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Abstract: Carbon nanostructures have been recently applied to improve industrial manufacturing
processes and other materials; such is the case for lubricants used in the metal-mechanic industry.
Nanotori are toroidal carbon nanostructures, obtained from chemical treatment of multi-wall carbon
nanotubes (MWCNTs). This material has been shown to have superb anti-wear and friction reduction
performance, having the ability to homogeneously disperse within water in concentrations between
1–2 wt.%. Obtained results of these novel nanostructures under water mixtures and novel additives
were a set point to our studies in different industrial lubricants. In the present work, nanotori
structures have been applied in various filler fractions as reinforcement to evaluate the behavior
in thermal transport of water-based (WB) and oil-based (OB) lubricants. Temperature-dependent
experiments to evaluate the thermal conductivity were performed using a thermal water bath ranging
from room temperature up to 323 K. The obtained results showed a highly effective and favorable
improvement in the heat transport of both lubricants; oil-based results were better than water-based
results, with nanotori structures increasing the lubricants’ thermal transport properties by 70%,
compared to pure lubricant.

Keywords: thermal conductivity; nanotori; lubricants; water-based; oil-based

1. Introduction

In industrial manufacturing systems a remarkable search to obtain the suitable mate-
rial application and performance, optimizing devices, machines and designs, maintain or
reducing materials consumption and pollution mitigation. Thermal transport plays a vital
role in industrial manufacturing systems and due to global market competition and cost
reduction endeavors, design miniaturization has required improvements in the thermal
performance (heat dissipation efficiency) of lubricants and fluids [1].

Lubricants and fluids are required in numerous engineering applications and fields
such as energy, transportation, defense, aerospace, microelectronics, power transmission,
and nuclear systems cooling, among others [2–4], for thermal transport and reduction
of wear and friction in metal-mechanic manufacturing operations, such as in forming-
punching, machining, drilling, among others [5]. These materials provide a proper working
component interface, removing chips and debris from machined surfaces, reducing the risks
associated with machinery failure or tooling damage, improving the quality of working
components.
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Early investigations used millimeter or micrometer-sized particle suspensions in order
to improve material performance. Nevertheless, initially, this led to a range of issues
such as a rapid sedimentation tendency of these solid structures within the fluidic media;
forming sludge sediments; limiting the thermal transport capacity; and increasing the
thermal resistance of the conventional fluids and lubricants.

With the aid of nanotechnology, diverse heat transfer fluidic media have been investi-
gated in order to improve thermal transport behavior, characteristics and performance [6–13].
Nanofluids, and some nanolubricants, are highly effective thermal transport media as a result
of their anomalous high thermal characteristics. Solid nanostructures possess high thermal
conductivity, measuring several orders of magnitude higher than conventional heat transfer
lubricants, fluids, and mixtures of both. Integration of reinforcing nanostructures within
conventional materials results in higher thermal conductive mixtures that could enhance
performance and efficiency in diverse systems [14]. Among the benefits of nanofluids and
nanolubricants, one of the attractive characteristics is that these materials can be optimally
engineered to achieve particular objectives, such as anti-wear properties, thermal energy
storage capacity, high thermal conductivity, better temperature stabilization and lower pres-
sure drop [15]. Nevertheless, even though nanofluids and nanolubricants are promising
for many practical applications, care must be taken to maintain the integrity of the systems
and eliminate undesirable properties. Potential drawbacks of adding nanoreinforcements to
conventional materials pertain to viscosity, nanostructures’ agglomeration, and sedimentation,
among others [15–17].

A carbon nanotube (CNT) is a carbon-based material in tubular shape, a few nanome-
ters in diameter. Carbon-based nanostructures can be produced in a variety of sizes and
lengths. They resemble black powder on a macro scale. Among a wide range of nanos-
tructures, varying from low to very high thermal conductivity, carbon-based materials
have been shown to provide the highest thermal conductivity improvements compared to
other particle types. Experiments have been conducted on carbon-based nanostructures
such as graphene, carbon fibers, and CNTs, in order to increase thermal transport perfor-
mance of conventional materials [18–25]. In diverse studies, nanomaterials developed with
allotropes of carbon (graphene, diamond, CNTs, carbon fibers, etc.) and oxide-based mate-
rials generally contain more than 1.0 wt.% of these reinforcements’ concentration [9,26–29].
Nanofiller concentrations up to up to 10–12 wt.% have been incorporated into conventional
media to enhance the system’s thermal characteristics (typically by at least 12% in thermal
conductivity). However, such concentrations of nanostructures showed various negative
effects, such as an increase in the suspension’s viscosity, as well as cost. The higher con-
centrations of nanofillers adversely affect the material fluidity, threaten the nanofluid´s
stability, and thermal management goals.

