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A large annotated cervical cytology 
images dataset for AI models to aid 
cervical cancer screening
Xuan Zhang1, Jianxin Ji1, Qi Zhang1, Xiaohan Zheng1, Kaiyuan Ge1, Menglei Hua1, Lei Cao1 ✉ & 
Liuying Wang2 ✉

Accurate detection of abnormal cervical cells in cervical cancer screening increases the chances of timely 
treatment. The vigorous development of deep learning methods has established a new ecosystem for 
cervical cancer screening, which has been proven to effectively improve efficiency and accuracy of cell 
detection in many studies. Although many contributing studies have been conducted, limited public 
datasets and time-consuming collection efforts may hinder the generalization performance of those 
advanced models and restrict further research. Through this work, we seek to provide a large dataset of 
cervical cytology images with exhaustive annotations of abnormal cervical cells. The dataset consists 
of 8,037 images derived from 129 scanned Thinprep cytologic test (TCT) slide images. Furthermore, we 
performed evaluation experiments to demonstrate the performance of representative models trained 
on our dataset in abnormal cells detection.

Background & Summary
Cervical cancer is the fourth most common cause of cancer incidence and mortality among women glob-
ally, while early diagnosis and treatment can help improve patient survival rates1–3. Cytology-based screening 
using pap smears or liquid-based preparation slides is a central requirement for the early diagnosis of cervi-
cal cancer4,5. For this, pathologists find out abnormal cervical cells under a microscope or in digital cytology 
images, and then issues a final report based on the results. However, this process is subject to high intra- and 
inter-pathologist variability, which can lead to high false-negative rates in routine diagnoses6. Additionally, since 
abnormal cervical cells usually account for only a small portion of all the sample cells, manual investigation leads 
to unnecessary waste of medical resources. Consequently, the computerized screening of abnormal cervical cells 
in digital cytology images is a relevant topic of ongoing scientific interest.

Since the development of deep learning7, AI (Artificial intelligence)-powered cervical cancer screening sys-
tems have emerged, driving a wave of changes in cervical cancer diagnosis. These systems mainly based on mod-
ern object detection techniques of deep learning, and provide new automatic detection methods of abnormal 
cervical cells through domain-specific improvements. For instance, Li et al. adopted Faster R-CNN to detect 
and classify cervical exfoliated cells in the early diagnosis of cervical cancer8. Xiang et al. further cascaded a 
task-specific classifier on YOLOv3 to improve the classification performance and smooth cervical cell dataset 
distribution to weaken the influence of noisy labels9. Similarly, Ma et al. proposed a mask abnormal cell detec-
tion model based on Mask R-CNN, and used a fixed proposal module to generate fixed-sized feature maps10. The 
work by Liang et al. classified the proposals by comparing with the reference samples of each category thus cir-
cumvent the problem of the limited data in cervical abnormal cell detection11. Chen et al. developed a dynamic 
comparing module and an instance contrastive loss to imitate clinical diagnosis process of normal-abnormal 
cells comparing, effectively improving the efficiency of detecting abnormal cervical cells12. Another work by 
Liang et al. explored contextual relationships using RoI-relationship attention module (RRAM) and global RoI 
attention module (GRAM) to improve the performance of cervical abnormal cell detection13. These methods 
demonstrate the potential advantages of computer-assisted abnormal cervical cell screening, such as boosting 
sensitivity, and reducing the risk of misdiagnosis.
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Although these methods have demonstrated significant advantages, their development heavily relies on large 
amounts of annotated data. Consequently, substantial human and material resources were required for the col-
lection of cervical cytology images at the outset of these studies. The main reason is the scarcity of publicly avail-
able image datasets containing annotated abnormal cervical cells. This situation not only prolongs the research 

Fig. 1  Workflow of data generation and evaluation experiment. (A) The TCT specimens were digitalized into 
whole slide images (WSIs) and divided into 2048 × 2048 pixel patches. (B) All patches were labelled, reviewed 
by two pathologists, and finally checked by an experienced pathologists to finish annotation of abnormal cells. 
(C) Several representative detection models were adopted to validate our datasets. The experiment is performed 
by splitting the datasets, training the model and evaluating the prediction results.
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cycle but also limits the generalization of models in clinical practice. Performance may be inconsistent when 
dealing with images derived from different centres, instruments, or staining techniques. In this work, we present 
and describe a large cervical cytology image dataset annotated with abnormal cells. Our goal is to provide a val-
uable public resource to optimize the development of abnormal cervical cell identification models. This dataset 
has the potential to enhance the generalization performance of existing models and open up new avenues for 
future research.

