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integrated bioinformatics analysis
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Abstract 
Ankylosing spondylitis (AS) is an autoimmune disease, and the relationship between copper death and AS is not clear. The aim 
of this study was to analyze and identify potential cuprosis-related genes associated with the onset of AS by bioinformatics 
methods. We obtained the AS gene expression profile GSE25101 from the Gene Expression Omnibus (GEO) database, 
which consists of blood samples from 16 active AS patients and 16 sex-and age-matched controls. After analyzing the data, 
we utilized the WGCNA method to identify genes that exhibited significant differential expression. In order to assess the 
prognostic and predictive power of these genes, we constructed receiver operating characteristic (ROC) curves. To further 
validate our predictions, we employed nomograms, calibration curves, decision curve analysis, and external datasets. Lastly, 
we conducted an analysis on immune infiltration and explored the correlation between key genes and immune response. 
Three genes, namely INPP5E, CYB5R1, and HGD, have been identified through analysis to be associated with AS. The 
diagnosis of patients using these genes has been found to possess a high level of accuracy. The area under the ROC curve 
is reported to be 0.816 for INPP5E, 0.879 for CYB5R1, and also 0.879 for HGD. Furthermore, the nomogram demonstrates 
an excellent predictive power, and it has been calibrated using a Calibration curve. Its clinical usefulness and net benefit 
have been thoroughly analyzed and estimated through the use of a DCA curve. Moreover, INPP5E, CYB5R1, and HGD are 
found to be associated with various types of immune cells. In conclusion, the systematic analysis of cuprosis-related genes 
may aid in the identification of mechanisms related to copper-induced cell death in AS and offer valuable biomarkers for the 
diagnosis and treatment of AS.

Abbreviations: AS = ankylosing spondylitis, AUC = area under curve, CRGs = cuprosis-related genes, DCA = decision curve 
analysis, DEGs = differentially expressed genes, FLS = fibroblast-like synoviocytes, GEO = Gene Expression Omnibus, GSEA = 
Gene Set Enrichment Analysis, HGD = homogentisic acid 1,2-dioxygenase, INPP5E = inositol polyphosphate-5-phosphatase, 
LASSO = Least Absolute Shrinkage and Selection Operator, ME = module eigengene, PPI = protein-protein interaction, RA = 
rheumatoid arthritis, ROC = receiver operating characteristic, TCA = tricarboxylic acid, Th 17/23 = T helper 17/23, URGs = 
up-regulated genes, WGCNA = weighted gene co-expression network analysis.
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1. Introduction
Ankylosing spondylitis (AS) is a long-term autoimmune inflam-
matory condition that primarily affects the spinal and sacroiliac 
joints. This disease can lead to fibrosis of the intervertebral discs, 
calcification of nearby connective tissues, and the formation of 
bony ankylosis. As a result, individuals with AS may experience 
chronic back pain, restricted spinal movement, and a significant 
decline in their overall quality of life.[1]

The global prevalence of AS is reportedly between 0.1% to 
1.4%, with a male to female ratio of approximately 2 to 4:1. AS 
typically manifests before the age of 40. The specific underlying 
causes of AS remain unknown, although genetic, environmental, 
immunological, and metabolic factors are believed to contribute 
significantly to its onset and progression. Diagnosis of AS pri-
marily relies on the recognition of characteristic clinical symp-
toms and signs (such as post-activity improved inflammatory 
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lumbago and backache, sacroiliac pain), imaging evaluations 
of the pelvis and spine, and serological tests. Notably, Human 
Leukocyte Antigen B27 is closely associated with AS susceptibil-
ity and exhibits a marked familial clustering pattern, account-
ing for approximately 30% of the overall genetic risk of AS.[2,3] 
Recent reports suggest a correlation between interleukin-23 
receptor and T helper (Th) 17/23 genes with the genetic suscep-
tibility to AS.[4] The identification of AS-related pathway genes 
holds promise for enhancing the diagnosis and treatment of AS. 
Unfortunately, no definitive cure for AS exists at present. Current 
management strategies primarily comprise non-drug interven-
tions, such as optimizing posture and engaging in regular phys-
ical exercise, as well as pharmacological interventions involving 
the use of nonsteroidal anti-inflammatory drugs and sulfasala-
zine to alleviate pain and improve inflammatory biomarkers.[5,6] 
Currently, the most effective drugs for blocking tumor necrosis 
factor α, such as etanercept, infliximab, and adalimumab, are 
biological agents. It is recommended to use these drugs early in 
the disease progression, specifically when the inflammatory bur-
den is at its peak. However, the efficacy of these drugs remains a 
matter of debate.[7] Consequently, future research on AS should 
prioritize investigating its underlying mechanisms and the devel-
opment of drugs targeting these mechanisms.

