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ABSTRACT
Short-chain fatty acids (SCFAs) are produced by microbial fermentation of dietary fiber in the gut. 
Butyrate is a particularly important SCFA with anti-inflammatory properties and is generally present 
at lower levels in inflammatory diseases associated with gut microbiota dysbiosis in mammals. We 
aimed to determine if SCFAs are produced by the zebrafish microbiome and if SCFAs exert 
conserved effects on zebrafish immunity as an example of the non-mammalian vertebrate immune 
system. We demonstrate that bacterial communities from adult zebrafish intestines synthesize all 
three main SCFA in vitro, although SCFA were below our detectable limits in zebrafish intestines 
in vivo. Immersion in butyrate, but not acetate or propionate, reduced the recruitment of neutro-
phils and M1-type pro-inflammatory macrophages to wounds. We found conservation of butyrate 
sensing by neutrophils via orthologs of the hydroxycarboxylic acid receptor 1 (hcar1) gene. 
Neutrophils from Hcar1-depleted embryos were no longer responsive to the anti-inflammatory 
effects of butyrate, while macrophage sensitivity to butyrate was independent of Hcar1. Our data 
demonstrate conservation of anti-inflammatory butyrate effects and identify the presence of 
a conserved molecular receptor in fish.
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Introduction

Short-chain fatty acids (SCFAs) are microbial meta-
bolites produced in the gut by the anaerobic fermen-
tation of dietary fiber and protein in the large 
intestine.1 The most abundant SCFAs are acetate, 
butyrate, and propionate. In addition to providing 
the host with an energy source, microbially derived 
SCFAs exert anti-inflammatory effects through inhi-
bition of histone deacetylates (HDAC) and activa-
tion of G-protein-coupled receptors (GPCRs).2 Most 
research on SCFAs has reported their anti- 
inflammatory properties in mammals.3–5 However, 
the anti-inflammatory mechanism responsible for 
the anti-inflammatory effects of SCFA administra-
tion has not been reported in fish species to date.

Zebrafish are an important model of vertebrate 
gut physiology with key experimental advantages 

including high fecundity, transparency, and well- 
developed gut digestive function by 6 d post fertiliza-
tion (dpf).6 There is a high degree of intestinal 
immune conservation across vertebrates, including 
the sensitivity of zebrafish intestinal epithelial cell 
progenitors to butyrate.7–9 However, SCFA produc-
tion has not been previously observed in the intes-
tines of zebrafish, and it is unclear if the intestinal 
lumen of the zebrafish intestine provides a suitable 
niche for SCFA production.9 Previous genomic 
investigation has identified the presence of butyrate 
metabolic genes in the zebrafish gut metagenome; 
however, the key bacterial enzyme for butyrate 
synthesis butyryl coenzyme A (CoA):acetate-CoA 
transferase has not been specifically detected.9,10 

Acetate, butyrate, and propionate have been mea-
sured in several species of teleosts.11–15
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We have used conservation between mammalian 
intestinal function and immunity to create zebrafish 
models of human intestinal inflammation.16,17 Key 
pattern recognition molecule families, such as the 
Toll-like receptors and Nod-like receptors, are evo-
lutionarily ancient, and have conserved roles in zeb-
rafish intestinal immunity.7,8,18,19 However, 
conservation of host molecules responsible for sen-
sing SCFAs has not been explored in teleosts. 
Mammals utilize a wide range of molecules to sense 
SCFAs including G protein-coupled receptors 
(GPRs) GPR81 (also known as HCAR1) which is 
primarily present on immune cells and GPR109A 
which is expressed on intestinal epithelial cells. 
Microbially derived SCFAs also exert direct effects 
on host physiology through histone deacetylase 
(HDAC) inhibition.20–22

In this study, we investigated whether SCFAs are 
produced in the zebrafish intestine, and if the anti- 
inflammatory effects and sensing of SCFAs are con-
served in zebrafish. We find that the pattern of SCFA 
production by the zebrafish intestinal microbiota is 
different from that seen in mammals, but that the 
anti-inflammatory effects mechanisms of butyrate 
are conserved across vertebrate species and develop-
ment regardless of the ability of their endogenous 
microbiota to produce measurable butyrate.