Choi et al. [30] reported superb thermal conductivity improvements for multi-wall
CNTs (MWCNTs) reinforcing synthetic poly (α-olefin) oil (PAO). They achieved enhance-
ment of 160% at 1.0 vol.% of MWCNTs. The effects of solid nanostructures at various
volume fractions and temperatures on thermal transport performance of hybrid CNTs–
Al2O3/water nanofluids was investigated by Esfe et al. [31], they found that thermal
conductivity improvement was due to the high number of solid reinforcements and rise in
evaluating temperatures. Farbod et al. [32] prepared water-based nanofluids at various
concentrations and lengths of functionalized MWCNTs. An improvement in thermal con-
ductivity was observed with increasing the temperature and with decreasing the length
of the MWCNTs, suggesting a percolation channel formation and interlayer interactions
between the carbon nanostructures and the media. A study performed by Ilyas et al. [33] on
commercial brand oil with MWCNTs reinforcements, showed a significant thermal conduc-
tivity enhancement at 1.0 wt.% of 22 and 33% at 35 and 333 K, respectively. Naddaf et al. [23]
observed significant enhancements in thermal conductivity (>80%, when compared to pure
diesel oil) with the increase in temperature, up to 373 K, for graphene nanoplatelets- and
MWCNT/diesel oil nanofluids. Similarly, Shanbedi et al. [34] observed that increasing the
filler fraction and temperature of their studied water-based nanofluids, an improvement
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in the effective thermal conductivity performance was achieved. Graphene nanoplatelets
were dispersed within water and ethylene glycol (EG) by Selvam et al. [35]. It was observed
that as the filler fraction of graphene nanoplatelets was increased, the thermal conductivity
ratio was enhanced. Particularly, an improvement of 20% and 15%, for EG and water
media was observed at 0.5 vol.%, respectively. On other carbon structures, Branson et al.
investigated nanodiamonds (NDs) dispersed within EG and mineral oil (MO) [26]. In
their studies, incorporation of 0.88 vol.% of NDs increased the thermal conductivity by
~12%. Moreover, 6% and 11% increases were achieved at 1.0 and 1.9 vol.%, respectively.
Similarly, Yu et al. [36] showed that incorporation of small concentrations (~1.0 vol%) of
NDs to EG produced thermal conductivity enhancements of around 17%. In previous work
by Taha-Tijerina et al. [8], even less filler fraction of NDs (0.1 wt.%) was homogeneously
dispersed within MO-based nanofluids with significant improvements of ~70%.

Among these carbon-based materials, less-common structures have been recently stud-
ied for mechanical applications and other functions. These novel material configurations
are called nanotori or nanorings, comprising of circular CNTs formed by connecting their
two ends. The toroidal-like structures are closely related to the well-known sphere-like
nanostructures. As mentioned by Kharissova et al. [37], these torus-like materials have
been studied more theoretically than experimentally. However, scientific studies have
shown their superb properties and promising applications. Recently, carbon nanotori
structures have been evaluated as reinforcements for conventional lubricants and fluids in
the metal-mechanic field, allowing a reduction in wear and friction [38].

Due to their exceptional characteristics and similarity to CNTs, carbon nanotori struc-
tures are proposed as reinforcing material for metal-forming lubricants. In this research,
water-based (WB) and oil-based (OB) nanolubricants consisting of varying carbon nanotori
filler fractions (by weight) aim to determine their thermal transport performance (thermal
conductivity) over a range of temperatures (up to 323 K).