In 2022, Tsvetkov et al published a groundbreaking study in 
Science, unveiling a novel mechanism of cell death called cupro-
ptosis. This study revealed that an excess of copper ions leads to 
the direct binding of these ions to lipoylated dihydrolipoamide 
S-acetyltransferase lipoylproteins within the tricarboxylic acid 
(TCA) cycle. Consequently, the aberrant aggregation of lipoylpro-
teins occurs, impairing the normal functioning of the TCA cycle 
and triggering a proteotoxic stress response. Ultimately, this cascade 
of events culminates in the demise of the affected cells.[8] Several 
recent studies have highlighted the association between cupropto-
sis and various multi-system diseases, including neurodegenerative 
diseases such as Alzheimer’s disease, cancer, cardiovascular diseases 
like atherosclerosis, and metabolic diseases.[9–12] However, there has 
been a lack of bioinformatic analysis on cuproptosis-related genes 
(CRGs) and their role in the progression of AS. A study as early 
as 1978 by P. Aiginger et al found that patients with AS and RA 
(rheumatoid arthritis) had significantly higher serum copper levels 
compared to normal patients.[13] Our aim was to build upon the 
aforementioned findings by identifying CRGs and elucidating their 
potential associations with AS. This will serve as a foundational 
basis for further exploration and innovation in clinical treatment 
regimens for AS. One notable manifestation of AS is erosive synovi-
tis,[14] which refers to the excessive and detrimental proliferation of 
fibroblast-like synoviocytes (FLS). FLS possess several tumor-like 
characteristics and can thrive and proliferate excessively within a 
microenvironment resembling a tumor. The abnormal proliferation 
of FLS is partially attributed to the inhibition of programmed cell 
death, and AS is characterized by the imbalance between cell sur-
vival and cell death in multiple cell types.[15] The metabolic mech-
anism potentially related to copper poisoning may be associated 
with these specific cell populations.

Bioinformatics plays a crucial role in unraveling the molecu-
lar mechanisms underlying diseases. It is an interdisciplinary field 
that combines biology and computer science. In recent times, 
bioinformatics has witnessed significant advancements, leading 
to the development of numerous public databases. These data-
bases serve as valuable resources for researchers, aiding them in 
identifying disease diagnoses, prognoses, and potential treatment 
targets. In certain studies, researchers have employed gene expres-
sion datasets downloaded from the Gene Expression Omnibus 
(GEO) to screen for hub genes. This approach helps elucidate 
the onset and progression mechanisms of AS.[16,17] However, no 
study has been conducted to apply bioinformatics for the analysis 
of the correlation between CRGs and the progression of AS. We 
conducted an analysis of the whole blood RNA data from AS 
patients in the GEO database. Our aim was to construct a pre-
diction model that can identify the risk of copper death. Through 

this analysis, we identified genes that are associated with copper 
death and its onset in AS. Our findings highlight 3 specific genes 
that are highly correlated with the onset of AS and prognosis of 
copper death. These genes may serve as potential biomarkers for 
accurately predicting the onset of AS.

This study offers a theoretical basis and novel insights into 
the investigation of copper demise in AS, providing a fresh per-
spective for genetic diagnosis and treatment of AS.

2. Materials and methods
The information for this study was exclusively sourced from 
public databases, eliminating the need for ethical approval.

2.1. Data collection

We downloaded gene expression profiles GSE25101, GSE73754, 
and GSE18781 of AS from the GEO database (http://www.ncbi.
nlm.nih.gov/geo). GSE25101 analyzed blood samples from 16 
AS patients in the active stage and 16 patients in the control 
group that were matched for gender and age. GSE73754 ana-
lyzed blood samples from 94 patients (53 males and 41 females) 
and 70 healthy control subjects (30 males and 40 females) using 
a gender-specific analysis. GSE18781 analyzed peripheral blood 
samples from 2 independent groups, one with 11 AS patients 
and 12 healthy control subjects, and another with 7 AS patients 
and 13 healthy control subjects.

2.2. Analysis of differentially expressed genes

The data in GSE25101 underwent standardization and normal-
ization using the normalized inter-array function in the “limma” 
package of the R software. The “limma” R software package 
was utilized to identify differentially expressed genes (DEGs) 
between the AS group and the control group. The screening 
criteria for DEGs were a logFC > 1 and an adj.PVal < .05. 
A heatmap was generated to display the top 30 genes with 
the most significant differences based on the logFC value. To 
visually represent the up-regulated genes (URGs) and down- 
regulated genes, a volcano plot and heatmap were created using 
the ggplot2 package and the “pheatmap” package of the R soft-
ware. Lastly, the selected DEGs underwent Gene Set Enrichment 
Analysis (GSEA).

2.3. Co-expression network analysis

The Weighted Gene Co-expression Network Analysis (WGCNA) 
algorithm is used to cluster genes into distinct modules, uncov-
ering the relationships between these modules and disease char-
acteristics.[18] This co-expression network analysis allows for a 
deeper understanding of the connections between genes and dis-
eases. To comprehensively investigate the pathogenesis of AS, we 
utilized the “WGCNA” package in the R software to construct 
a co-expression network for DEGs. Only genes with a maxi-
mum variance of 25% in the GSE25101 dataset were included 
in the construction of the co-expression network. The modules 
with a threshold of 0.25 were combined using the Dynamic Tree 
Cut method. Data integrity was verified using the “goodSam-
pleGenes” function. The optimal soft threshold (b) was selected 
and validated with the “PickSoftThreshold” function. To identify 
modules based on topological overlap, the matrix data were trans-
formed into an adjacency matrix for clustering. Subsequently, the 
module eigengene (ME) was calculated, and relevant modules in 
the ME-based tree were merged, resulting in the generation of 
a cluster dendrogram. By assessing the importance of genes and 
clinical data based on phenotypic information and modules, we 
examined the relationship between the model and modules. The 
power exponent was set at 1:20 for modular clustering genes, 
with 40 modules serving as functional identification points.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo


3

Fan et al.  •  Medicine (2024) 103:35� www.md-journal.com

2.4. Enrichment analysis

To identify overlapping genes, we performed an intersection 
analysis between the differentially expressed genes (DEGs) in 
the AS group and the control group, and the hub module genes 
obtained from the WGCNA. The resulting genes represent the 
DEGs among the hub module genes. To further explore the 
biological functions and pathways associated with these genes, 
we conducted GSEA using the “clusterProfiler” package. This 
analysis included Disease Ontology and Kyoto Encyclopedia 
of Genes and Genomes analysis. Additionally, we constructed 
a protein–protein interaction (PPI) network for these genes 
to investigate their potential interactions and functional 
relationships.

2.5. Validation of hub genes using the LASSO logistic 
analysis

We identified the intersected genes by performing an intersec-
tion analysis of the differentially expressed genes (DEGs) from 
the training set and the hub genes from the WGCNA. To further 
screen out hub feature genes, we employed the Least Absolute 
Shrinkage and Selection Operator (LASSO) algorithm. Logistic 
regression analysis was conducted using the “glmnet” package 
from the R software. The optimal value was determined by 
defining the minimum lambda. LASSO, as a regression-based 
method, allows the inclusion of numerous covariates in a 
model, while also shrinking the absolute value of the regression 
coefficient.

2.6. Identification of cuproptosis-related differentially 
expressed genes

To model the disease, we intersected the disease feature genes 
obtained from LASSO with the CRGs retrieved from the liter-
ature.[8] Furthermore, we performed a GSEA on these genes to 
determine the relevant signaling pathways and biological pro-
cesses associated with them.

2.7. Evaluation of disease prediction efficiency of hub 
genes

I constructed a nomogram model to predict the onset of AS 
based on disease-related hub CRGs. To accomplish this, I 
utilized the “rms package” from the R software. The model 
employed Logistic regression to identify the prediction model 
associated with AS onset and obtain the nomoscore formula. 
Each gene’s score was represented by “points” in the nomogram 
model, while the “Total points” indicated the cumulative score 
of all the aforementioned genes. To evaluate the calibration of 
the nomogram, a calibration curve was generated. Additionally, 
a decision curve analysis (DCA) curve was plotted to analyze 
and estimate the clinical usability and net benefits. Subsequently, 
a receiver operating characteristic (ROC) curve was constructed 
using the “pROC” package of the R software, followed by cal-
culating the area under curve (AUC) in RStudio to determine 
the diagnostic value of the screened hub disease feature genes 
and nomogram model. Genes with an AUC greater than 0.7 and 
a P value less than .05 were deemed to possess high diagnostic 
accuracy for AS.

2.8. Immune cells infiltration analysis

The correlation between AS and Hallmark pathway/immune 
infiltration was analyzed using the ssGSEA method in the “GSVA” 
package of the R software. Spearman Correlation Analysis was 
employed to assess the correlation between immune cells, immune 
functions, and the expressions of hub genes.

2.9. Analytical statistics

All statistical analyses were conducted using the R package of “R 
v4.2.2” framework. To examine differences in continuous vari-
ables that followed a normal distribution, the Student t test was 
employed. On the other hand, the Wilcoxon rank sum test was 
utilized for continuous variables that did not conform to a normal 
distribution. Additionally, ROC curves were employed to assess 
the diagnostic accuracy of genes. A significance level of P < .05 
was adopted for all tests to determine statistical significance.

3. Results

3.1. Screening of DEGs

Figure 1 illustrates the flow chart of this study. To investigate 
genes associated with the onset of AS, we performed a retro-
spective analysis on blood samples from 16 AS patients at the 
active stage using data from the GSE25101 dataset. We also 
included 16 patients from the control group who were matched 
in terms of gender and age. Raw data from these samples were 
homogenized (Fig. 2A). A total of 12,923 DEGs were identified. 
Applying the criterion adj.Pval < 0.05, we obtained 344 DEGs, 
consisting of 147 URGs and 197 down-regulated genes. These 
findings are visually represented through the heatmap (Fig. 2B) 
and the volcano plot (Fig. 2C).

3.2. Functional enrichment analysis of DEGs

To gain a deeper understanding of the biological processes and 
signaling pathways of AS-related differentially expressed genes 
(DEGs), we conducted an enrichment analysis on the DEGs 
between the AS group and the control group. The results of 
the study revealed that the DEGs were up-regulated in several 
pathways, including Cardiac muscle contraction, Chemical car-
cinogenesis – DNA adducts, Oxidative phosphorylation, Renin-
angiotensin system, and Ribosome, as depicted in Figure 2D. On 
the other hand, the DEGs were found to be down-regulated in 
pathways such as 2-Oxocarboxylic acid metabolism, Adherens 
junction, Citrate cycle (TCA cycle), GnRH secretion, and Primary 
immunodeficiency, as shown in Figure 2E. In order to visualize the 
gene set enrichment (GSE) functions of the DEGs, a ridgeline plot 
was generated. Each color curve on the plot represented a distinct 
function or pathway. The peak value of the upward or downward 
curve indicated the level of positive or negative regulation of 
each DEG, which is referred to as the enrichment score. Notably, 
the results indicated that these DEGs were down-regulated  
when enriched in pathways associated with Thermogenesis, non-
alcoholic fatty liver disease, and Chemical carcinogenesis - DNA 
adducts, as clearly demonstrated in Figure 2F.

