
Research Article
Prokineticin 2 (PK2) Rescues Cardiomyocytes from High
Glucose/High Palmitic Acid-Induced Damage by Regulating the
AKT/GSK3β Pathway In Vitro

Zhen Yang ,1 Yin Wu,1 Linge Wang ,1 Peng Qiu,1 Wenliang Zha ,2,3 and Wei Yu 1

1Department of Pharmacology, School of Pharmacy, Hubei University of Science and Technology, Xianning, Hubei 437100, China
2Department of Surgery, Clinic Medical College, Hubei University of Science and Technology, Xianning, Hubei 437100, China
3National Demonstration Center for Experimental General Medicine Education, Hubei University of Science and Technology,
Xianning, Hubei 437100, China

Correspondence should be addressed to Wenliang Zha; xyzwl800@163.com and Wei Yu; yuwei0805@163.com

Received 10 January 2020; Revised 20 February 2020; Accepted 10 March 2020; Published 18 May 2020

Guest Editor: Yue Liu

Copyright © 2020 Zhen Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Prokineticin 2 (PK2) is a small 8 kDa protein that participates in many physiological processes, such as angiogenesis, inflammation,
and neurogenesis. This experiment investigated the effect of PK2 on high glucose/high palmitic acid-induced oxidative stress,
apoptosis, and autophagy in cardiomyocytes and the AKT/GSK3β signalling pathway. H9c2 cells were exposed to normal and
high concentrations (33mM) of glucose and palmitic acid (150 μM) with or without PK2 (10 nM) for 48 h. Reactive oxygen
species were detected using the fluorescent probes DCFH-DA and DHE. Changes in apoptosis were assessed using flow
cytometry, and autophagosomes were detected using Ad-GFP-LC3. Apoptotic proteins, such as Cleaved Caspase3, Bax, and Bcl-
2; autophagy proteins, including Beclin-1 and LC3B; and PK2/PKR/AKT/GSK3β signals were evaluated using western blotting.
Cardiomyocytes exposed to high glucose/high palmitic acid exhibited increases in intracellular ROS, apoptosis, and
autophagosomes, and these increases were robustly prevented by PK2. In addition, high glucose/high palmitic acid remarkably
suppressed PK2, PKR1, and PKR2 expression and p-AKT/AKT and p-GSK3β/GSK3β ratios, and these effects were significantly
prevented by PK2. Moreover, an AKT1/2 kinase inhibitor (AKT inhibitor, 10 μM) blocked the effects of PK2 on the changes in
cardiomyocyte exposure to high glucose/high palmitic acid. These results suggest that PK2 attenuates high glucose/high palmitic
acid-induced cardiomyocyte apoptosis by inhibiting oxidative stress and autophagosome accumulation and that this protective
effect is most likely mediated by the AKT-related signalling pathway.

1. Introduction

Diabetes is a metabolic disease characterized by hyperglycae-
mia and is becoming a global health problem [1]. The Inter-
national Diabetes Federation predicts that the total number
of diabetes cases will reach 700 million by 2045 [2]. Type 2
diabetes, which is associated with the disturbed metabolism
of glucose and lipids, accounts for 90% of all the cases. Diabe-
tes mainly harms the body’s macro- and microcoronary
arteries and poses a high risk for cardiovascular morbidity
and mortality [3]. Diabetic cardiomyopathy (DCM) is a
structural and functional disorder of the heart caused by dia-
betes that is independent of hypertension, coronary athero-

sclerotic heart disease, valvular heart disease, and other
known heart diseases [4]. However, the mechanisms under-
lying DCM remain unclear.

Prokineticin 2 (PK2), a secreted 8 kDa protein [5], is
involved in a variety of physiological and pathological pro-
cesses, including nerve growth, immune response, angiogen-
esis, and inflammation [6–9]. PK2 binds to two receptors,
namely, prokineticin receptor 1 (PKR1) and prokineticin
receptor 2 (PKR2), which share approximately 85% amino
acid identity, which are widely distributed in both mice and
humans, and which modulate biological processes, such as
neuronal survival and testis development [10–12]. In 2007,
Urayama et al. first discovered that PK2 is expressed in
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cardiac tissues, including in H9c2 cardiomyocytes and H5V
vascular endothelial cells [13]. PK2 not only promotes angio-
genesis in H5V vascular endothelial cells but also inhibits
H2O2-induced H9c2 injury [13]. However, the role, if any,
of PK2 and PKR in pathological DCM remains unknown,
and investigation of the role of PK2/PKR in type 2
diabetes-induced damage to cardiomyocytes is required.