2. Materials and Methods
2.1. Preparation of Nanolubricants

In our research, two commonly applied lubricants (FUCHS Industry), water-based
and oil-based, for metal-forming applications; punching, stamping, and drawing, among
others, are used as conventional materials (see Table 1). Their general characteristics pro-
vide a light but effective film to dissipate heat and reduce wear in tools and machinery.
These materials were reinforced with carbon nanotori at various filler fractions: 0.01 wt.%,
0.05 wt.% and 0.10 wt.%. Multi-walled carbon nanotubes (MWCNTs) (30–50 nm in di-
ameter) functionalized with carboxylic acid (COOH) groups were dissolved in an acid
solution of nitric acid (HNO3), sulfuric acid (H2SO4), hydrochloric acid (HCl), potassium
permanganate (KMnO4), hydrogen peroxide (H2O2), and deionized water (DiW) [39].
Afterwards, magnetic stirring was performed to the solution in a glass container in an ice
bath for 48 h. Then, the solution was moved to a glass container where DiW was poured
at 20% concentration and maintained for another 24 h (Figure 1a). HCl and H2O2 were
used to clean the solution which is centrifuged afterwards to obtain the supernatant which
contains the carbon nanotori. Figure 1b shows a TEM (Hitachi H-9500, Tokyo, Japan, elec-
tron microscope operated at 300 keV) image of carbon nanotorus suspended in DiW; these
nanostructures have a torus diameter of ∼130 nm, and tube diameter of ∼40 nm. Dynamic
light scattering (DLS) (Malvern Zetasizer Nano ZS, Almelo, The Netherlands) was used to
determine that the average outer diameter of these nanostructures was ~177 nm with a
polydispersity index of 0.248 and zeta potential of −26.5 mV [38].

Raman spectroscopy for nanotori structures (Raman: Micro-RAMAN DXR Thermo-
scientific, Sussex, UK at 532 nm) is shown in Figure 2. Synthesis was carried out using
MWCNTs, whose characteristic Raman spectra contain the G band at 1590 cm−1, (the same
spectra of almost all carbon nano forms); the D band around at 1320 cm−1 indicates a
structural defect of graphene; and the band at 2700 cm−1 G’ (also known as 2D) is used
to get information about the electronic and geometrical structure. These spectra allow
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us to confirm that nanotori structures are conformed from MWCNTs in toroidal shape.
Additionally, the increment at 1600 cm−1 allows us to know that changes exist in the
geometric structure. This increment in Raman absorption reflects a change in crystallinity
of the material.

Table 1. Material characteristics.

Materials Properties

Base lubricant Density (288 K) Kinetic Viscosity
(mm2/s) Waer:Oil Ratio

Water-based 1.031 g/cm3 2.02 @ 298 K
0.86 @ 343 K 6:1

Oil-based 0.994 g/cm3 63.3 @ 298 K
40.7 @ 343 K 4:1

Nanoparticles Size/Geometry Polydispersity Index Zeta Potential

Carbon
nanotori

Tube diameter ∼40 nm
Torus diameter ∼130 nm 0.248 −26.5 mV

OD~177 nmNanomaterials 2021, 11, x FOR PEER REVIEW 4 of 12 
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Figure 2. Raman spectrum for carbon nanotori structures.

Once carbon nanotori structures were obtained, they were dispersed within WB and
OB lubricants. Then, 40 mL glass vials were prepared at various filler fractions: 0.01 wt.%,
0.05 wt.% and 0.10 wt.% of nanotori. To homogeneously disperse the nanostructures, an
ultrasonic dismembrator was used (Branson ultrasonic homogenizer model 5510-40 kHz)
for a prolonged time (5–6 h). To prevent any agglomeration and fast sedimentation of
nanostructures, the sonicator bath water temperature was maintained constant at room
temperature (297 K), and the bath water was changed every hour. Vials were kept on a
shelf for at least 4 weeks without significant visible settling or sedimentation. UV–Vis
spectra of carbon nanotori WB lubricant at 0.10 wt.% is shown in Figure 3. Overlap of as
prepared (0 h) sample (black) and sample after 10 weeks are presented with no significant
structural changes, confirming what we observed regarding the stability of the suspensions
after a long shelf-sitting time.
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2.2. Thermal Conductivity Measurements