3.3. Co-expression network construction and module 
detection

The analysis of WGCNA was performed to examine the 
mRNA expressions of 344 DEGs. Subsequently, cluster analy-
sis and comparison of grouping differences were conducted on 
the samples. As a result, a cluster dendrogram and heatmap of 
the samples were generated (Fig. 3A). To determine the appro-
priate soft threshold, a value of 10 was selected and applied 
to obtain the approximate scale-free topological fitting index 
of the network (Fig. 3B). Utilizing a height of 0.25 as the cut-
ting line, another cluster dendrogram was produced (Fig. 3C), 
with the modules above the cutting line identified for further 
study. By setting minModuleSize = 30 and mergeCutH8 = 0.25 
as the clustering criteria, a total of 29 gene modules were dis-
cerned. To describe the paired relationship among genes, the 
topological overlap matrix was employed (Fig. 3D). Each 
row and column in the topological overlap matrix corre-
sponded to one gene, with lighter colors indicating a lower 
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degree of topological overlap and darker colors indicating a 
higher degree of topological overlap. Subsequently, the co- 
expression similarity and adjacency of genes between the AS 
group and control group were analyzed using the genes within 
the 29 color modules. The outcomes from the ME collinear 
heatmap illustrated that 6 gene modules, namely, MEblue, 
MElightcyan1, MEmidnightblue, MEbrown4, MEviolet, and 
MEdarkred, exhibited significant associations with the onset 
of AS (Fig. 3E). These 6 selected modules were subjected to 
subsequent analysis. The scatter plot (Fig. 3F–K) demonstrated 
the significant associations between the 6 gene modules of dif-
ferent colors and the onset of AS.

3.4. DEGs in hub module genes and functional enrichment 
analysis

By intersecting the 3325 hub module genes in the 6 hub gene 
modules obtained from WGCNA with the 344 previously 
screened DEGs, a total of 310 hub module DEGs were identi-
fied, as depicted in Figure 4A of the Venn diagram. The results 
of the differential expression (DE) analysis revealed their 
enrichment in ischemia, primary immunodeficiency disease, and 
neuropathy, as depicted in Figure 4B. Furthermore, the Kyoto 
Encyclopedia of Genes and Genomes analysis demonstrated 
their enrichment in Parkinson’s disease, Cardiac muscle con-
traction, and 2-Oxocarboxylic acid metabolism, as shown in 
Figure 4C and D.

3.5. Protein-protein interaction networks

The gene list mentioned above was imported into the STRING 
database to retrieve the PPI Networks. Subsequently, the 

obtained PPI network was imported into the Cytoscape soft-
ware to utilize the cytoHubba plugin for calculating the top 20 
genes based on the MCC algorithm. The resulting PPI network 
is depicted in Figure 5.

3.6. Screening of disease feature genes

Disease feature genes were identified through LASSO regression 
analysis based on 310 hub module DEGs (Fig. 6A and B). The 
GSE25101 dataset was used for screening disease feature genes 
using the LASSO regression model, as shown in Figure 6A. 
The changes in coefficient λ of different genes are displayed 
in Figure 6B. By intersecting the 15 disease feature genes 
obtained from LASSO analysis and the 2978 CRGs obtained 
from references, 3 disease-related hub CRGs were finally iden-
tified, as illustrated in the Venn diagram (Fig. 6C). Enrichment 
analysis results for the 3 genes revealed that CYB5R1 was 
up-regulated in pathways such as Asthma, Chemical carcinogenesis- 
DNA adducts, Glycosphingolipid biosynthesis – lacto and 
neolacto series, Renin-angiotensin system, and Ribosome. In 
contrast, CYB5R1 was down-regulated in pathways includ-
ing 12-Oxocarboxylic acid metabolism, Adherens junction, 
Alanine, aspartate and glutamate metabolism, DNA replication, 
and Primary immunodeficiency, as depicted in Figure 6D and E.

Homogentisic acid 1,2-dioxygenase (HGD) exhibited up- 
regulation in various pathways, including Complement and coagu-
lation cascades, Fat digestion and absorption, Glycosphingolipid 
biosynthesis – lacto and neolacto series, Renin-angiotensin system, 
and Staphylococcus aureus infection. Conversely, HGD showed 
down-regulation in pathways such as Adherens junction, Citrate 
cycle (TCA cycle), Graft-versus-host disease, Primary immunodefi-
ciency, and Viral myocarditis, as indicated in (Fig. 6F and G).