AKT plays a crucial role in cardiac growth, coronary
angiogenesis, metabolic regulation, and tumours [13–17]
and mediates biological activities by inactivating its down-
stream target GSK3β [18]. A previous study showed that
PK2 participates in neuroprotection by stimulating the ERK
and AKT survival signalling pathways [9]. In addition, Su
et al. demonstrated that PK2 relieves hypoxia/reoxygena-
tion-induced injury in H9c2 cardiomyocytes by activating
the AKT pathway [19]. However, whether PK2 contributes
to cardiomyocyte survival or repairs high glucose/high pal-
mitic acid-induced injury by activating the AKT/GSK3β sig-
nalling pathway is still unclear. Our current work reveals that
PK2 is a potentially useful target for treating high glucose/-
high palmitic acid-induced cardiomyocyte damage. Herein,
our subsequent work illuminates that PK2 is a potentially
useful target for treating high glucose/high palmitic acid-
induced cardiomyocyte damage.

2. Materials and Methods

2.1. Cell Culture and Treatment. The rat cardiomyocyte cell
line H9c2 was purchased from the China Center for Type
Culture Collection (CCTCC, China) and cultured in DMEM
(HyClone, USA) containing 10% FBS (Gibco, USA) and 1%
penicillin-streptomycin at 37°C in a humidified atmosphere
(5% CO2 and 95% air). The cells were randomly divided into
the following experimental groups: the normal (NG) group,
which was exposed to 5.5mMD-glucose, and the high gluco-
se/high palmitic acid (HG-PA) groups, which were exposed
to 33mM D-glucose plus 150μM palmitic acid (Sigma,
USA) for 48h in the absence or presence of PK2 (Sigma,
10 nM) or AKT1/2 kinase inhibitor (AKT inhibitor, Sigma,
10μM) [20].

2.2. Analysis of Biochemical Parameters. Cardiomyocytes
were treated with reagents for 48 h, and then physiological
saline was added. After that, the cardiomyocytes were placed
in a freezer at -20°C and repeatedly frozen/thawed three times.
The suspension was centrifuged for 15min at 4000 r/min, and
the supernatant was homogenized to measure superoxide
dismutase (SOD) and malondialdehyde (MDA) levels. The
procedure strictly followed the instructions of the SOD assay
kit and MDA assay kit (Nanjing Jiancheng Bioengineering
Research Institute, China).

2.3. Flow Cytometry. Apoptosis was detected by an Annexin
V-FITC/PI Apoptosis Detection Kit (Meilunbio, China).
After being treated as described above, H9c2 cells were
digested with trypsin, resuspended in a 1x binding buffer,
and then incubated with Annexin V-FITC and PI for
15min in the dark [21]. Flow cytometry was used to deter-

mine the effect of PK2 on the apoptosis rate of injured
cardiomyocytes.

2.4. MTT Assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) was used to evaluate cell via-
bility. H9c2 cells were seeded in 96-well plates and exposed
to high glucose/high palmitic acid with or without PK2 or
AKT inhibitor for 48h. Then, 20μL of MTT working solution
was added and incubated for 4-6h. The MTT solution was
removed, and 150μL of DMSO (Sigma) was added to each
well. The absorbance of each well at 490nm was measured.

2.5. Intracellular ROS Measurement. A Reactive Oxygen Spe-
cies Assay Kit (Beyotime Biotechnology, China) was used to
detect intracellular reactive oxygen species. Cardiomyocytes
were incubated with the fluorescent probe dichlorodihydro-
fluorescein diacetate (DCFH-DA, 10μM) for 30min. A
Tecan fluorometric microplate reader was used to detect
ROS products at 530nm.

