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Viral infections trigger the innate immune system, serving as the first line of defense, and
are characterized by the production of type I interferon (IFN). Type I IFN is expressed in
a broad spectrum of cells and tissues in the host and includes various subtypes (IFN-α,
IFN-β, IFN-δ, IFN-E, IFN-κ, IFN-τ, IFN-ω, IFN-ν, and IFN-ζ). Since the discovery of type I
IFN, our knowledge of the biology of type I IFN has accumulated immensely, and we now
have a substantial amount of information on the molecular mechanisms of the response
and induction of type I IFN, as well as the strategies utilized by viruses to evade the
type I IFN response. Foot-and-mouth disease virus (FMDV) can selectively alter cellular
pathways to promote viral replication and evade antiviral immune activation of type I IFN.
RNA molecules generated by FMDV are sensed by the cellular receptor for pathogen-
associated molecular patterns (PAMPs). FMDV preferentially activates different sensor
molecules and various signal transduction pathways. Based on knowledge of the
virus or RNA pathogen specificity as well as the function-structure relationship of RNA
sensing, it is necessary to summarize numerous signaling adaptors that are reported to
participate in the regulation of IFN gene activation.
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INTRODUCTION

Foot-and-mouth disease virus (FMDV) belongs to the Aphthovirus genus in the Picornaviridae
family, and a highly infection disease caused by FMDV is regarded as an important
concern for animal health (Knight-Jones et al., 2016). During FMDV evolutionary process,
high mutation rates of the viral genome and quasispecies dynamics are considered major
genetic factors (Shih et al., 1992). Thus, a series of studies were conducted to examine
the relationship between genetic changes of the viral genome and viral fitness and different
host/viral pathogenicities. Except for positive/negative selection and the random drift of the
genome (Domingo et al., 2003), synonymous codon usage patterns of the FMDV genome
also dominate its host ranges and viral proteins with normal biological functions (Zhou
et al., 2010a,b, 2011, 2013a,b,c; Ahn et al., 2011; Ma et al., 2013; Ma X.X. et al., 2016;
Gao et al., 2014). Due to the high genetic diversity of FMDV, the measures for controlling
this disease need to be developed comprehensively, including killing infected and in-contact
animals, the limitation of animal movement and vaccination based on conventional vaccines
or new typical ones (Robinson et al., 2016). To further improve measures involved in antiviral
treatments and novel vaccines for controlling rapid FMDV spread, it is important to obtain
a deep understanding of the interaction between the host and FMDV. The antiviral immune
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response is the major focus on resisting FMDV infection,
including innate/adaptive immune activations (Golde et al., 2008;
Toka and Golde, 2013). The innate immune system serves as
the first line of defense for resisting viral infections. The rapid
induction of type I interferon (IFN) and other antiviral cytokines
at the site of infection are part of the defense involved in
antiviral immunity. The type I IFN family of placental mammals
comprises 9 recognized classes identified to date: IFN-α, IFN-β,
IFN-δ, IFN-E, IFN-κ, IFN-τ, IFN-ω, IFN-ν, and IFN-ζ (Krause
and Pestka, 2005; Detournay et al., 2013).

Type I IFNs exhibit direct antiviral activities by inhibiting
viral replication and mediating the cellular immune functions of
both the innate and adaptive immune system, resulting in both
early limitation of the virus and long-term immunity. However,
viruses are capable of selecting various strategies to evade the
host immune system and thus contributing to viral pathogenicity
(Schulz and Mossman, 2004; Jackson et al., 2017; Sumner et al.,
2017). For FMDV infection, type I IFNs also play important roles
in counteracting viral infection represent a potent biotherapeutic
method against FMDV (Rodríguezpulido et al., 2011; Borrego
et al., 2017). This minireview summarizes the current knowledge
on how type I IFN is resistant to FMDV infection and how FMDV
counteracts type I IFN induction and signaling transduction to
evade the type I IFN system of host.