Figure 1.  Study flow chart of present work. CRGs = cuproptosis-related genes, DCA = decision curve analysis, DEGs = differentially expressed genes, DO = 
disease ontology, GSEA = Gene Set Enrichment Analysis, KEGG = Kyoto Encyclopedia of Genes and Genomes, LASSO = least absolute shrinkage and selec-
tion operator, PPI = protein-protein interaction, ROC = receiver operating characteristic curve, ssGSEA = single sample gene set enrichment analysis, WGCNA 
= weighted gene co-expression network analysis.
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Inositol polyphosphate-5-phosphatase (INPP5E) exhibited 
up-regulation in several pathways, including Homologous 
recombination, Nucleocytoplasmic transport, Primary immuno-
deficiency, Ribosome biogenesis in eukaryotes, and Th1 and Th2 
cell differentiation. Conversely, it demonstrated down-regulation 

in pathways such as Ferroptosis, Mineral absorption, Porphyrin 
metabolism, Proteasome, and Renin-angiotensin system, as 
depicted in Figure 6H and I.

We analyzed the correlation between the 3 core genes. The 
correlation analysis in the verification set revealed that HGD 

Figure 2.  Screening and enrichment analysis of DEGs. The homogenization of raw data of samples was shown in (A) Box Plot. The expression patterns of DEGs 
were shown in (B) Heatmap and (C) Volcano Plot. Enrichment analysis showed the results of pathways where DEGs were up-regulated (D) and down-regulated 
(E). The enrichment of DEGs in pathways and diseases was shown in (F) Ridgeline Plot. AS = ankylosing spondylitis, DEGs = differentially expressed genes.
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Figure 3.  Co-expression network of DEGs in AS group. (A) Dendrogram presented by sample clustering. (B) Selection of soft threshold and scale-free 
topological fitting index. (C) Dendrogram cut into clusters at the height of 0.25 to present selected MEs. (D) Cluster dendrogram of co-expression modules 
to present raw data modules and combined modules, with different colors representing different co-expression modules. (E) Collinear heatmap for the 
screening of MEs. Scatter diagram between the membership of blue (F), light cyan 1 (G), midnight blue (H), brown 4 (I), violet (J), and dark red (K): scatter 
plots to present the module membership and gene significance of the AS group. AS = ankylosing spondylitis, DEGs = differentially expressed genes, ME = 
module eigengene.
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exhibited a negative correlation with INPP5E, and a positive 
correlation with CYB5R1. Additionally, INPP5E showed a 
negative correlation with CYB5R1. These findings suggest that 
these hub disease feature genes share similar functions.

3.7. Expressions of disease-related hub CRGs in training 
set and verification set

In the AS samples of the training set (GSE25101), we observed a 
significant up-regulation of CYB5R1 and HGD, whereas INPP5E 
showed a significant down-regulation (Fig. 7A–C) compared to 
normal samples. To further validate the expression patterns of 
these 3 genes in AS subjects, we conducted additional analyses 
on the verification sets GSE73754 and GSE18781. In the verifi-
cation set GSE73754, there was no significant difference in the 
expression levels of the aforementioned genes between normal 
and AS samples (Fig. 7D–F). However, in the verification set 

GSE18781, INPP5E exhibited a significant down-regulation, no 
significant difference was observed in the expression of HGD, 
and CYB5R1 was significantly down-regulated in the AS sam-
ples in comparison to the normal samples. Interestingly, these 
findings contradicted the results obtained from the training set 
(Fig. 7G–I).

3.8. Construction of nomogram model

A nomogram was created using the training set GSE25101, 
incorporating the 3 disease-related hub CRGs through logistic 
regression analysis. Figure 8A illustrates the prediction model 
diagram for the onset of AS based on the 3 CRGs. The indepen-
dent factors in the model are INPP5E, CYB5R1, and HGD. By 
referring to the expression levels of these genes, one can calcu-
late the nomoscore and obtain the total score, which represents 
the cumulative score of relevant predictive factors. For instance, 

Figure 4.  DEGs in Hub Module Genes and Functional Enrichment Analysis. (A) Venn diagram, presenting DEGs of 310 hub module genes obtained from taking 
intersections between 3325 hub module genes and 344 DEGs. (B) DO term analysis of DEGs. (C and D) KEGG term analysis of DEGs. DEGs = differentially 
expressed genes, KEGG = Kyoto Encyclopedia of Genes and Genomes.
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when the expression levels of INPP5E, HGD, and CYB5R1 are 
8.2, 7.5, and 8.4, respectively, the total score is 172 points, indi-
cating an onset risk of AS of approximately 0.96. To assess the 
diagnostic value of the 3 genes, CYB5R1, HGD, and INPP5E, 
in the diagnosis of AS, we analyzed their respective AUC val-
ues in the ROC curve analysis. The AUC values for CYB5R1, 

HGD, and INPP5E were 0.879, 0.879, and 0.816, respectively. 
Notably, the AUC value based on the nomoscore reached 0.969, 
suggesting that these genes exhibit a high diagnostic value for 
AS (Fig. 8B–E). The calibration chart demonstrated excellent 
alignment between the calibration prediction curve and the 
standard curve, indicating good consistency between the actual 

Figure 5.  PPI network analyzed by cytoHubba app of Sytoscape. (A and B) Top 20 hub genes in DEGs of hub module genes. DEGs = differentially expressed 
genes, PPI = protein-protein interaction.
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probability and predicted probability of the 3 hub genes in the 
nomogram model for the diagnosis of AS (Fig. 8F). Analyzing 
the DCA curve, we observed that the model performed well 
for most cases of the threshold probability, except for a small 
range where its performance was suboptimal. As the threshold 
probability increased, the net benefits of interventions based on 
the model’s prediction results decreased. Importantly, interven-
tions based on the model’s prediction results resulted in positive 
net benefits, surpassing the standard value, when the threshold 
probability ranged from 0 to 0.9 (Fig. 8G).