The fluorescence probe dihydrogen ingot (DHE) was
used to measure intracellular superoxide anion levels. Cul-
tured cardiomyocytes were incubated with 10μM DHE
(Beyotime Biotechnology) and then cultured with 5μg/mL
DAPI (Beyotime Biotechnology) for 10min. H9c2 cardio-
myocytes were observed by fluorescence microscopy.

2.6. Ad-GFP-LC3 Transfection. An adenovirus-expressing
GFP-LC3 fusion protein (Beyotime Biotechnology) was
used to infect cells for autophagy detection. Cardiomyocytes
were cultured in the adenovirus at a multiplicity of 20 of the
infection for 24h and then treated with a medium contain-
ing the appropriate reagent for 48 h in 24-well plates. Rapa-
mycin was used as a positive control. After that, cultured
cardiomyocytes were incubated with 5μg/mL DAPI for
10min in the dark. Cells were captured under a fluorescence
microscope.

2.7. Western Blot Analysis. Cardiomyocytes were homoge-
nized using a lysis buffer containing 1x RIPA lysis buffer (Cell
Signaling Technology, USA), 1% NaF, 1% Na3VO4, and 1%
protease inhibitor cocktail. Protein concentrations were
determined by a BCA protein assay (Beyotime Biotechnol-
ogy). Protein was added to each lane of a 12% SDS-
polyacrylamide gel, and the proteins were separated and
transferred onto a PVDF membrane. The membrane was
blocked and incubated overnight at 4°C with AKT, p-AKT,
GSK3β, p-GSK3β, Bax, Bcl-2, Beclin-1, LC3B, Cleaved Cas-
pase3 (1 : 1000, Cell Signaling Technology), PK2 (1 : 1000,
Abcam, USA), PKR1, PKR2 (1 : 2000, Santa Cruz Biotechnol-
ogy, USA), and GAPDH (1 : 5000, Proteintech, USA) anti-
bodies. After incubation with a secondary antibody for 1 h,
analysis was carried out using an ECR kit (Meilunbio). Ana-
lytical quantification was performed using Quantity One
software (Bio-Rad, USA) [22].

2.8. Statistics Analysis. The data are presented as the mean ±
SEM. All statistical analyses were performed using indepen-
dent sample t-test and one-way analysis of variance. A P value
less than 0.05 was regarded as statistically significant.
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3. Results

3.1. PK2 Decreased Intracellular ROS Production in High
Glucose/High Palmitic Acid-Treated Cardiomyocytes. ROS is
the key executor of oxidative stress, which causes cardiomyo-
cyte apoptosis during DCM, so we detected ROS levels by
DHE staining and DCFH-DA staining. As presented in
Figures 1(a) and 1(b), the level of ROS in the high glucose/-

high palmitic acid group was much higher than that in the
NG group, while the abnormal increase in ROS was sup-
pressed by treatment with PK2.

SOD is the main enzyme that acts against oxygen free
radical damage, and MDA is an indicator of lipid peroxida-
tion levels. SOD activity was significantly decreased, and
MDA content was significantly increased in the high gluco-
se/high palmitic acid group. PK2 administration significantly
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Figure 1: PK2 decreased intracellular ROS production in high glucose/high palmitic acid-treated cardiomyocytes. (a) Representative images
of DHE staining, magnification = 200x, scale bar = 50μm, n = 3 independent groups. (b) Quantification of DCFH-DA staining, n = 8
independent groups. (c) SOD level, n = 7‐9 independent groups. (d) MDA level, n = 7‐10 independent groups. NG: normal glucose; HG-
PA: high glucose/high palmitic acid; NG-PK2: normal glucose plus PK2; HG-PA-PK2: high glucose/high palmitic acid plus PK2. ∗P < 0:05
versus the NG group; #P < 0:05 versus the HG-PA group.
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Figure 2: Continued.
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increased SOD activity and reduced the MDA content com-
pared with those in cardiomyocytes exposed to high gluco-
se/high palmitic acid alone (Figures 1(c) and 1(d)).