Methods

Zebrafish handling

Adult zebrafish were housed at the Centenary 
Institute (Sydney Local Health District AEC 
Approval 17–036) and Duke University School of 
Medicine (Duke Institutional Animal Care and Use 
Committee Protocol Approval A115-16-05). Adult 
zebrafish experimentation was approved by the 
Institutional Animal Care and Use Committees of 
Duke University approval A115-16-05. Zebrafish 
adults were reared, housed, and fed as previously 
described.23 All zebrafish embryo research experi-
ments and procedures were completed in accor-
dance with Sydney Local Health District animal 
ethics guidelines under approval 17–036. Zebrafish 
embryos were obtained by natural spawning and 
embryos were maintained and raised in E3 media 
at 28ºC.

SCFA quantification from adult zebrafish

Adult zebrafish were euthanized with 
200–300 mg/L of ethyl 3-aminobenzoate metha-
nesulfonate (tricaine) (Sigma, E10521) prior to 
dissection. For each sample, intestines dissected 
from five adults (90+ dpf) EK WT zebrafish 
males (roughly 0.2 g total) were pooled and 
homogenized using a Precellys 24 High- 
Powered Bead Homogenizer at 5500 rpm for 3 
cycles at 20 seconds per cycle with a 10 second 
delay between cycles. Samples were then acidi-
fied with HCl to a pH below 3, pelleted by 
centrifugation, and the supernatant was har-
vested. Filtered supernatant was stored at −80° 
C until quantification.

SCFA quantification as carried out on an 
Agilent 7890B GC FID, with an HP-FFAP capil-
lary column (25 m length, ID 0.2 mm, film 
thickness 0.33 µm). Concentrations were deter-
mined using a linear model fit of a standard 
curve that encompasses the sample concentra-
tion range. Standardized concentrations used 
for each C2-C5 SCFA were as follows: 0.2, 0.5, 
1, 2, 4, and 8 mM.

In vitro synthesis of SCFA by zebrafish gut 
commensals

Freshly dissected intestines from four adults (6 
months old) EK WT zebrafish males and frozen 
mouse fecal pellets were homogenized under redu-
cing conditions to preserve the anaerobes. Samples 
were handled in a Coy anaerobic chamber and used 
to inoculate tubes containing brain-heart infusion 
(BHI) media (Thermo Scientific, OXOID) or Gifu 
anaerobic media (HIMEDIA), both supplemented 
with deoxygenated hemin and vitamin K to a final 
concentration of 12.5 mg/L of hemin and 2.5 mg/L 
of vitamin K.

Tubes were incubated in a sealed anaerobic jar 
with a Gas-Pak (Becton and Dickinson) to main-
tain anaerobic conditions at 28°C for 24 hours. 
Samples were then acidified to a pH below 3 with 
HCl, pelleted by centrifugation, and the superna-
tant was harvested. Filtered supernatant was stored 
at −80°C until quantification with methods identi-
cal to those listed above in Section 2.2.
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Drug treatments

Embryos were treated with 30 mM sodium acetate 
(Sigma; S2889), 30 mM sodium butyrate (Sigma; 
B5887), 30 mM sodium propionate (Sigma; P1880), 
50 µg/mL dexamethasone (Sigma; D4902), or 
100 mM 6-aminocaproic acid (Sigma; A2504). 
Drug stocks were dissolved in DMSO or PBS and 
added by pipetting directly into E3 media contain-
ing zebrafish embryos.

Tail wounding experiment

Caudal fin amputation was performed on 5 dpf 
embryos unless otherwise indicated. Zebrafish 
embryos were anesthetized with tricaine. Embryos 
were cut posterior to the notochord using a sterile 
scalpel. Wounded embryos were then recovered to 
fresh E3 and kept at 28ºC.