There are diverse methodologies and techniques to determine and evaluate the ther-
mal conductivity of fluidic media: transient hot-wire technique [14,40,41], cylindrical cell
method [42], steady-state method [43,44], temperature oscillation method [45], and 3-ω
method [46,47]. In our research, thermal evaluation was performed by thermal conductiv-
ity measurements of conventional WB and OB nanolubricants at various carbon nanotori
filler fractions according to the transient hot-wire (THW) methodology, with a KD2 Pro
instrument (Decagon, Inc., Pullman, WA, USA). This technique obtains the thermal conduc-
tivity of a fluidic media which is determined based on measuring the time response and
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temperature of a metal probe subjected to an immediate electrical pulse, which functions
both as a heater and temperature sensor. The KD2 Pro works with stainless-steel probe
(KS-1; 1.3 mm in diameter by 60 mm long) which is fully immersed in the vial sample
to obtain the effective thermal conductivity of nanolubricants. The probe temperature is
slowly increased by providing a constant current through resistive heating; the heat is
dissipated from the sensor to the surrounding media through conduction, hence, increas-
ing its temperature. This temperature rise depends on the media’s thermal conductivity.
Finally, the thermal conductivity value is obtained from the heating power and the slope
of the temperature change through the device algorithm using a logarithmic time scale.
The transient hot-wire method has the advantages of fast measurements and low cost,
which increases the ease of implementation. The system was calibrated/verified before
the measurements were taken, using a standard fluid (glycerol) and corroborated data
for DiW and EG. The thermal conductivity values are verified up to 3 decimal points.
Enhancements in thermal conductivity were obtained, considering the ratio of effective
thermal conductivity of the nanofluids (keff) and pure lubricants, WB and OB lubricants,
respectively, (k0) and ((keff/k0) − 1)%.

Temperature-dependent measurements were performed using a water bath ranging
at various temperatures from room temperature (297 K) up to 323 K (See Figure 4). Each
sample was thermally equilibrated before each measurement for 10–15 min. Average ther-
mal conductivity values were taken with standard deviation from at least 6 measurements
from each set of nanolubricants.
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3. Results

Improvements in thermal conductivity for carbon nanotori within OB and WB lu-
bricant systems have been obtained. Figure 5 shows the temperature-dependent thermal
conductivity performance of these systems at various carbon nanotori filler fractions; error
bars depict the standard deviations.

Pure WB lubricant did not show considerable temperature dependency (less than 2%
at 323 K). All WB nanolubricants showed gradually thermal conductivity increments as
carbon nanotori concentrations and temperature were also increased, indicating the thermal
behavior of carbon-based nanostructures. Moreover, the incorporation of carbon nanotori
produced important thermal conductivity enhancements as evaluating temperature was
increased. For instance, at 323 K, WB nanofluids achieved enhancements of 24, 33 and a
maximum of 46% at 0.01 wt.%, 0.05 wt.% and 0.10 wt.%, respectively, when compared to
pure WB lubricant.
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Similar to WB lubricants, OB lubricants did not show temperature dependency (less
than 2% at 323 K). Thermal conductivity evaluations were performed as filler fractions and
temperatures were increased, to determine their temperature-dependency behavior. The
incorporation of carbon nanotori reflected significant improvements as temperature was
increased. At 313 K for instance, OB nanofluids achieved enhancements of 16%, 24% and
36%, at 0.01 wt.%, 0.05 wt.% and 0.10 wt.%, respectively. Superb behavior observed was
achieved at 323 K, with maximum enhancement of 70% at 0.10 wt.%.