3.2. Effect of PK2 on Cardiomyocyte Apoptosis and Apoptosis-
Related Proteins Induced by High Glucose/High Palmitic
Acid. To investigate the role of PK2 in cell survival, we exam-
ined apoptosis and apoptosis-related proteins by flow cytom-
etry and western blotting. Flow cytometry showed that the
number of apoptotic cardiomyocytes in the NG group was less
than that in the high glucose/high palmitic acid group and that
the administration of PK2 significantly abrogated the increase
in apoptosis triggered by high glucose/high palmitic acid
(Figures 2(a) and 2(b)).

The process of apoptosis involves changes in apoptosis-
related protein expression. The data showed that the
Bax/Bcl-2 ratio and Cleaved Caspase3 expression were signif-
icantly increased in the high glucose/high palmitic acid group
compared to the NG group and that the Bax/Bcl-2 ratio and
the Cleaved Caspase3 expression were significantly decreased
after cotreatment with PK2 (Figures 2(c)–2(g)).

3.3. Effect of PK2 on Cardiomyocyte Autophagy-Related
Proteins Induced by High Glucose/High Palmitic Acid. To dis-
cern the role of autophagy in the beneficial role of PK2 inac-
tivation against high glucose/high palmitic acid toxicity, we
detected autophagy-related proteins by western blotting. As
shown in Figures 3(a)–3(e), the Beclin-1 expression and the
LC3II/LC3I ratio were significantly upregulated in the high

glucose/high palmitic acid group. However, the effect was
overtly attenuated by PK2 administration.

3.4. PK2 Increased PKR Expression in High Glucose/High
Palmitic Acid-Treated Cardiomyocytes. The PK2/PKR path-
way participates in cardiovascular disease [23], thus, we ana-
lysed the expression of PK2 and PKR by western blotting. As
shown in Figure 4(a)-4(d), the greatly decreased PK2, PKR1,
and PKR2 expression was observed in cardiomyocytes after
exposure to high glucose/high palmitic acid compared to
the NG group, these effects were altered in cells that received
PK2 treatment. The data demonstrated that PK2 had a posi-
tive effect on high glucose/high palmitic acid-induced injury
by stimulating two closely related receptors.

3.5. PK2 Activated the AKT/GSK3β Pathway in High
Glucose/High Palmitic Acid-Treated Cardiomyocytes. The
AKT/GSK3β pathway regulates cell survival, apoptosis, and
angiogenesis [24], and the PK2/PKR2 pathway plays an
important role by activating the crucial downstream AKT
pathway [10, 19]. To study the underlying mechanisms of
PK2 in high glucose/high palmitic acid-induced injury,
AKT/GSK3β pathway proteins were detected by western
blotting. The data showed that H9c2 cells displayed a signif-
icant decrease in the p-AKT/AKT and p-GSK3β/GSK3β
ratios after high glucose/high palmitic acid treatment, the
effect of which was reversed after cotreatment with PK2
(Figures 4(e)–4(l)), indicating that AKT/GSK3β signalling
may be involved in the cardioprotective effect of PK2 on car-
diomyocytes exposed to high glucose/high palmitic acid.
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Figure 2: Effect of PK2 on cardiomyocyte apoptosis and apoptosis-related proteins induced by high glucose/high palmitic acid. (a) Cells were
detected with a flow cytometer, n = 7‐11 independent groups. (b) Analysis of apoptosis. (c) Images of Bax, Bcl-2, and Cleaved Caspase3
proteins. (d) Analysis of Bax. (e) Analysis of Bcl-2. (f) Analysis of the Bax/Bcl-2 ratio. (g) Analysis of Cleaved Caspase3. ∗P < 0:05 versus
the NG group; #P < 0:05 versus the HG-PA group; n = 3‐4 independent groups.
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3.6. AKT Inhibitor Abolished the Effects of PK2 on
Cardiomyocyte ROS Production and Apoptosis. To determine
whether PK2 attenuated apoptosis by inhibiting oxidative
stress and autophagy mediated by the AKT/GSK3β pathway
in high glucose/high palmitic acid-damaged cardiomyocytes,
the AKT inhibitor was administered to cardiomyocytes.

As shown in Figures 5(a) and 5(b), similar to previous
experimental results, PK2 decreased the accumulation of
ROS, while the AKT inhibitor abolished the decrease in
ROS accumulation induced by PK2.