Imaging

Live zebrafish embryos were anesthetized using 
tricaine, mounted on 3% methylcellulose (Sigma, 
M0512), and imaged using a Leica M205FA. ImageJ 
software was used to quantify the fluorescent pixel 
count within 100 µm of the wound site.

Additional high resolution and time-lapse 
microscopy was carried out on anesthetized 
embryos embedded in 1% low melt agarose in a 96- 
well plate with a Leica SP8 confocal microscope or 
Deltavision Elite microscope.

Neutrophil tracking

Time-lapse images were processed and analyzed 
using ImageJ. Neutrophils were tracked using the 
Trackmate plugin in ImageJ software and further 
quantified using Chemokine and Migration tool 
software (Ibidi).

Germ-free derivation and microdissection of 
embryos

Germ-free zebrafish were created and maintained 
as previously described.24 The gut and body of 5 dpf 
embryos were separated using a 25-gauge needle 
and added to Trizol LS (Invitrogen; 10296010) for 
RNA extraction.

RNA extraction, cDNA synthesis and quantitative 
PCR (qPCR)

10–20 zebrafish embryos were pooled and lysed using 
a 25-gauge needle in Trizol LS for RNA extraction. 
cDNA was synthesized using a High-capacity reverse 
transcription kit (ThermoFisher Scientific, 4368814). 
qPCR was carried out using Power UP SYBR green 
master mix (ThermoFisher Scientific, 4385610) on 
a CFX96 Real-Time system (BioRad). Primer pairs 
(5`- 3`); 18s TCGCTAGTTGGCATCGTTTATG 
and CGGAGGTTCGAAGACGATCA; hcar1 CAT 
CGTCATCTACTGCTCCAC and GCTAACACAA 
ACCGCACA.

gRNA synthesis and CRISPR injections

gRNA templates for hcar1-2 (5`- 3`): Target 1 
TAATACGACTCACTATAGGTACCGGCGGCTC-
GATTGGGTTTTAGAGCTAGAAATAGC, Target 2 
TAATACGACTCACTATAGGAGCAACTCTCGC-
TTCACTGTTTTAGAGCTAGAAATAGC, Target 3 
TAATACGACTCACTATAGGGATTCGAGAGAT-
GTTACTGTTTTAGAGCTAGAAATAGC. gRNA 
was synthesized as previously described.25

A 1:1 solution of gRNA and 500 µg/mL of Cas9 
nuclease V3 (Integrated DNA Technology) was 
prepared with phenol red dye (Sigma, P0290). 
Freshly laid eggs were collected from breeding 
tanks and the solution was injected in the yolk sac 
of the egg before the emergence of the first cell with 
a FemtoJet 4i (Eppendorf).

Histone acetylation detection

Protein lysates were prepared from 6 dpf embryos as 
described previously.26 Protein lysates of equal con-
centration were separated on SDS-PAGE, transferred 
onto PVDF membrane and probed with anti-rabbit 
acetylated histone 3 at lysine 9 (H3K9; Cell Signaling), 
anti-rabbit acetylated histone 4 at lysine 5 (H4K5; 
Cell Signaling), and anti-mouse beta-actin (Sigma).

Statistics

All statistical analyses (t-tests and ANOVA where 
appropriate) were performed using GraphPad 
Prism8. Outliers were removed using ROUT, with 
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Q = 1%. All data are representative of at least two 
biological replicates.

Results

Zebrafish gut commensals are capable of producing 
SCFA ex vivo

We initially tried to detect SCFAs in whole intestines 
and their contents dissected from conventionally 
reared adult zebrafish using gas chromatography 
but levels of acetate, butyrate, or propionate were 
below our limit of detection of 0.00132 mmol SCFA 
per g of tissue.

