 counts per miRNA.

The number of microRNA samples included for subsequent 
analyses includes the baseline (T0) and week 8 (T8) of 140 MDD 
cases and 28 healthy controls. The total number of microRNA 
features is 285.

ML Analysis

Many powerful ML algorithms render themselves uninterpret-
able, making it difficult to understand their decision-making 
process. For our ML analysis of the data, we decided to use a 
state-of-the-art yet interpretable regularized gradient boosted 
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The identification of biomarkers for complex disorders such as major depression is an important challenge to overcome to en-
able precision medicine. In this study, we demonstrate how machine learning could be an effective approach to address this 
challenge, in terms of diagnosis, disease severity or response to medication.
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machines approach (XGBoost implementation, Chen and 
Guestrin, 2016), which we also demonstrated as an effective al-
gorithm in our previous study of schizophrenia (Trakadis et al., 
2019).

Datasets are split into 70% and 30% for training and testing. 
A  model selection procedure based on 5-fold cross-validation 
with 2500 iterations of parameter search was used to obtain 
the best training parameters using only the training dataset 
(n = 122). After obtaining the best training parameters, we re-
trained the model without 5-fold cross-validation (i.e., using 
at once the entire training set) and evaluated the model on the 
testing set. The model performance metric we used is the area 
under the receiver-operating characteristics curve (AUC).

Classification Analyses

With regards to discriminating cases from healthy controls, we 
trained the ML model using only the T0 microRNA data to en-
sure that the medication effect would not act as a confounder 
in the analysis.

For the severity class classification, we used the MADRS 
cutoff scores suggested by Snaith et  al. (1986). Individuals’ 
MADRS scores were classified as “normal-mild” (MADRS scores 
from 0 to 19) or “moderate-severe” (MADRS scores 20 and above). 
Using the class-labeled dataset, we identified the best classifi-
cation model for classifying samples into these 2 MDD grades. 
However, for this analysis, we used the T8 microRNA data and 
MADRS scores, because at T0 all but 2 cases had MADRS scores 
ranging from 0 to 19 (thus, using T0, almost all samples would be 
labeled as “moderate-severe”).

We then repeated severity classification after unsupervised 
clustering of the T8 microRNA data, which was done to factor in 
the heterogeneity of MDD. More specifically, 500 iterations of a 
consensus k-means clustering method (Monti et al., 2003) were 
applied to the entire case-control dataset (n = 174). The model 
selection and evaluation procedure were then performed sep-
arately for each cluster under the assumption that the patients 
in each cluster are less heterogeneous at the pathophysiology 
and microRNA levels. If our assumption is correct, training the 
ML algorithm to identify signatures specific for the “normal-
mild” vs “moderate-severe” class would be more efficient after 
unsupervised clustering, and thus the classification based on 
supervised ML analysis of the microRNA data would improve 
with this approach.

Lastly, we explored the relationship between microRNA and 
antidepressant response among MDD patients using the differ-
ence between the T8 and T0 microRNA values (n = 138, because 
2 MDD cases were missing MADRS scores at T0). With regards 
to severity levels, the scores used were based on previous def-
initions: “normal” (0–6), “mild” (7–19), “moderate” (20–34), and 
“severe” (>34) (Snaith et  al., 1986). Antidepressant response in 
our study was defined as a decrease of 2 severity levels when 
comparing the patient’s T8 and T0 MADRS scores. For example, 
a patient with a change from “severe” to “mild” or a change from 
“moderate” to “normal” would be labeled as a responder. We 
obtained a split of 46 RES and 92 nonresponders. We then re-
peated the same ML procedure described above to obtain a clas-
sifier for responders vs nonresponders.

Since each patient was taking a mixture of multiple anti-
depressants, to address this heterogeneity and improve the 
performance of the classifier we performed unsupervised clus-
tering on the “T8-T0” dataset using the consensus k-means 
algorithm described above in the MDD severity classification 
section. Samples were split into 2 clusters. We then performed 

ML classification analysis for antidepressant response separ-
ately in each individual cluster. To explore if the top microRNA 
for each cluster (i.e., the microRNA with the maximum im-
portance in the ML classification model) was associated with 
antidepressant response, a permutation test was performed. 
Specifically, 500 000 iterations were performed to derive the 
empirical P value of a difference in mean between responders 
and nonresponders. The significance threshold was set at .05. 
In the case of multiple top microRNAs (multiple top microRNAs 
having equal maximum importance), the P values were ad-
justed using the Bonferroni correction method. To explore if 
the top microRNA(s) identified in each cluster were specific to 
that cluster, we performed permutation testing for microRNAs 
extracted from the first cluster using samples from the second 
cluster, and vice versa. We also performed permutation tests for 
the top microRNAs identified from the clusters using all MDD 
samples (unclustered). Finally, we extracted the top microRNA 
from the antidepressant classification model trained on all 
samples and performed permutation testing to explore if ML 
analysis of the data before stratification was helpful in the iden-
tification of a marker for treatment response.