In addition, theMTT experiment showed that high gluco-
se/high palmitic acid decreased cell viability and that the PK2-
induced increase in cell viability was blocked by the AKT
inhibitor (Figure 5(c)). In parallel, the regulation of Bax/Bcl-
2 ratio andCleavedCaspase3 expression by PK2was inhibited
by AKT inhibitor treatment (Figures 5(d)–5(h)).

3.7. AKT Inhibitor Counteracted the Effects of PK2 on
Cardiomyocyte Autophagy. To determine whether PK2 affects

autophagy through the AKT pathway, the number of GFP-
LC3 puncta (green fluorescence) on the autophagosome
membrane and protein expression was measured. PK2 effec-
tively rescued the increase in GFP-LC3 puncta in the high
glucose/high palmitic acid group, while PK2 itself did not
affect it. However, the AKT inhibitor offset the decrease in
GFP-LC3 puncta induced by PK2 (Figure 6(a)). PK2 also
failed to alter the expression levels of Beclin-1 and the
LC3II/LC3I ratio in high glucose/high palmitic acid-treated
cardiomyocytes when the AKT inhibitor was applied
(Figures 6(b)–6(f)).

3.8. Effect of AKT Inhibitor on the PK2/PKR/AKT/GSK3β
Pathway in Cardiomyocytes. To further explore the mech-
anism underlying PK2-mediated apoptosis and autophagy
responses in high glucose/high palmitic acid-treated cardi-
omyocytes, PK2/PKR/AKT/GSK3β pathway proteins were
detected after the addition of the AKT inhibitor. As shown
in Figures 7(a)–7(d), treatment with the AKT inhibitor
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Figure 3: Effect of PK2 on cardiomyocyte autophagy-related proteins induced by high glucose/high palmitic acid. (a) Images of Beclin-1 and
LC3B protein expression. (b) Analysis of Beclin-1. (c) Analysis of LC3I. (d) Analysis of LC3II. (e) Analysis of the LC3II/LC3I ratio. ∗P < 0:05
versus the NG group; #P < 0:05 versus the HG-PA group, n = 4‐6 independent groups.
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Figure 4: Continued.
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reversed the increased effect of PK2 and abolished the
increase in PKR1 and PKR2 expression induced by PK2.
Moreover, the AKT inhibitor reversed the increased effect
of PK2 on p-AKT/AKT and P-GSK3β/GSK3β ratios. The
data illustrated that PK2 protected cardiomyocytes from
damage caused by high glucose/high palmitic acid through
the activation of the AKT/GSK3β pathway (Figures 7(e)–
7(l)).

4. Discussion

The findings of our current study suggest that PK2 protects
against the high glucose/high palmitic acid incubation-
induced impairment of ROS accumulation, apoptosis, and
autophagosome accumulation by activating the PK2/PKR/
AKT/GSK3β pathway in cardiomyocytes. The dysregula-
tion of glucose and lipids is an important factor in the
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Figure 4: Activation of the PK2/PKR/AKT/GSK3β pathway by PK2 in high glucose/high palmitic acid-treated cardiomyocytes. (a) Images of
PK2, PKR1, and PKR2 protein expression. (b) Analysis of PK2. (c) Analysis of PKR1. (d) Analysis of PKR2. (e) Images of p-AKT and AKT
protein expression. (f) Analysis of p-AKT. (g) Analysis of AKT. (h) Analysis of the p-AKT/AKT ratio. (i) Images of p-GSK3β and GSK3β
protein expression. (j) Analysis of p-GSK3β. (k) Analysis of GSK3β. (l) Analysis of the p-GSK3β/GSK3β ratio. ∗P < 0:05 versus the NG
group; #P < 0:05 versus the HG-PA group; n = 4‐6 independent groups.
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Figure 5: Continued.
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pathophysiology of DCM [25], and the clinical manage-
ment of DCM remains challenging. Our research suggests
that PK2 may serve as a latent therapeutic target for
DCM. Our data demonstrate that PK2/PKR may play a piv-
otal role in myocardial damage caused by glucolipotoxicity.