RECOGNITION OF VIRAL GENOME FOR
IFN PRODUCTION

Once viral infection occurs, cells of the infected host can trigger
a series of activations of cytokines, including type I and type
III IFNs. These IFNs can perform multiple biological functions
related to antiviral, antiproliferative and immunomodulatory
activations and trigger various interferon stimulated genes
(ISGs), thereby contributing to the establishment of the antiviral
state in which various steps of viral replication are restricted
(Sen and Sarkar, 2007; Fensterl et al., 2015). Notably, both type
I and type III IFNs represent similar patterns of expression and
mechanisms of induction (Uzé and Monneron, 2007). A pivotal
feature of IFN expression is the requirement for detection of the
invading pathogens by pathogen-associated receptors. Generally,
the innate immune system relies on germ-line-encoded pattern
recognition receptors (PRRs) to recognize non-self RNA (viral
RNA) which is one of the pathogen-associated molecular patterns
(PAMPs) (Akira et al., 2006). For recognizing the viral RNA
genome by the PRRs, there are two major classes of PRRs:
Toll-like receptor (TLRs) at the cell surface or in endosomes,
and retinoic acid-inducible gene-I (RIG-I) like receptors (RLRs)
(Akira et al., 2006; Bruns et al., 2014). Among TLRs related
to antiviral immune response, TLR 3 can recognize double-
stranded RNA (ds RNA) and TLRs 7/8 can recognize single-
stranded RNA (Alexopoulou et al., 2001; Diebold et al., 2004;
Heil et al., 2004). However, TLR3 can sense ssRNA of poliovirus
in some conditions (Tatematsu et al., 2013). Turning to RIG-I
like receptor, which is involved in the antiviral immune response
(Figure 1), melanoma differentiation-associated gene 5 (MDA5),
laboratory of genetics and physiology 2 (LGP2) and RIG-I,

FIGURE 1 | Physical organization of RLs. Schematic representation of RLR
domains. The caspase activation and recruitment domain (CARD), helicase
domain and RNA recognition domain are shown. LGP2 lacks the N-terminal
CARD domain used by MDA5 and RIG-I for signal transduction.

which are ubiquitous cytosolic RNA helicases, play a pivotal role
in recognizing viral RNA fragments (Yoneyama et al., 2005).
It has been accepted that RIG-I can preferentially sense short
dsRNAs, while MDA5 can recognize long dsRNA (Kato et al.,
2008; Berke et al., 2013; Liu et al., 2016). Compared with the
physical organizations and biological functions of MDA5 and
RIG-I, LGP2 loses its CARD domain and displays a regulatory
role that works as a concentration dependent biphasic status to
mediate activations of MDA5 (Bruns et al., 2013, 2014; Uchikawa
et al., 2016). Interestingly, RIG-I deficiency does not inhibit the
replication of Picornaviridae, while MDA5 displays a remarkable
role in resisting these viruses (Kato et al., 2006). Depending on
the mice model with LGP2 deletion, dendritic cells (DCs) derived
from these mice fail to generate IFN production upon infection
by encephalomyocarditis virus (EMCV), vesicular stomatitis
virus (VSV), and Newcastle disease virus (NDV) (Venkataraman
et al., 2007; Satoh et al., 2010), suggesting that LGP2 might play
a positive role in vitro by recognize some viral infections to
promote IFN production.

RECOGNITION OF FMDV RNA BY TLRS
AND RLRS

The differential viral recognition by RIG-I and MDA5 is partly
due to the differential recognition of distinct types of RNA
patterns. It has been reported that MDA5 can recognize ssRNA
involved in EMCV, Theiler’s virus and Mengo virus to activate
IFN systems (Kato et al., 2006). Like those (+) ssRNA viruses
mentioned above, FMDV RNA was recognized by MDA5 rather
than by TLR3 or RIG-I in porcine epithelial cells, based on
the result of the porcine kidney (PK-15) cells with MDA5
knockdown by RNA interference (Hüsser et al., 2011). According
to the current knowledge on the length of RNA sensed by
RIG-I and MDA5 (Kato et al., 2008), the FMDV genomes
longer than 8000 nt are proposed to be sensed by MDA5 but
not by RIG-I. Even though FMDV breaks into target cells
and inhibits host translational systems by generation of Lpro