We next sought to determine if the conven-
tional zebrafish gut microbiota had the capacity 
to produce SCFAs using ex vivo culture on two 
rich media, BHI and Gifu. We found that micro-
bial communities cultured from conventionally 
reared adult zebrafish intestines were able to 
synthesize acetate under both aerobic and 

anaerobic conditions (Figure 1). Butyrate and 
propionate were only detected under anaerobic 
conditions. The highest concentrations of SCFA 
were detected under anaerobic conditions in 
BHI where acetate, propionate, and butyrate 
were present in a roughly 90:5:5 ratio.

Butyrate reduces the recruitment of zebrafish 
neutrophils to a wound

We first observed the effect of SCFAs (acetate, 
butyrate, and propionate) on neutrophil migra-
tion following a tail wound injury using Tg(lyzC: 
DsRed)nz50 and Tg(lyzC:GFP)nz117 transgenic zeb-
rafish lines where neutrophils are fluorescently 
labeled (Figure 2a). We observed a significant 
reduction in the number of recruited neutrophils 
at 6 hours post wounding (hpw) in embryos 
exposed to butyrate by immersion (Figure 2b). 
There were no changes seen with acetate or 
propionate, but dexamethasone, a corticosteroid 

Figure 1. In vitro synthesis of SCFA by zebrafish gut microbiota. Concentrations of short-chain fatty acids (SCFA) synthesized by 
conventional microbiota harvested from adult zebrafish intestines. SCFA content of nutrient media used to culture microbes is 
provided under “Negative”. Asterisks indicate measurements within the range of standards. Error bars are shown as mean ± SE, n = 2. 
Bars without an asterisk indicate concentrations that were outside the standard range but were detectable.
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anti-inflammatory used as a positive control, 
reduced neutrophil recruitment as expected.

We next assessed the quality of neutrophil 
recruitment by intravital imaging. We observed 
reduced neutrophil velocity (Figure 2c) and 
increased meandering index (total distance tra-
veled/Euclidean distance) in butyrate-treated 
embryos (Figure 2d).

We next sought to determine if butyrate sensi-
tivity is dependent on intestinal maturity by repeat-
ing the tail wound experiment using 2 dpf embryos, 
a developmental stage prior to significant intestinal 
morphogenesis,27 and found neutrophil recruit-
ment was overall reduced compared to 5 dpf, but 
still further inhibited by butyrate immersion 
(Figure 2e).

Butyrate reduces the proportion of tnfa positive 
macrophages at the wound site

Next, we examined the effect of SCFAs on macro-
phage recruitment and polarization following 
wounding. Tg(mfap4:tdTomato)xt12 transgenic zeb-
rafish were used to visualize macrophage numbers.28 

Relative to control embryos, macrophage recruit-
ment was reduced by butyrate and increased by 
propionate treatment at 6 hpw (Figure 3a). 
Consistent with a lack of effect on neutrophil recruit-
ment, acetate treatment did not affect the number of 
recruited macrophages, and as the positive control, 
anti-inflammatory dexamethasone significantly 
reduced macrophage recruitment. These changes 
were maintained at 24 hpw when inflammation is 
in the resolution phase (Figure 3b).

Figure 2. Butyrate reduces the recruitment of zebrafish neutrophils to a wound. (a) Cartoon describing the standard cut site transecting 
the dorsal aorta and cardinal vein of a 5 dpf zebrafish embryo, and the fin cut site used for live imaging studies. (b) Neutrophil counts at 
6 hpw. Each dot represents a single embryo. Embryos were immersed in 30 mM SCFAs or 50 µg/mL dexamethasone. (c) Velocity of 
wound-recruited neutrophils calculated from live imaging studies. Each dot represents the average of 10 neutrophils from a single 
embryo. (C) Meandering index (Total distance/Euclidean distance) of wound-recruited neutrophils calculated from live imaging studies. 
Each dot represents the average of 10 neutrophils from a single embryo. (d) Neutrophil count at 6 hpw in 2 dpf zebrafish.
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We next used the TgBAC(tnfa:gfp)pd1026 line to 
monitor inflammatory gene expression.29 As 
expected, since macrophages are the primary produ-
cers of tnfa in zebrafish embryos, total tnfa promotor 
fluorescence area at 24 hpw reflected the trend of 
macrophages recruitment in each treatment condi-
tion with butyrate, but not acetate or propionate, 
reducing tnfa promoter expression (Figure 3c). We 
next crossed the TgBAC(tnfa:gfp)pd1026 and Tg 
(mfap4:tdTomato)xt12 lines to monitor macrophage 
inflammatory polarization as defined by inflamma-
tory tnfa promotor expression (Figure 3d).30 