Oxidative stress is a state of imbalance between oxidative
and antioxidative mechanisms caused by ROS accumulation
[26]. Abnormal oxidative stress levels, which exert a signifi-
cant role in the pathophysiology of DCM, have pernicious

effects on cellular signal transduction and induce cardiomyo-
cyte apoptosis [27]. The disorder of glucose and lipids
induces cardiac ROS accumulation and triggers apoptosis,
eventually leading to cardiac remodelling in DCM [28].
Therefore, a clear reduction in ROS accumulation and car-
diomyocyte apoptosis is considered an alternative strategy
for protecting cardiomyocytes from glucolipotoxicity. DHE
and DCFH-DA staining and oxidative stress biochemical
indices indicated oxidative stress upon high glucose/high
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Figure 5: AKT inhibitor abolished the effects of PK2 on cardiomyocyte ROS production and apoptosis. (a) Representative images of DHE
staining, magnification = 200x, scale bar = 50μm, n = 3 independent groups. (b) Quantification of DCFH-DA staining, n = 12‐16
independent groups. (c) Cell viability. (d) Images of Bax, Bcl-2, and Cleaved Caspase3 protein expression. (e) Analysis of Bax. (f) Analysis
of Bcl-2. (g) Analysis of the Bax/Bcl-2 ratio. (h) Analysis of Cleaved Caspase3. ∗P < 0:05 versus the NG group; #P < 0:05 versus the HG-
PA group; n = 3‐4 independent groups. NG: normal glucose; NG-PK2: normal glucose plus PK2; NG-AKT inhibitor: normal glucose plus
AKT inhibitor; HG-PA: high glucose/high palmitic acid; HG-PA-PK2: high glucose/high palmitic acid plus PK2; HG-PA-PK2-AKT
inhibitor: high glucose/high palmitic acid plus PK2 plus AKT inhibitor.
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palmitic acid challenge, and these effects were mitigated by
PK2. Our further examination revealed that PK2 reduced
cardiomyocyte apoptosis induced by high glucose/high pal-
mitic acid and ameliorated proapoptotic alterations including
the Bax/Bcl-2 ratio and the Cleaved Caspase3 expression.
Thus, it is plausible that the cardioprotective effects exerted
by PK2 are mediated in part through the inhibition of ROS
generation and apoptosis.

Autophagy is a conserved self-eating process that is
involved in the development of multiple types of diseases,
such as diabetes mellitus and cardiomyopathy [29, 30]. It is
well known that appropriate autophagy maintains cardiac
homeostasis, whereas elevated or defective autophagy exacer-
bates cardiac damage and contributes to the progression of
DCM [31, 32]. Beclin-1 plays a major role in the formation
of autophagosomes and lysosomal organisms by forming dis-
tinct protein complexes. Abnormal expression of Beclin-1 is
deleterious for cell viability [33]. LC3B is a versatile marker
protein of autophagy. LC3I in the cytosol is converted to
autophagosome-bound LC3II, the content of LC3II is pro-
portional to the number of autophagosomes, and LC3II is
considered to be a marker of autophagosomes [34]. Previous
reports have revealed increases in LC3II and Beclin-1 expres-
sion and the LC3II/LC3I ratio in the myocardium of mice

with type 2 diabetes induced by a high-fat diet plus streptozo-
tocin [32, 35, 36]. Therefore, reducing autophagy-related
proteins is considered another strategy for protecting cardio-
myocytes from glucolipotoxicity. In our study, we noted that
PK2 offset the overexpression of autophagy-related proteins
and autophagosome accumulation in high glucose/high pal-
mitic acid-challenged cardiomyocytes through the following
mechanisms: (1) a drastic increase in autophagosome forma-
tion induced by high glucose/high palmitic acid, which was
reversed by PK2, and (2) Beclin-1 overexpression and an
increase in the LC3II/LC3I ratio in H9c2 cells exposed to
high glucose/high palmitic acid, which were restored by PK2.