and 3Cpro to evade the innate immune response against viral
infection, MDA5 can first initiate IFN-β expression regardless
of impairment of host translational systems. In addition, EMCV
can produce high molecular weight RNA with a single- and
double-stranded structure, and this RNA structure is capable
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of triggering MDA5 (Pichlmair et al., 2009). Notably, similar
RNA structure exists in the 5′untranslation region of the
FMDV genome (Carrillo et al., 2005), hence contributing to
the activation of MDA5 to some degree. Most recently, it has
been reported that the S fragment in the 5′untranslation region
(UTR) of the FMDV genome is required for the replication
and modulation of the innate immune response in host cells
(Kloc et al., 2017). In human HEK 293 cell line, the S fragment
and internal ribosomal entry site of 5′UTR and 3′UTR in
the FMDV genome can trigger IFN-β promoter activation
(Borrego et al., 2015). IFN-α/β can trigger double-stranded RNA-
dependent protein kinase R (PKR) in the direct inhibition of
FMDV replication in vitro (Chinsangaram et al., 2001; De et al.,
2006). Turning to FMDV infection recognized by TLRs, the
expression of TLR-4 in nasal-associated lymphoid tissue (NALT)
during the acute stage of FMDV infection is higher than that
of uninfected cattle, but non-infected and infected cattle do
not differ regarding the transcription levels between TLR3 and
TLR4 in NALT (Zhang et al., 2006). In addition, the FMDV
genome can be recognized by TLR7 and TLR9 in plasmacytoid
dendritic cells (pDCs) (Guzylack-Piriou et al., 2006; Lannes et al.,
2012).

FMDV-INDUCED SIGNALING CASCADE
AND IFN GENE ACTIVATION

After RIG-I or MDA5 bind to viral RNA, the tandem CARDs
are unmasked and interact with MAVS (also termed as Cardif,
IPS-1 or VISA), which contains one CARD, by CARD-CARD
interaction (Kawai et al., 2005; Meylan et al., 2005; Seth et al.,
2005; Xu et al., 2005). MAVS are located on the outer membrane
of the mitochondria and this specific localization is pivotal
for signal transduction, because the formation of the RLR-
MAVS complex contributes to the recruitment of numerous
signaling adaptors (Seth et al., 2005). Recently, Sun Hur and
her colleagues have postulated a novel mechanism showing
that two CARD tetramer formation is essential for triggering
the MAVS prion-like structure, leading to type I interferon
production (Wu and Hur, 2015). Notably, the Atg5-Atg12
conjugate, an essential regulator of the autophagic machinery,
directly associates with the CARD of the RIG-I and IFN-β
promoter (also called IPS-1 or MAVS) and further impair
the interaction between RIG-I and MAVS, hence contributing
to RNA virus replication in host cells (Jounai et al., 2007).
Interestingly, FMDV 3Cpro can degrade the Atg5-Atg12 complex
to suppress autophagy and antiviral responses mediated by
the NF-κB pathway (Fan et al., 2017). However, it needs to
be noted that FMDV Lpro can degrade NF-κB as well and
decrease IRF3/7 expression to suppress dsRNA-induced type
I IFN production, thereby impairing the expression of IFNs
(Wang et al., 2010, 2012). Taken together, FMDV can adopt
multiple measures to go against the antiviral immune response.
IFNs are induced through transcriptional mechanisms involving
the transcription factors nuclear factor (NF)-κB and the IFN
regulatory factors (IRFs). The RLR-MAVS complex can recruit
TRAF (tumor necrosis factor receptor-associated factor) family