Butyrate treatment reduced the percentage of 
TgBAC(tnfa:gfp)pd1026 positive macrophages 
(Figure 3e).

Butyrate does not have toxic effects as measured by 
hemostatic indices

Butyrate has been previously shown to reduce the 
proliferation of zebrafish intestinal epithelial cells.9 

This raises the possibility that inhibition of leukocyte 
recruitment by butyrate immersion was due to toxi-
city. Changes to zebrafish hemostasis have been 
observed in models of toxicity and 
inflammation.31,32

We used Tg(fabp10a:fgb-EGFP)mi4001, where 
fibrin clots are visualized by GFP deposition, and 
Tg(−6.0itga2b:eGFP)la2, where thrombocytes are 
GFP-labeled, transgenic zebrafish lines to monitor 

hemostasis following transection of the dorsal aorta 
and posterior cardinal vein.33,34 We stabilized clots 
with aminocaproic acid as a positive control.35 

Fibrinogen accumulation in Tg(fabp10a:fgb- 
EGFP)mi4001 embryos was unchanged at the wound 
site in response to butyrate treatment; however, we 
noted that propionate treatment caused increased 
fibrinogen accumulation (Supplementary Figure 
1A). No changes were observed in thrombocytes 
accumulation in the Tg(−6.0itga2b:eGFP)la2 line fol-
lowing any of the SCFA treatments (Supplementary 
Figure 1B).

Characterization of the zebrafish hydrocarboxylic 
acid receptor 1

Hydrocarboxylic acid receptor 1 (HCAR1) is an 
important receptor for butyrate in mammals.20 We 
identified a conserved region of zebrafish chromo-
some 10, human chromosome 12, and mouse chro-
mosome 5 containing density regulated re-initiation 
and release factor (denr), coiled-coil domain- 
containing 62 (ccdc62), huntingtin interacting protein 
1 related a (hip1ra) loci and the single exon hcar 
family (Figure 4a). Two copies of the putative zebra-
fish hcar1 (with 93% identity and lacking sufficient 
divergence to differentiate by PCR) were identified 
as annotated by the single-entry NM_001163295.1 
(Danio rerio hydroxycarboxylic acid receptor 1–2 
(hcar1-2), mRNA) suggesting the possibility of 

Figure 3. Butyrate reduces macrophage recruitment to the wound site and pro-inflammatory differentiation. (a) Macrophage 
fluorescent area at 6 hpw. (b) Macrophage fluorescent area at 24 hpw. (c) Total tnfa promotor fluorescent area at the wound site 
after 24 hpw. (d) Representative images of double transgenic red macrophage, green tnfa promoter activity embryos tail wounds at 24 
hpw. Scale bar represents 100 µm. (D) Quantification of wound site tnfa expressing macrophages at 24 hpw.
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a tandem duplication event (Supplementary File). 
Kuei et al. previously annotated what we refer as 
hcar1a as gpr81-2 and hcar1b as gpr81-1.36 The pre-
dicted 933/936 bp transcript of hcar1a/hcar1b is 
expected to give rise to a 310/311 amino acid protein 
with 89% amino acid identity. The Hcar1a/Hcar1b 
hypothetical proteins contain seven predicted trans-
membrane helix domains characteristic of a GPCR 
and an E-value of 7.05−157/3.21−166 for the HCAR 
subfamily.37 The predicted zebrafish proteins have 
approximately 43% identity to the human HCAR1, 
HCAR2, and HCAR3; and mouse HCAR1 and 
HCAR2 proteins.