Incorporation of carbon nanotori, even at very low filler fractions (up to 0.10 wt.%),
significantly enhances the thermal conductivity performance of nanolubricants, which is
mainly attributed to the inherent high heat transfer capacity of carbon-based nanostructures.
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Due to the low applied nanostructures concentrations, the resulting improvements
in thermal conductivity could be attributed to diverse factors, such as molecular inter-
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actions between the lubricants and carbon nanostructures [18,22,25,48], and percolation
mechanism [49–51]. As the nanotori filler fraction is increased within the lubricants, the
nanostructures’ distance is decreased, thus increasing the contact probability among them;
therefore, thermal transport channels are formed, increasing the thermal conductivity
behavior due to the percolation mechanism [52]. Another important factor is the Brownian
motion contribution of the carbon nanostructures [51–54]. For instance, an increase in the
thermal conductivity of the nanolubricants can be induced by the heat transport between
colliding nanostructures, particularly at higher temperatures, corresponding to more in-
tense Brownian motion [55–57]. Furthermore, liquid layering at the lubricant/nanotori
interface could also contribute to the increased behavior of thermal conductivity [58–60].
Effective thermal conductivities (keff) of nanolubricants increase with temperature (room
temperature up to 323 K), indicating the role of Brownian motion on measured thermal
conductivities, in accordance with Maxwell’s predictions [61,62].

Theoretical approaches and correlations used to describe and explain improvements
in thermal transport performance for nanomaterials is so complex that the use of a single
model is not sufficient to predict the wide range of experimental data [63]. Theoretical
models have been used to predict thermal conductivity of nanofluids assuming diverse
variables, such as the reinforced nanostructures properties and characteristics being well-
dispersed within conventional media.

The filler fractions and conductivities of the lubricants will determine the lower and
upper boundary values of nanolubricants’ effective thermal conductivity (keff). A theoretical
model of the keff of the nanolubricants is performed using a classical effective medium
theory known as Hashin-Shtrikman (H-S) theory [64]. In this case the ratio of knt/kL is
>1, where knt is the thermal conductivity of the carbon nanotori and kL is the thermal
conductivity of the lubricants. The lower boundary value (since the nanofillers fraction, ϕ,
is very low, 0.10 wt.%) for effective thermal conductivity of nanolubricants, keff, is calculated
using the following equation:

ke f f

kL
= 1 +

3ϕ
(

knt
kL

− 1
)

knt
kL

+ 2 − ϕ
(

knt
kL

− 1
) (1)

The calculated value 0.5486 W/m K matches well with the experimental value ob-
tained at room temperature for 0.10 wt.% nanolubricant (0.547 W/m K). The model from
Hashin-Shtrikman (H-S) requires input of the reinforcing nanostructures’ thermal con-
ductivity. Carbon nanotori allotropy has not been fully described in literature for its
thermal performance. However, carbon nanostructures (graphite, graphene, SWCNTs,
MWCNTs) have been reported at various thermal conductivities, varying from 2000 up
to 6000 W/mK [65–69]. For our evaluations, we selected a lower value considering the
structural configuration (ring/tori) of the nanostructure in our research. In this case, carbon
nanotori structures were considered to have a thermal conductivity of 2200 W/mK, which
was applied as knt value.

From a theoretical point of view, with the increase of the nanofluid’s bulk temperature,
molecules and nanostructures are more active and able to transfer more energy from
one location to another per unit time. The temperature-dependent variations in thermal
conductivity indicate that it is not just the percolation mechanism that increases the thermal
conductivity, but also Brownian motion contributes to the thermal transport behavior of
carbon nanotori-based nanolubricants as well.

4. Conclusions

Reinforcing conventional materials with solid carbon nanotori structures, promotes
highly effective heat transfer behavior, which is mainly attributed to its anomalous high
thermal conductivity at very low concentrations up to 0.10 wt.%. Two conventional metal-
forming lubricants were analyzed, water-based and oil-based. For oil-based lubricants,
thermal conductivity improvements were observed as carbon nanotori and evaluating
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temperatures were increased, reaching a maximum of 46% at 323 K with merely 0.10 wt.%.
The greatest impact was shown with oil-based lubricants, probably due to the oleophilic
compatibility of carbon nanostructures. Here, the enhancement was observed to achieve
36% at 313 K. The maximum improvement was shown at 323 K up to 70% for 0.10 wt.% filler
fraction of carbon nanotori. Carbon nanostructures are shown to have good compatibility
with conventional lubricants and may significantly improve thermal conductivity when
used as reinforcements. Considering the suitability of the reported carbon-reinforced
nanolubricants for thermal industrial manufacturing processes, the need of predictive
methodologies for thermal transport is an area of opportunity for further development
and study.
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