Clinical History Analysis

To explore how clinical history factors into antidepressant re-
sponse, we examined whether patients with a prior history of 
treatment with antidepressants responded differently com-
pared with antidepressant-naïve patients. We also examined 
whether patients who present with their first MDEs (i.e., no 
prior episodes besides the current one) responded differently 
compared with patients with recurring MDEs (collected from 
SCID-IA [DSM-IV], question A29). Antidepressant response here 
is defined as a ratio of the T8 to T0 MADRS score (T8/T0) in order 
to capture more precise differences in antidepressant response 
between groups using the permutation tests. Permutation tests 
were performed for 500 000 iterations to derive the P value for 
a significant difference in antidepressant response between 
the groups compared. Multiple testing was adjusted using the 
Bonferroni correction method.

Bioinformatic Analysis

We extracted the microRNA features used by the best case-
control classification model and performed pathway analysis 
using the DIANA-miRPath v3.0 pathway analysis webserver 
(Vlachos et al., 2015) to obtain KEGG pathway terms significantly 
related to the set of microRNA features. Pathways with a false-
discovery rate (FDR) < 0.05 were selected.

Software

The ML model was implemented using the Python (v.3.7.1) 
programming language (https://www.python.org/) with the 
“xgboost” (v.0.81) library (https://xgboost.readthedocs.io/). The 
consensus clustering procedure was implemented using the 
“scikit-learn” (v.0.21.2) (https://scikit-learn.org/) and “scipy” 
(v.1.3.0) (https://www.scipy.org/) Python libraries.

RESULTS

The demographics of patients and controls are summarized 
in supplemental Table 1. A total 65% of MDD cases and 46% of 
controls were female. Moreover, 80% of MDD cases and 82% of 

https://www.python.org/
https://xgboost.readthedocs.io/
https://scikit-learn.org/
https://www.scipy.org/
http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyaa029#supplementary-data
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controls were Caucasians. The mean MADRS score at T0 was 
33 (SD = 6.2) for cases and 0.6 (SD = 1.1) for controls. The mean 
MADRS score at T8 was 17.4 (SD = 10.9) for cases and 1.1 (SD = 1.7) 
for controls. A total 56% (n = 79) of patients reported presenting 
with their first MDE, and 14% (n = 19) of MDD patients were anti-
depressant naïve prior to current treatment.

As summarized in Table  1, for classification of cases and 
controls, the best trained model achieved an average cross-
validation AUC of 0.93 (SD 0.06) and testing set AUC of 0.97. 
The best trained model trained to distinguish cases from con-
trols utilized 33 out of 285 total microRNAs measured (Table 2). 
Pathway analysis for the 33 microRNAs found the following 
significantly enriched pathways with FDR < 0.05: (1) prion dis-
eases, (2) transforming growth factor beta (TGF-beta) signaling 
pathway, (3) morphine addiction, (4) signaling pathways regu-
lating pluripotency of stem cells, (5) mucin type O-glycan bio-
synthesis, and (6) proteoglycans in cancer.

Classification of individuals as normal-mild vs moderate-
severe MADRS grades using their microRNA data based on 
best trained model showed an average cross-validation AUC 
of 0.76 (SD = 0.11). After retraining the best model on the full 
dataset and evaluating on the testing set, we obtained an AUC 
of 0.63.

For the clustering approach, we obtained 2 clusters (cluster 
1: 89 participants; cluster 2: 79 participants) of similar sample 
size, which did not show differences in terms of MDD severity. 
The best model for cluster 1 samples achieved an average cross-
validation AUC of 0.75 (SD  =  0.18), while the best model for 
cluster 2 samples achieved an average cross-validation AUC of 
0.72 (SD = 0.15). When evaluated on the testing sets, the cluster 
1 model achieved an AUC of 0.76, while the cluster 2 model 
achieved an AUC of 0.70. Table 1 summarizes the results for each 
of the analyses.