Methods
The following section describes the sample collection and preparation for the specimens included in the pre-
sented dataset. Furthermore, we elaborate on data annotation and the methods used for validating the presented 
dataset.

Ethics approval and consent to participate.  This work obtained approval of ethics committee with 
number of 2022ZFYJ295-01. Relevant data for this work were acquired from Heilongjiang Maternal and Child 
Health Hospital (HMCHH) through a collaboration. The original data collection was approved by the institu-
tional review board of HMCHH and adhered to the principles outlined in the Declaration of Helsinki. A waiver 
of Informed patient consent was granted by HMCHH as all samples were irreversibly anonymized by the insti-
tutional review board.

Specimen preparation and digitalization.  The dataset contains samples from patients who underwent 
cervical cytology examination at Heilongjiang Maternal and Child Health Hospital between October 2018 and 
May 2019. According to the examination reports, a total of 129 TCT (Thinprep cytologic test) slides reported 
as abnormal levels were collected from the pathology department into this work (see Ethics approval and con-
sent to participate). As shown in Fig. 1, each slide was digitized and divided into 333 non-overlapping patches 
(2048 × 2048 pixels) at 20x objective magnification using an Olympus BX53 optical microscope. Image patches 
with low information content, such as those covered by background or blurred patches, were removed. The 
remaining 8,037 patches were stored as cytology images in the dataset in.png file format.

Fig. 2  Statistical description of annotated abnormal cells in dataset.

Method AP50:95 AP50 AP75 AR50:95 F1-score

SSD 10.8 24.1 7.2 14.3 40.1

Retina Net 25.7 54.8 20.3 34.4 66.5

FCOS 27.6 61.6 21.2 37.7 68.9

Faster R-CNN 31.5 67.4 25.0 45.2 58.9

Cascade R-CNN 29.1 57.7 27.0 39.2 66.4

Sparse R-CNN 23.2 50.1 19.0 32.0 65.8

YOLOv3 9.1 28.3 2.8 17.6 46.3

YOLOv7 13.3 37.3 5.4 22.6 55.3

DETR 19.4 47.1 12.2 36.5 43.7

Table 1.  Evaluation results of each model for abnormal cells detection.
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Annotation process.  To obtain ground-truth annotations of abnormal cells, three pathologists were 
involved in the annotation preparation of this dataset, with the aim of making exhaustive annotations of abnor-
mal cervical cells in each patch. We referred to three pathologists as A, B, and C; A had about 33 years of experi-
ence in reading cervical cytology images, while reader B and C had about 10 years of experience. The abnormality 
or normality of a cervical cell was defined according to the ACOGs guidance14. Based on the guidance, the readers 
draw bounding boxes around abnormal cells in each image patch using the Colabeler tool (http://www.jingling-
biaozhu.com/) as shown in Fig. 1B.

The generation of the final annotation file follows three steps: the initial labelling step, the verification step, 
and the final check step. An image was firstly randomly assigned to reader B or C. Once the labelling was fin-
ished, the image and annotation were then passed on to another reader for review. Finally, the annotations were 
checked and exported by reader A.

All annotation files are stored in.xml file format and maintain the same number as the corresponding images.

Evaluation methods.  To validate the dataset proposed in this study, we used several previously published 
representative detection models: the two-stage architecture Faster R-CNN15, Cascade R-CNN16, Sparse R-CNN17, 
the one-stage architecture SSD18, Retina Net19, FCOS20 and end-to-end architecture YOLOv321, YOLOv722, 
DETR23 to perform the detection analysis of abnormal cervical cells. Initially, we randomly selected 20% of all 
patients as the testing subset. After that, the remaining patients were randomly divided into five folds to construct 
the training subset and validation subset for five-fold cross-validation. Note that all image patches corresponding 
to the same patient enter the same subset in this process.

In each fold, we trained for 30 epochs using training subset and retained the model that performed best 
on the validation subset during training process. Then, the testing subset was held out and used for model 

Fig. 3  FROC curves of detection models.
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evaluation when training was completed. The model parameters were updated via AdamW24 optimizer with a 
batch size of 8, while the initial learning rate (lr0) was 2 × 10−5 with the weight decay of 1 × 10−4. To avoid over-
fitting, the cosine annealing25 algorithm was used to adjust the learning rate change.