Meanwhile, we have also generated a nomogram, ROC 
curve, calibration chart, and DCA curve using the verification 
sets GSE73754 and GSE18781 to analyze and validate the find-
ings from the training set GSE25101. Figure 9A displays the 
nomogram generated based on the verification set GSE73754. 

The ROC curve revealed that the AUC values for CYB5R1, 
HGD, and INPP5E were 0.493, 0.522, and 0.559, respectively. 
Additionally, the nomoscore was calculated to be 0.579, as 
depicted in Figure 9B–E. The calibration chart for the verifi-
cation set GSE73754 demonstrated a misalignment between 
the calibration prediction curve and the standard curve, as 
illustrated in Figure 9F. The DCA curve indicated that under 
a threshold probability ranging from 0 to 0.73, interventions 
of AS showed mostly positive net benefits, closely resembling 
the standard value, as shown in Figure 9G. The nomogram 
generated based on the verification set GSE18781 is displayed 
in Figure 10A. In GSE18781, the AUC values for CYB5R1, 
HGD, and INPP5E were 0.752, 0.628, and 0.756, respec-
tively. Furthermore, the calculated nomoscore was 0.620, as 
depicted in Figure 10B–E. The calibration chart for GSE18781 

Figure 6.  Screening of disease-related hub CRGs. (A) LASSO regression analysis was conducted to screen out disease feature genes and the logarithm 
(lambda) sequence was used to construct a coefficient distribution diagram. The optimal parameter (lambda) of the LASSO model was selected. (B) Venn dia-
gram, presenting the 3 disease-related hub CRGs obtained from the intersection between 15 disease feature genes and 2978 CRGs. (C) Correlation analysis 
of 3 hub genes. The enrichment analysis showed the up-regulation (D) pathway and down-regulation (E) pathway of CYB5R1, up-regulation (F) pathway and 
down-regulation (G) pathway of HGD, and up-regulation (H) pathway and down-regulation (I) pathway of INPP5E. CRGs = cuprosis-related genes, HGD = 
Homogentisic acid 1,2-dioxygenase.



10

Fan et al.  •  Medicine (2024) 103:35� Medicine

showcased a strong alignment between the calibration pre-
diction curve and the standard curve, as shown in Figure 10F. 
The DCA curve illustrated that, with the exception of a small 
range exhibiting poor performance, interventions of AS showed 
mostly positive net benefits, slightly surpassing the standard 
value, under nearly all threshold probabilities, as depicted in 
Figure 10G.

3.9. Analysis of hallmark pathways based on ssGSEA 
algorithm

The ssGSEA algorithm was utilized to analyze the disparities in 
Hallmark pathways between the control group and AS group. 
Subsequently, a box plot was generated to visualize the findings. The 
box plot clearly demonstrated that there were substantial variations 

Figure 7.  Expressions of disease-related hub CRGs in Training Set (GSE25101) and Verification Sets (GSE73754 and GSE18781). The comparison of expres-
sions of CYB5R1 (A), HGD (B), and INPP5E (C) in samples collected from subjects in the AS group and control group in the training set GSE25101 is shown 
in box plots (A), (B), and (C). The comparison of expressions of CYB5R1 (D), HGD (E), and INPP5E (F) in samples collected from subjects in the AS group and 
control group in the verification set GSE73754 is shown in box plots (D), (E), and (F). The comparison of expressions of CYB5R1 (G), HGD (H), and INPP5E (I) 
in samples collected from subjects in the AS group and control group in the verification set GSE18781 is shown in box plots (G), (H), and (I). CRGs = cuprosis- 
related genes, HGD = Homogentisic acid 1,2-dioxygenase.
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in the majority of Hallmark pathways between the control group and 
AS group, which is illustrated in Figure 11A. Notably, the correlation 
analysis highlighted significant associations between several catego-
ries of Hallmark pathways and the expressions of the disease-related 

hub CRGs (INPP5E, CYB5R1, and HGD). Specifically, it was 
observed that most Hallmark pathways exhibited a positive correla-
tion with CYB5R1 and HGD, whilst displaying a negative correla-
tion with INPP5E, as illustrated in Figure 11B.