Mammalian HCAR1 is expressed by and has 
anti-inflammatory signaling effects in intestinal 
epithelial cells and leukocytes.20,38 Compared to 
other immune cells, hcar1 expression is enriched 
in zebrafish neutrophils.39,40 We sought to 

characterize expression of hcar1 in the intestines 
of zebrafish embryos using microdissection of 5 dpf 
embryos. We found increased hcar1 expression in 
dissected guts compared to the rest of the embryo 
by RT-qPCR analysis (Figure 4b). Interestingly, 
there were no significant changes observed with 
the absence of microbial colonization in germ-free 
embryos (Supplementary Figure 2).

The anti-inflammatory effects of butyrate on 
neutrophils, but not macrophages, are dependent 
on Hcar1

To determine if butyrate acts through the Hcar1 
receptor, we next used CRISPR/Cas9 technology to 
knockdown hcar1 expression in zebrafish embryos. 
We utilized three target sites in hcar1a, two of 
which had strong homology to sequences in 

Figure 4. Characterization of zebrafish hydrocarboxylic acid receptor 1 and responsiveness to butyrate. (a) Synteny diagram illustrating 
HCAR1 in a conserved region of human chromosome 12, mouse chromosome 5, and zebrafish chromosome 10. (b) Quantification of 
hcar1 expression in dissected gut and body of zebrafish embryos. Each dot represents a biological replicate of at least 10 embryos. (c) 
Quantification of hcar1 expression in 5 dpf embryos injected with hcar1-targeting Crispr-Cas9 complexes. Each dot represents 
a biological replicate of at least 10 embryos. (d) Morphology of the control and crispant embryos. Scale bar represents 100 µm. (e) 
Quantification of neutrophil area at 6 hpw in control and crispant embryos exposed to butyrate by immersion. (E) Quantification of 
macrophage area at 6 hpw in control and crispant embryos exposed to butyrate at 6 hpw. (f) Total tnfa promotor-driven fluorescent 
area at the wound site at 24 hpw.
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hcar1b (Supplementary File). We confirmed ~50% 
transcript depletion by RT-qPCR for a shared 
hcar1a/hcar1b sequence (Figure 4c). Embryo devel-
opment was morphologically normal compared to 
embryos injected with control scrambled guide 
RNA-Cas9 complex (Figure 4d).

Knockdown of hcar1 abrogated the effect of 
butyrate treatment on neutrophil recruitment to 
tail wound injury (Figure 4e). As expected from 
the lack of expression on macrophages, hcar1 
knockdown did not affect the reduced macrophage 
recruitment (figure 4f) and tnfa promotor expres-
sion (Figure 4g) induced by butyrate immersion.

Zebrafish histone deacetylases are sensitive to 
exogenous butyrate.41 This inhibitory effect on his-
tone deacetylases is critical to the anti- 
inflammatory effects of butyrate on mammalian 
macrophages.42 We observed that the increased 
acetylation of H3K9 and H4K5 histones in buty-
rate-treated embryos was not sensitive to hcar1 
knockdown (Supplementary Figure 3).

Discussion

This study shows for the first time that commensal 
microbiota residing in the zebrafish intestine are 
capable of producing SCFAs. Experimentally, we 
demonstrate that the effects, and sensing, of buty-
rate are conserved between zebrafish and mam-
mals. Out of the three main SCFAs, only the anti- 
inflammatory effect of butyrate was found to be 
conserved in zebrafish embryos. We applied the 
commonly used tail wounding model to demon-
strate an anti-inflammatory effect of butyrate on 
zebrafish neutrophils and macrophages. Using 
Crispr-Cas9 targeted mutagenesis, we also identi-
fied conserved butyrate responsiveness of the zeb-
rafish Hcar1 receptor.