For antidepressant response classification, we obtained an 
average cross-validation AUC of 0.62 (SD = 0.13) and an AUC of 
0.57 on the testing set. After clustering, we again obtained 2 
balanced clusters (cluster 1: 69 participants; cluster 2: 69 par-
ticipants). We did not notice a separation of responders from 
nonresponders based on clustering. The best model for cluster 
1 samples achieved an average cross-validation AUC of 0.65 
(SD = 0.085), while for cluster 2 the average cross-validation AUC 
was 0.67 (SD = 0.16). On testing set evaluation, the cluster 1 model 
achieved an AUC of 0.54, while the cluster 2 model achieved an 
AUC of 0.49. For cluster 1, after supervised ML for classification 
of treatment response, the top and only microRNA utilized by 
the ML model was hsa-miR-5701. Following permutation testing, 
this microRNA was found to be significantly different between 
responders and nonresponders in cluster 1 (P  =  .021), but not 

in cluster 2 or the original (unclustered) dataset. For cluster 2, 
there were 4 microRNAs, all with equal importance, including 
hsa-let-7b-3p, hsa-let-7g-5p, hsa-miR-130b-3p, and hsa-miR-30d-3p. 
Following permutation testing, the only nominally significant 
microRNAs were hsa-let-7b-3p (P = .021) and hsa-miR-130b-3p 
(P = .045), albeit neither was significant after Bonferroni correc-
tion (P = .082 and P = .18, respectively). None of these 4 markers 
significantly differed between responders and nonresponders 
in cluster 1 or the original (unclustered) dataset. Finally, when 
extracting the top microRNA from the antidepressant classifi-
cation model trained on all samples, the top microRNA was not 
found to be associated with treatment response following per-
mutation testing (P = .12).

Of note, we observed that antidepressant-naïve patients 
responded significantly better than those who had taken anti-
depressants in the past (P = .00058, with Bonferroni correction) 
but did not observe a significant difference in response be-
tween patients who presented with their first vs recurring MDEs 
(P = .59, with Bonferroni correction).

Discussion

In this paper, we demonstrate how ML analysis of blood 
microRNA data could lead to biomarkers with potential clinical 
utility. Our assumption was that if this is true, ML analysis of 
microRNA data should not only lead to the successful classifica-
tion of cases from controls but also to the efficient separation of 
individuals with mild vs severe depression.

First, we showed that microRNA data could be used to dis-
criminate baseline medication-free MDD cases from controls 
(AUC = 0.97 using the test dataset). Of note, this result is not ex-
pected to be confounded by medication effects since we used 
only the T0 pretreatment trial microRNA data. To show that the 
microRNA signals are relevant to MDD, we conducted a pathway 
analysis using the microRNAs identified by the ML model 
(FDR < 0.05). We identified 6 pathways and highlighted the evi-
dence in the literature for a link with MDD.

For example, there is evidence that endogenous prion protein 
(PrP(C)) is associated with MDD. PrP(C) was reduced in the white 
matter (Weis et al., 2008) and Brodmann’s areas 6 and 10 (Dean 
et al., 2019) in patients with MDD. PrP(C) has also been shown to 
modulate depressive-like behavior in mice (Gadotti et al., 2012).

The TGF-beta family of cytokines may also play a role in 
MDD. TGF-beta has been observed to be significantly elevated 
in the peripheral blood of MDD patients (Davami et  al., 2016). 
Furthermore, a study found a significant decrease in TGF-beta1 
in MDD patients after 6 weeks of treatment with an antidepres-
sant (Kim et al., 2007).

Table 1. Model Cross-Validation and Testing Set AUC Scoresa

Analysis
Mean AUC (SD) of trained  
model from cross-validation

Testing set AUC for  
final retrained model

Classification of cases and controls 0.93 (0.06) 0.97
Classification of MDD severity grades 0.76 (0.11) 0.63
Classification of MDD severity grades: cluster 1 0.75 (0.18) 0.76
Classification of MDD severity grades: cluster 2 0.72 (0.15) 0.70
Classification of antidepressant response 0.622 (0.13) 0.57
Classification of antidepressant response: cluster 1 0.652 (0.085) 0.54
Classification of antidepressant response: cluster 2 0.670 (0.16) 0.49

Abbreviations: AUC, area under the receiver-operating characteristics curve; MDD, major depressive disorder.
aModel selection and evaluation were performed for each of the analyses listed in the table. The mean AUC across 5-folds of cross-validation during model training 

for the best model is presented, as well as the AUC from the evaluation on the testing set for the final retrained model.
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The dopamine and reward systems are major parts of the 
morphine addiction pathway (Kim et  al., 2016), and there is a 
link between dopamine neurons and depression (Knowland 
and Lim, 2018). There is also evidence linking stem cell and cell 
renewal capacity to MDD. In mice with interferon-α–induced 
depression, neural stem cell proliferation was found to be sup-
pressed (Zheng et  al., 2014). Furthermore, shorter telomere 
length (Verhoeven et al., 2014) is also associated with a higher 
severity of depression.