members and transmit signals to downstream protein kinases
(inhibitor of NF-κB (IκB) kinase (IKK) family members, which
are pivotal for activating the transcription factors IRF-3, IRF-
7, and NF-κB (Karin and Benneriah, 2000; Xu et al., 2005),
thereby contributing to IFNs expression. As an ovarian tumor
domain (OUT)-containing enzyme, de-ubiquitinating enzyme
(DUB) A interacts directly with TRAF3 and catalyzes the cleavage
of Lys-63-linked ubiquitin chains of TRAF3, thereby contributing
to the dissociation of TBK1 from TRAF3 and blocking signal
transductions mediated by RLRs (Kayagaki et al., 2007). During
FMDV evolution, viral Lpro evolved a specific function domain
which is similar to the cellular DUBs and possesses DUB activity
to impair signal transduction related to type I IFN production
(Wang et al., 2011b). The canonical IKK complex, which is
composed of IKK-α, IKK-β and the regulatory subunit NF-κB
essential modulator (NEMO, or called IKK-γ), phosphorylates
IκB, and subsequent proteasome-dependent degradation of IκB
results in functional NF-κB moving into the nucleus (Karin and
Benneriah, 2000). In contrast, non-canonical IKKs, TRAF family
associated NF-κB activator (TANK)-binding kinase 1 (TBK1),
and IKK-E, activate the signal-dependent phosphorylation of
IRF-3 and IRF-7 (Fitzgerald et al., 2003; Hemmi et al., 2004;
Mcwhirter et al., 2004; Perry et al., 2004). Interaction between
MAVS and TRAF3 is pivotal for the recruitment of both
IKK complexes, while TRAF2 and TRAF6 are likely to be
responsible for NF-κB activation (Xu et al., 2005; Khandekar
et al., 2006). As a regulatory component, TANK and NAK-
associated protein 1 (NAP1) are commonly involved in the
TBK-1/IKK- E-mediated activation of IRFs (Sasai et al., 2006;
Guo and Cheng, 2007). IKK-γ (NEMO) serves as a regulatory
subunit for the canonical IKK complex, which plays a role in
the TBK-1/IKK- E-mediated activation of IRFs (Zhao et al.,
2007). However, FMDV 3Cpro can also target IKK-γ at the
Gln383 residue and cleave off the C-terminal Zinc finger domain
from IKK-γ, thereby disrupting the RIG-I/MDA5 pathway and
contributing to the inhibition of IFN production (Wang et al.,
2012). Most recently, crosstalk between the canonical IKK
complex and non-canonical IKK complex exists in RLR-mediated
signal transduction to a perform antiviral response (Fang et al.,
2017). Collectively, these studies might imply that the immune
systems have evolved a comprehensive network where various
cytokines and signal molecules can perform cross-talk among
different signal pathways to counteract the evasion of antiviral
immune responses induced by viruses.

EVASION OF ANTIVIRAL RESPONSE OF
TYPE I IFN MEDIATED BY FMDV

Upon viral infection, innate immune responses serving as the
first line of defense against viruses can induce signal transduction
involving IFN and finally the expression of type I IFN, which
then contributes to an antiviral stage in the cells. However,
many viruses have evolved strategies to evade the antiviral
immune response and prevent IFN production. Picornavirus-
induced host translation system shut-off has been known to
result in IFNs and other cytokine suppression (Buenz and Howe,
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2006). Due to these RNA viruses being armed with some viral
proteases (i.e., Lpro, 2Apro, and 3Cpro), these proteases can target
different signal transduction nodes mediated by IFN (Porter
et al., 2006; Yang et al., 2007; Papon et al., 2009). FMDV is
no exception and has evolved to use its production to evade
the antiviral immune response against FMDV (Figure 2) and
maximize viral replication and dissemination. In addition to
promoting the generation of viral products with biological
functions, FMDV Lpro and 3Cpro plays pivotal roles in disrupting
the translational system of the host. For FMDV Lpro, this
protease is associated with translocation to the nucleus and
cleavage of the p65 subunit of NF-κB (de Los Santos et al.,
2007; Zhu et al., 2010). Although FMDV Lpro can inhibit IRF3/7
to promote the interferon-stimulated response element (ISRE)
(Wang et al., 2011a,c), IRF9 can assist type I and III IFNs
to perform antiviral response against FMDV infection (Stark
et al., 2010; Perezmartin et al., 2012), implying that the host has
evolved multiple immune pathways to meet with the evasion
immune response induced by FMDV. Most recently, it has been
reported that FMDV Lpro can bind to the host transcription
factor ADNP (activity dependent neuroprotective protein) to
suppress IFN and ISG transcription and enhance FMDV

replication (Medina et al., 2017). FMDV 3Cpro specializes in
cleaving FMDV polyprotein into viral proteins with biological
functions and ruins eIF4G, eIF4A and histone H3 to block
the translation system of the host (Falk et al., 1990; Li et al.,
2001). In addition to inhibition of cell protein generation by
3Cpro, it also disrupts the transcriptional levels of ISGs, blocks
the translocation of STAT1-STAT2 complex to the nucleus
and suppresses the ISKE promoter (Du et al., 2014). These
biological functions of FMDV 3Cpro seem to ruin the IFN system
against viral infection in the broad spectrum. Like the role of
EMCV 3Cpro in impairing the interaction TANK and TRAF6-
mediated NF-κB signaling (Huang et al., 2015), FMDV 3Cpro also
cleaves TANK to block the non-canonical IKK complex signaling
pathway, rather than FMDV Lpro only disrupting TANK binding
activity. In general, protease encoded by FMDV can negatively
regulate innate immune signaling by degradation of essential
molecules in different pathway.