The anti-inflammatory effects of butyrate have 
been established in numerous in vivo and in vitro 
studies of mammalian hosts but not in fish.43 Our 
zebrafish tail wound model demonstrates conserva-
tion of this property in a bony fish. Bony fish diverge 
from mammals approximate 420 million years ago 
suggesting that the sensing of microbially derived 
SCFAs has been conserved from a common 
ancestor.

Our finding that immune cells are responsive to 
butyrate even before intestinal lumen formation in 

early embryonic development is surprising as 2 dpf 
embryos are usually contained within relatively 
impervious chorions that prevent microbial coloni-
zation of the embryo. This suggests that the ability to 
sense xenobiotic SCFAs is programmed alongside 
the ability to sense more traditional microbially asso-
ciated molecular patterns via pattern recognition 
molecules.

The HCAR1/GPR81 butyrate receptor is 
expressed by many mammalian innate immune 
cells.20,38 Expression in zebrafish is strongest in 
granulocytes.39,40 Our knockdown experiments 
further demonstrate Hcar1 is necessary for the buty-
rate sensitivity of neutrophils but not macrophages. 
Thus, the butyrate-Hcar1signaling axis that influ-
ences neutrophil behavior is evolutionarily ancient.

Human macrophages in the presence of butyrate 
have been shown to differentiate into an M2 pheno-
type which exhibits anti-microbial and tissue repara-
tive properties.44,45 These effects are independent of 
HCAR1 signal transduction and are believed to be an 
effect of butyrate acting as a histone deacetylase 
inhibitor.42,46 SCFAs can permeate cell membranes 
through passive diffusion or through specific trans-
porters such as the proton-coupled monocarboxy-
late-transporter 1 (MCT1) and sodium-coupled 
monocarboxylate-transporter 1 (SMCT1).47–50 

Consistent with this literature, we show butyrate 
reduces the expression of pro-inflammatory tnfa by 
zebrafish macrophages and increases histone acety-
lation independent of Hcar1 expression. Our data 
suggest the HCAR1-independent immunosuppres-
sive actions of butyrate may be conserved across 
vertebrate evolution.

Our data demonstrate that, under nutrient-rich 
in vitro conditions, gut commensal microbiota 
from adult zebrafish are capable of synthesizing 
the three most important SCFAs: acetate, propio-
nate, and butyrate. However, the ratio of acetate, 
propionate, and butyrate produced under anaero-
bic conditions in BHI media (90:5:5) differed from 
the ratio typically observed in mammalian colons 
(60:20:20).1 This may be due to the differing bacter-
ial communities found in zebrafish and mamma-
lian intestines. The most abundant bacterial phyla 
in the adult zebrafish intestine are Proteobacteria 
and Fusobacteria, whereas mouse and human intes-
tines are dominated by members of phyla 
Bacteroidetes and Firmicutes.51 Considering the 
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SCFA production we observed in vitro, our inability 
to detect SCFA in vivo was surprising. We antici-
pate this could be due to rapid host or microbial 
metabolism of SCFA produced within the zebrafish 
gut, or the composition of the diet fed to the zebra-
fish tested in this experiment. Zebrafish are omni-
vores and were fed protein-rich diets in the Duke 
aquaculture facility. A diet with more SCFA sub-
strates such as carbohydrates and fiber may yield 
detectable SCFA production in situ.

Interestingly, we observed increased macrophage 
and fibrinogen clot accumulation at the wound site 
following propionate treatment, indicative of a pro- 
inflammatory effect. Although this is at odds with 
anti-inflammatory effects of propionate in 
mammals,52–54 it is consistent with evidence of an 
immunostimulatory effect of propionate in 
teleosts.55,56

Overall this manuscript provides further evi-
dence of conserved mechanisms of host–microbe 
interaction within vertebrates. We present evidence 
that immunological sensitivity to butyrate is con-
served across vertebrates. Furthermore, there is 
conservation of the molecular machinery that 
senses butyrate even down to the responsiveness 
of individual leukocyte lineages.
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