Figure 8.  Construction of prediction curves based on 3 hub genes in GSE25101 for Risk and benefit assessment of AS. (A) Nomogram constructed based on 3 
core genes. (B) Calibration curve for calibrating the nomogram. (C) DCA curve. (D) ROC curve based on the nomoscore of 3 core genes. (E) ROC curve of HGD. 
(F) ROC curve of INPP5E. (G) ROC curve of CYB5R1. AS = ankylosing spondylitis, DCA = decision curve analysis, HGD = Homogentisic acid 1,2-dioxygenase, 
INPP5E = inositol polyphosphate-5-phosphatase, ROC = receiver operating characteristic.
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3.10. Analysis of immune cell infiltrations based on ssGSEA 
algorithm

The ssGSEA algorithm can be utilized to validate the distinc-
tion in immune cell infiltrations between the AS group and the 
control group in GSE25101, and to establish their correlation 

with diagnostic genes. The box plot results illustrated signifi-
cant disparities in the expressions of the majority of immune cell 
infiltration clusters between the control group and AS group, 
as depicted in Figure 12A. Additionally, the correlation analy-
sis unveiled significant associations between multiple types of 
immune cell infiltrations and the expressions of disease-related 

Figure 9.  Construction of prediction curves based on 3 hub genes in GSE73754 for Risk and benefit assessment of AS. (A) Nomogram constructed based on 3 
core genes. (B) Calibration curve for calibrating the nomogram. (C) DCA curve. (D) ROC curve based on the nomoscore of 3 core genes. (E) ROC curve of HGD. 
(F) ROC curve of INPP5E. (G) ROC curve of CYB5R1. AS = ankylosing spondylitis, DCA = decision curve analysis, HGD = Homogentisic acid 1,2-dioxygenase, 
INPP5E = inositol polyphosphate-5-phosphatase, ROC = receiver operating characteristic.
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hub CRGs (INPP5E, CYB5R1, and HGD). Notably, most of the 
immune cell infiltrations displayed a negative correlation with 
CYB5R1, while exhibiting a positive correlation with HGD and 
INPP5E. Furthermore, the degree of positive correlation with 
INPP5E was remarkably higher than that with HGD, as exem-
plified in Figure 12B.

4. Discussion
AS is a chronic autoimmune inflammatory disease that primar-
ily affects the spine and sacroiliac joints. Extensive research has 
demonstrated that the development of this disease is the result 
of a intricate interplay between genetic, environmental, and 
immune factors. Consequently, it is of paramount importance 

Figure 10.  Construction of Prediction Curves Based on Three Hub Genes in GSE18781 for Risk and Benefit Assessment of AS. (A) Nomogram constructed 
based on 3 core genes. (B) Calibration curve for calibrating the nomogram. (C) DCA curve. (D) ROC curve based on the nomoscore of 3 core genes. (E) ROC 
curve of CYB5R1. (F) ROC curve of HGD. (G) ROC curve of INPP5E. AS = ankylosing spondylitis, DCA = decision curve analysis, HGD = Homogentisic acid 
1,2-dioxygenase, INPP5E = inositol polyphosphate-5-phosphatase, ROC = receiver operating characteristic.
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to identify more effective targets for the diagnosis and treat-
ment of AS. Nonetheless, the precise connection between cop-
per death-related genes and AS remains poorly understood. The 
objective of our investigation is to shed light on the involvement 
of genes associated with copper death in AS phenotypes and 
immune microenvironments.

Copper death is a novel form of cell death characterized by an 
excessive intracellular buildup of copper ions. These copper ions 
directly bind to lipoylated dihydrolipoamide S-acetyltransferase 
in the tricarboxylic acid cycle, causing abnormal accumulation. 
This, in turn, leads to intracellular proteintoxic stress and ulti-
mately cell death.[8] Research suggests that copper death may 
be involved in the occurrence and development of AS, as evi-
denced by its potential connection with key genes related to 
copper death. For instance, MTF1, a metal-binding transcrip-
tion factor, is closely associated with copper homeostasis and 
is considered an important factor in the mechanism of copper 
death.[19,20] Furthermore, previous studies have found signifi-
cantly higher serum copper levels in AS patients compared to 
normal individuals, and the excess copper ions in AS patients 
may indicate copper accumulation in the serum, consistent with 
the accumulation of copper ions observed in copper death.[21] 

Additionally, there are other genes related to copper death that 
may be associated with AS, such as CDKN2A, LIPT1, PDHA1, 
and more. These genes are involved in the abnormal prolifer-
ation of fibroblast-like synovial cells (FLS) and the release of 
inflammatory factors during the development of AS.[22–24] These 
findings suggest that copper death may play a significant role 
in the progression of AS. In this study, we identified 3 CRGs 
(INPP5E, CYB 5R1, HGD) associated with AS development 
and validated them using bioinformatics. INPP5E is an import-
ant enzyme involved in tumor diseases and inflammation as an 
inositol polyphosphate 5-phosphatase. Studies have shown a 
significant correlation between autophagy and the onset of AS, 
where regulating autophagy levels can greatly impact the occur-
rence and development of this disease. Knockout of INPP5E 
leads to an accumulation of autophagy by disrupting its fusion 
with lysosomes. Therefore, we hypothesize that INPP5E may 
affect the occurrence and development of AS by regulating 
autophagy. Our study demonstrated that the expression levels 
of the INPP5E gene were decreased in AS samples, suggesting 
that down-regulation of INPP5E may increase the risk of AS. 
This finding was further validated in the validation set, with an 
area under the ROC curve greater than 0.7, indicating a high 