Although no direct link exists between mucin type O-glycans 
and MDD, a study showed that the p75 neurotrophin receptor, a 
heavily glycosylated protein, had a polymorphism, Ser205Leu, 
for a predicted O-glycosylation site, which had a protective ef-
fect for MDD (Fujii et al., 2011).

Next, we showed that microRNAs could be leveraged to distin-
guish participants with normal-mild from moderate-severe MDD 
(AUC = 0.63). We also demonstrated that the use of unsupervised 
clustering, aimed at reducing MDD heterogeneity, can improve 
model performance in our MDD grade classification task (AUC of 
0.76 for cluster 2 and 0.70 for cluster 1). This supported our as-
sumption that the individuals in each cluster were less heteroge-
neous after unsupervised clustering. This lead to a more efficient 
training of the ML algorithm to identify signatures specific for 
the “normal-mild” vs “moderate-severe” class. The sample size of 
our dataset was relatively small. However, given our results, we 
expect that performance estimates would improve and become 
more precise with ML models trained on larger samples.

We found that the differences between the T8 and T0 
microRNAs were not strongly predictive of response status 
(AUC = 0.57 on the testing set). This came as no surprise given 
that the patients were undergoing treatment with different anti-
depressants, thus leading to heterogeneity negatively impacting 
the performance of the ML model. Patient stratification par-
tially addressed this, as we saw a slight boost to the 5-fold 
cross-validation performance for each cluster compared with 
the unclustered analysis. However, we did not see any improve-
ment in classifying response status on the testing set. We be-
lieve that the poor performance of the ML models on the testing 
set is likely due to the small sample size of each cluster but that 
there may still be intelligence derived from the approach. This 
is supported by the significant association of the top microRNA 
within each cluster with antidepressant response, which was 
specific (i.e., was not observed when analyzing the data of the 
other cluster or the unclustered data). Furthermore, no marker 
was found for antidepressant response when extracting the top 
microRNA from the antidepressant classification model trained 
on all samples (i.e., unclustered dataset). Putting everything 
together, we take this as evidence that a clustering approach, 
combined with supervised ML, could be useful to identify bio-
markers in subgroups of patients that would otherwise be 
missed when analyzing heterogeneous populations.

Of note, our approach, using regularized ML with empirical 
cross-validation and testing as a method to prioritize features 

rather than multiple univariate testing, facilitates finding rele-
vant biomarkers with minor effects or complex interactions 
that would otherwise be filtered out by multiple testing correc-
tion. This is very important given the complex relationships of 
different factors contributing to MDD such as duration of the 
depressive episode, duration of illness, and recurrence. For ex-
ample, we found that patients who have no history of taking 
antidepressants responded significantly more to treatment 
compared with those with past history. At first sight, this should 
come as no surprise, since the usage of more antidepressant in 
the past indicates that the patient did not respond to the pre-
vious antidepressants and thus that they are harder to treat. 
However, we did not observe a difference between patients 
experiencing their first MDE vs patients with recurring MDEs, 
which contradicts this line of thinking and underlines the com-
plexity of the different factors and their interaction in MDD.

Changes at the microRNA level are downstream to the dif-
ferent contributing clinical factors, thus explaining why we were 
able to distinguish cases from controls (AUC = 0.97) successfully. 
However, to better understand the contribution of each factor 
in MDD, further studies with larger sample size and more op-
timal patient stratification, with the inclusion of genetic, func-
tional genetic, and detailed clinical data, would be recommended. 
Moreover, future studies should not be focused on examining 
changes between binary time points for antidepressant treat-
ment but rather serial (i.e., at multiple time points) MADRS evalu-
ation and collection of microRNA data. With this design, we could 
explore if early changes at the microRNA level after treatment 
initiation could predict treatment response at a later point, which 
would have major clinical implications in treatment optimization.

CONCLUSION

Our manuscript provides preliminary evidence that ML analysis 
of blood microRNA profiles may constitute a reliable approach 
for biomarker discovery for MDD (affected vs unaffected) clin-
ical status, but also for clinical evolution (severity and treatment 
response), thus facilitating a more personalized approach in 
treating patients with MDD.

Supplementary Materials

Supplementary data are available at International Journal of 
Neuropsychopharmacology (IJNPPY) online.
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