Apart from viral proteases of FMDV, other viral proteins
play roles in viral immune evasion. VP1 and VP3 serve as
viral structural proteins, which are the main components of the
viral capsid (Mason et al., 2003). When the vp1 gene was over-
expressed in the human HEK293 cell line, VP1 and sorcin can

FIGURE 2 | Evasion of antiviral response of type I IFN mediated by FMDV. FMDV Lpro can cleave the p65 subunit of NF-κB and inhibit IRF3/7, which promote the
interferon-stimulated response element (ISRE). FMDV 3Cpro blocks the translocation of STAT1-STAT2 complex to the nucleus and suppresses the ISKE promoter.
Recombinant VP1 can disrupt the formation of the canonical IKK complex to block NF-κB activity. VP3 can disrupt the assembly of the Jak1/STAT1 complex and
inhibit IRF3 phosphorylation and dimerization. FMDV 2B can bind to RIG-I or LGP2 to impair related signal transduction and enhance viral replication. FMDV 3A
protein can disrupt the transcriptional levels involved in RIG-I, MDA5, and MAVS and block the interaction between RIG-I/MDA5 and MAVS via its N-terminal region.
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reduce NF-κB at the transcriptional levels and weaken type I IFN
activity; in addition, recombinant VP1 can disrupt the formation
of the canonical IKK complex to block NF-κB activity (Li et al.,
2013; Ho et al., 2014). When the vp3 gene was over-expressed
in the human HEK293T cell line, VP3 disrupted the assembly
of the Jak1/STAT1 complex, suggesting FMDV VP3 impairs the
type II IFN signaling pathway, inducing Jak1 degradation via
a lysosomal pathway; Moreover, FMDV VP3 can inhibit IRF3
phosphorylation and dimerization, thereby contributing to the
impairment of signal transduction involved in the type I IFN (Li
et al., 2016a,b).

Turning to some non-structural proteins of FMDV, the 2B
protein is capable of improving membrane permeability and
carrying out cellular protein secretory pathway shut-off (Moffat
et al., 2007). Recently, it has been reported that FMDV 2B can
bind to RIG-I or LGP2 to impair related signal transduction
and enhance viral replication, but the detailed mechanisms have
not been established yet (Zhu et al., 2016, 2017). Enterovirus
71 2C proteins can bind to RelA (p65) and suppress IKKβ

phosphorylation to disrupt the formation of the canonical
IKK complex and impair NF-κB activation (Du et al., 2015;
Li et al., 2016c). Since the 2C protein of picornaviruses are
highly conserved (Gorbalenya et al., 1989), it is assumed that
FMDV 2C should possess most of these activities involved in
immune evasion. The FMDV 3A protein is a multifunctional
non-structural protein in viral replication, virulence and host-
specific genetic features (Mason et al., 2003; Ma X. et al.,
2016; Bhatt et al., 2017; Bohórquez et al., 2017; Lotufo et al.,
2017). For the role of FMDV 3A in the antiviral immune
response, when 3A gene was over-expressed in the PK-15 cell
line (swine) and the HEK293 cell line (human), 3A protein
can disrupt the transcriptional levels involved in RIG-I, MDA5,
and MAVS and block the interaction between RIG-I/MDA5 and
MAVS via its N-terminal region (Li et al., 2016d). Although
some studies involved in the structural and non-structural
proteins of FMDV have noted that these viral proteins take
part in immune evasion by disrupting various nodes along
signaling transduction mediated by IFNs, the over-expressed
individual protein with in vitro physical structure and biological
function may not reflect the real situation in infected cells by
FMDV.

CONCLUSION

Based on recent knowledge on IFNs, it is now well established that
these cytokines function in the innate immune response against
viral infection. Collectively, even though a series of recent reports
strongly indicate that the host has evolved a complex network
related to signal transduction induced by IFN against FMDV
infection and FMDV relies on its viral proteins to suppress
or ruin antiviral immune responses induced by IFN systems,
the detailed and precise regulatory mechanisms need to be
elucidated. This field is thus at a stage where there is an urgent
need for the better understanding of both the basic biology and
therapeutic antiviral activity of IFNs, and for deep investigations
of how those proteins, without protease activities, derived from
FMDV infection can influence and control the IFN signaling
transduction in vivo.
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