Figure 11.  (A) Box plot for the differences in Hallmark pathways between the control group and AS group. (B) Heatmap for the correlation between the 3 core 
genes and Hallmark pathways in samples of the AS group. AS = ankylosing spondylitis.
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diagnostic accuracy for AS patients[25] NADH-cytochrome b5 
reductase 1 (CYB5R1) is an oxidoreductase that disrupts mem-
brane integrity, leading to iron death in cells.[26] CYB5R1 has 
been shown to be essential for invasive tumor cell phenotypes 
and exhibits anti-apoptotic effects.[27] Considering the simi-
larity between tumor invasion and the hyperproliferation of  
fibroblast-like synovial cells (FLS) in AS,[28] it suggests that 
CYB5R1 plays an important role in AS. Our study revealed that 
CYB5R1 was significantly up-regulated in AS samples compared 
to normal samples, indicating that up-regulation of CYB5R1 
may increase the risk of AS. Moreover, the AUC value in ROC 
curve analysis was 0.879, highlighting the high diagnostic value 
of CYB5R1 for AS. Homogentisic acid 1,2-dioxygenase (HGD) 
is expressed in chondrocytes, synoviocytes, and osteoblasts. 
Deficiency of HGD leads to the accumulation of homogen-
tisic acid in the urine, primarily affecting the spine and causing 
conditions such as spinal inflammation and spinal osteophyte 
proliferation.[29,30] However, contrary to expectations, our study 
discovered that HGD was significantly up-regulated in AS sam-
ples. This suggests that high expression of HGD may contribute 
to the progression of AS.

Most studies conducted so far have primarily focused on 
the immune response in the pathogenesis of AS, considering it 
as an autoimmune disease. A bioinformatics study discovered 
a significant enrichment of T cell receptor signaling pathways 
and natural killer cell-mediated cytotoxicity in AS patients.[16] 
It has been established that CD4 + T cells that produce IL-17 
play a critical role in the development of AS, and the inhibition 
of T cell co-stimulation pathways may improve AS by reducing 
the overactivation of CD4 + T cells and diminishing IL-17 pro-
duction.[31,32] Similarly, the involvement of immune follicular 
Th (TFH) cells, an important subset of effector T lymphocytes, 
has been closely linked to the pathogenesis of AS. These cells 
express chemokine receptor 5, T cell co-stimulatory factors, 
and secrete IL-21.[33,34] Additionally, B cells, Th1 cells, and type I 
interferons have been found to be highly associated with AS.[35] 
These findings highlight the significant role of the immune sys-
tem in AS. In this study, the analysis of immunocyte infiltration 
demonstrated a positive correlation between the expression of 
INPP5E and the T cell co-inhibition pathway, as well as the 
immune checkpoint signal. This suggests that by overexpress-
ing INPP5E, the activation of T cell co-inhibitory and immune 

Figure 12.  (A) Box plot for the differences in immune cells and functions between the control group and AS group. (B) Heatmap for the correlation between the 
3 core genes and immune cells and functions in samples of the AS group. AS = ankylosing spondylitis.



16

Fan et al.  •  Medicine (2024) 103:35� Medicine

checkpoint signaling pathways can potentially enhance the effi-
cacy of AS treatment. Furthermore, the expression of INPP5E 
displayed a positive correlation with Tfh cells. In AS samples, 
both INPP5E expression and Tfh immune infiltration were 
reduced. Conversely, studies have shown that strategies aimed 
at reducing Tfh cell production can alleviate immune diseases 
by reducing IL-21 secretion,[36,37] indicating that further research 
could be focused on Tfh cells. On the other hand, CYB5R1 
expression exhibited a negative correlation with B cells and 
Th1 cells. Therefore, inhibiting CYB5R1 expression may acti-
vate immune cells and potentially improve AS. Additionally, the 
expression of HGD demonstrated a positive correlation with 
type I interferon. In AS samples, both HGD expression and type 
I interferon infiltration were increased. Studies have suggested 
that interferons can activate inflammatory cells, release cyto-
kines, and other inflammatory mediators, thus exacerbating the 
negative effects of AS,[38] which is consistent with the findings 
of this study.

However, our study has certain limitations. First, we only 
included data on gene expressions derived from blood samples, 
and data on diseased tissues from AS patients were not consid-
ered in the selected datasets. Second, further verification of the 
expression levels of CRGs in AS patients is necessary. For our 
future study, we plan to collect blood samples from clinical AS 
patients and use Quantitative Real-Time PCR to determine the 
expression levels of CRGs. We will also explore the correlations 
between the expression levels of CRGs and clinical parameters 
of AS, such as clinical stages, inflammatory indicators, and prog-
nosis. On the other hand, we have not yet conducted in vivo and 
in vitro experiments to investigate the potential mechanism of 
these CRGs in AS patients. Additionally, it is unfortunate that 
the verification results from the other two datasets did not fully 
align with those from the training set. Given the tissue specificity 
and individual differences, it is important to further verify the 
results using more datasets or clinical studies.

To summarize, this study has successfully identified and val-
idated 3 CRGs (INPP5E, CYB5R1, and HGD) associated with 
the advancement of AS through the utilization of bioinformat-
ics. These findings hold promise in terms of potentially serving 
as novel biomarkers for the timely detection, early recognition, 
and continuous monitoring of AS.
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