Data augmentation was also adopted to overcome the overfitting. In our experiment, we performed random 
horizontal flip, vertical flip, rotation, brightness change, gray scale, and gaussian blur. These affine transforma-
tions helped the model to have a better understanding of the input image since it viewed the images in many 
transformed views. The input images were rotated randomly by 90, 180, 270 degrees. The range between [0.8, 
1.5] was used for brightness change, and a sigma value between [0, 5] was used for the gaussian blur.

Fig. 4  Illustration of the predicted detection results using one-stage models after training.

Fig. 5  Illustration of the predicted detection results using two-stage models after training.
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Data Records
The complete dataset, named HMCHH-TCT-CellDet, is provided on figshare for public non-restricted access26. 
It consists of two components: a folder called “JPEGImages” contains cytology images from the corresponding 
TCT slides in.png file format, and a folder called “Annotations”, which contains annotation files of abnormal cells 
for each cytology image in.xml file format. The following section provides an overview of the presented dataset 
including the number of annotated instances and the size distribution of abnormal cells.

Overall description.  There are a total of 8,037 images of 2048 × 2048 pixels in the “JPEGImages” folder, and 
the same number of annotated files in the “Annotations” folder. The naming format of image files and annotation 
files is consistent, that is, “patient number_image number”, which facilitates the split of datasets when training 
the model.

First, according to the count, there are a total of 15,761 annotation boxes of abnormal cells in the dataset, that 
is, an image contains an average of two abnormal cells. Additionally, we used area of annotation boxes (in pixels) 
to measure cell size while aspect ratio (i.e., height divided by width) to represent cell shape. As shown in Fig. 2, 
the scale histogram and density curve shown distribution of cell sizes while each violin shown the distribution 
of aspect ratios for a specific range of cell sizes. These statistics may be helpful in selecting the architecture of the 
detection model and setting hyperparameters such as size of anchor boxes.

Technical Validation
To evaluate detection performance of those representative models, we used the COCO-style27 average precision 
(AP), average recall (AR) and the free-response receiver operating characteristic (FROC) analysis28 in our evalu-
ation experiments. We adopted the Darknet21 as backbone network for YOLO-based models and VGG29 for SSD 
to comply with original method, while all other models adopted ResNet5030. In testing process, the bounding 
boxes whose prediction probability is greater than the threshold 0.5 was retained as the final prediction results. 
The following section summarizes the performance results of our evaluation experiments.

Cell detection results.  Table 1 and Fig. 3 displayed the evaluation results of different detection models. Note 
that all these results are mean values of the five trained models on the testing subset. Different model paradigms 
shown differences in detection performance, mainly due to differences in the model structures and proposals 
strategies. The overall performance of two-stage models is higher than other models, while the performance of 
dense anchor boxes is higher than that of learnable anchor boxes. Among the models adopted, Faster R-CNN 
achieved the best performance, as AP50 of 67.4%, AP75 of 25.0% and AR50:95 of 45.2%, respectively. However, the 
F1-score of Faster R-CNN has declined compared to other dense anchor boxes strategy models, possibly due to 
the generation of more false positive boxes and the lack of correction modules like the Cascade R-CNN.

In Fig. 3, the FROC curves shown the performance of each detection models respectively, which represented 
the sensitivity achieved by the models as the number of false positive prediction boxes per image increases. 
When the number of false positive prediction boxes per image is 1, Faster R-CNN still achieved best sensitivity 
of 80.4% on average.

Fig. 6  Illustration of the predicted detection results using end-to-end models after training.
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Detection visualization.  The evaluation experiment also included visualized results to qualitatively demon-
strate the performance of the models in detecting abnormal cells. The instances used for demonstration were 
taken from several randomly selected images from the testing subset, as shown in Figs. 4–6.

Usage Notes
The xml annotation files in the dataset can be processed using the parsing function provided in the code, thus a 
csv file containing all annotations can be generated. Once the dataset is divided, the images and annotations can 
be passed into models using the provided custom data loaders. The subsequent training and evaluation process 
can be reproduced by the provided code, while other customized models can also be plug-and-played.

Code availability
The code used in this study was written in Python3 and is available at GitHub (https://github.com/zx333445/
TCT_data). The code is based on PyTorch (version 2.0.0) and provides complete training and evaluation 
processes for all representative models. In addition, the split csv files generated by the five-fold cross-validation 
were also uploaded to above code repository to facilitate researchers to conduct evaluation experiment.
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