PK2 exists in a variety of tissues, such as the brain, heart,
and testes [37–39], and serves as a key factor for neuronal
survival, olfactory bulb morphogenesis, and testis develop-
ment [9, 39, 40]. Recently, PK2 has been found to participate
in cardiac survival, proliferation, and migration [41]. PK2
has a wide array of cardiovascular effects by stimulating
PKR1 and PKR2. Urayama et al. [13] found that PK2 and
PKR are expressed in the cardiovascular system in both mice
and humans, and the downregulation of PK2 and PKR1 has
been observed in heart failure patients. Interestingly, the
overexpression of PKR1 stimulates angiogenesis and protects
cardiomyocytes from oxidative stress, and the loss of PKR1
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Figure 6: AKT inhibitor counteracted the effects of PK2 on cardiomyocyte autophagy. (a) Representative images of autophagy indicated by
GFP-LC3, magnification = 200x, scale bar = 50 μm, n = 3 independent groups. (b) Images of Beclin-1 and LC3B protein expression. (c)
Analysis of Beclin-1. (d) Analysis of LC3I. (e) Analysis of LC3II. (f) Analysis of the LC3II/LC3I ratio. ∗P < 0:05 versus the NG group;
#P < 0:05 versus the HG-PA group; n = 3 independent groups.
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induces apoptosis and ultimately impairs cardiac structure
and function [13, 42]. Evidence suggests that PKR2 impairs
endothelial integrity without inducing angiogenesis in car-
diovascular tissues [43]. However, the precise functions of
PK2 in high glucose/high palmitic acid-induced cardiomyo-
cyte damage have not been determined. Our study showed
that the expression of PK2, PKR1, and PKR2 was decreased
in cardiomyocytes treated with high glucose/high palmitic
acid and that the abnormal expression of PK2/PKR was effec-
tively reversed by the administration of PK2. Therefore, we
deduced that PK2 is responsible for improvements in oxida-
tive stress and apoptosis in cardiomyocytes exposed to high
glucose/high palmitic acid through stimulating PKR, but
the underlying mechanism is still unknown.

AKT has been shown to be involved in cardiovascular
functions linked with cell survival, growth, proliferation,
and angiogenesis by inactivating its downstream target
GSK3β [44–46]. Dariushnejad et al. [47] reported that the
activation of the AKT signalling pathway in the hearts of
high-fat diet- and streptozotocin-induced diabetic rats has a
beneficial effect on apoptosis and angiogenesis. Furthermore,
evidence has revealed that the cardioprotective actions of
PK2/PKR may involve the phosphorylation of AKT, as this
effect maintains oxidative stress, myocardial survival, and
angiogenesis in myocardial infarction mice [13]. In addition,
impaired AKT activity in response to insulin is a common
feature of DCM [48]. Our study clearly shows that activating
the AKT-dependent pathway may serve as a key mechanism
of the cardioprotective role of PK2. This is supported by sev-
eral pieces of experimental data. (1) The p-AKT/AKT and p-
GSK3β/GSK3β ratios were decreased in cardiomyocytes
exposed to high glucose/high palmitic acid, and the effect
was reversed by PK2. Interestingly, the effect of the PK2-
induced activation of the AKT pathway against high gluco-
se/high palmitic acid was offset by the AKT inhibitor. (2)
An increase in the protein level of PK2 was closely correlated
with PKR1 and PKR2 expression levels induced by PK2 in
cardiomyocytes, and these effects were not mediated in the

presence of the AKT inhibitor. (3) The AKT inhibitor drasti-
cally increased autophagosome formation and was closely
correlated with reductions in autophagy markers such as
Beclin-1 and the LC3II/LC3I ratio induced by PK2. (4) The
AKT inhibitor weakened the effect of PK2 on oxidative stress
and apoptosis. These findings demonstrate a likely role for the
AKT signalling cascade in the regulation of PK2-inhibited
oxidative stress, apoptosis, and autophagosome accumula-
tion to abnormal glucose and lipid metabolism.

In summary, the data suggest that PK2 may protect
against high glucose/high palmitic acid-induced cardiomyo-
cyte injury, including increased oxidative stress, apoptosis,
and autophagosome accumulation, possibly by restoring the
AKT/GSK3β pathway. These outcomes help to elucidate
the utility of PK2 as a potential treatment target for DCM.
Given the limited cardiovascular experiments performed,
the clinical application of PK2 requires further scrutiny
in vitro and in vivo to better define its effects in DCM.
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