
plants

Review

Progressive Genomic Approaches to Explore Drought- and
Salt-Induced Oxidative Stress Responses in Plants under
Changing Climate

Masum Billah 1 , Shirin Aktar 2, Marian Brestic 3,4,* , Marek Zivcak 3 , Abul Bashar Mohammad Khaldun 5,
Md. Shalim Uddin 5 , Shamim Ara Bagum 5, Xinghong Yang 6 , Milan Skalicky 4 , Teame Gereziher Mehari 1 ,
Sagar Maitra 7 and Akbar Hossain 8,*

����������
�������

Citation: Billah, M.; Aktar, S.; Brestic,

M.; Zivcak, M.; Khaldun, A.B.M.;

Uddin, M.S.; Bagum, S.A.; Yang, X.;

Skalicky, M.; Mehari, T.G.; et al.

Progressive Genomic Approaches to

Explore Drought- and Salt-Induced

Oxidative Stress Responses in Plants

under Changing Climate. Plants 2021,

10, 1910. https://doi.org/10.3390/

plants10091910

Academic Editor: Yukio Kurihara

Received: 9 August 2021

Accepted: 11 September 2021

Published: 14 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
kazimasum.agpstu20@gmail.com (M.B.); fiamieta21@gmail.com (T.G.M.)

2 Institute of Tea Research, Chinese Academy of Agricultural Sciences, South Meiling Road,
Hangzhou 310008, China; aktershirin1992@gmail.com

3 Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra,
Slovakia; marek.zivcak@uniag.sk

4 Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources,
Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; skalicky@af.czu.cz

5 Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh; abkhaldun@gmail.com (A.B.M.K.);
shalimuddin40@gmail.com (M.S.U.); happyshalim@yahoo.com (S.A.B.)

6 State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University,
61 Daizong St., Tai’an 271000, China; xhyang@sdau.edu.cn

7 Department of Agronomy, Centurion University of Technology and Management, Village Alluri Nagar,
R.Sitapur 761211, Odisha, India; sagar.maitra@cutm.ac.in

8 Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
* Correspondence: marian.brestic@uniag.sk (M.B.); akbarhossainwrc@gmail.com (A.H.)

Abstract: Drought and salinity are the major environmental abiotic stresses that negatively impact
crop development and yield. To improve yields under abiotic stress conditions, drought- and
salinity-tolerant crops are key to support world crop production and mitigate the demand of the
growing world population. Nevertheless, plant responses to abiotic stresses are highly complex and
controlled by networks of genetic and ecological factors that are the main targets of crop breeding
programs. Several genomics strategies are employed to improve crop productivity under abiotic
stress conditions, but traditional techniques are not sufficient to prevent stress-related losses in
productivity. Within the last decade, modern genomics studies have advanced our capabilities of
improving crop genetics, especially those traits relevant to abiotic stress management. This review
provided updated and comprehensive knowledge concerning all possible combinations of advanced
genomics tools and the gene regulatory network of reactive oxygen species homeostasis for the
appropriate planning of future breeding programs, which will assist sustainable crop production
under salinity and drought conditions.

Keywords: salt; drought; plants; ROS; genomics; approaches; integration

1. Introduction

Global crop productivity is restricted due to abiotic stresses such as drought, salinity,
flooding, nutrient deficiency, and environmental toxicity. Among these abiotic stresses,
salinity and drought are the most severe constraints for sustainable agriculture on a
global scale. Nearly 7% of terrestrial land is affected by salinity [1], while drought is
widespread and increasingly common in recent years due to climate change. Altogether,
salinity- and drought-affected lands cover approximately 10.5 and 60 million km2, respec-
tively [2]. Furthermore, climatic changes worsen the frequency and intensity of water
shortages in subtropical areas of Asia and Africa. As stated by the UN climatic report
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[http://www.solcomhouse.com/drought.htm; accessed date on 12 July 2021], rising tem-
peratures are melting the Himalayan glaciers that feed Asia’s largest rivers (Indus, Ganges,
Brahmaputra, Yangtze, Mekong, Salween, and Yellow), and those glaciers may disap-
pear by 2035. Additionally, long-term trends indicate that the progressive proliferation
of salinity has caused the dilapidation of arable land [3]. For instance, in California, over
the last century, 4.5 out of 8.6 million hectares of wetted agricultural land have become
salt-affected [4]. Currently, it has become a pertinent problem for crop production [5],
mostly in arid and semiarid areas.

Based on numerous estimations, the world population will increase to over 9.7 billion
by 2050, which will continue to exacerbate current global food insecurity issues. It is
estimated that, over the past 50 years, improved crop productivity has brought about an
increase in world food production by up to 20% per capita and decreased the proportion
of food-insecure people existing in developing countries from 57% to 27% of the world
population [6]. As a result, crops will need to cope with abiotic stresses such as drought
and salinity and double productivity to further diminish food insecurity and support the
growing human population in more ecologically sustainable ways.

Both drought and salinity stresses induce cellular dehydration, which causes osmotic
stress, removal of water from the cytoplasm into the apoplast, and eventually evaporation
into the atmosphere [2]. Moreover, early responses to salt stress and drought are compara-
ble in plants. For example, plant cells prevent water loss by increasing the ionic constituents
and decreasing the osmotic potential in stressed cells. Due to the similar mechanisms of the
stress response in plants, it appears that drought and salinity tolerance mechanisms might
be functionally interchangeable [7]. It is well known that stress response mechanisms in-
volve several particular physiological and biochemical pathways that allow plants to adapt
to unfavorable conditions. A number of abiotic stress factors, such as salinity, drought,
high temperatures, and osmotic stresses, lead to the overproduction of reactive oxygen
species (ROS), which cause serious cellular damage and hamper photosynthesis. To protect
or repair these injuries, plant cells use an intricate defense system, including a number of
antioxidative stress-related defense genes that, in turn, prompt changes in the biochemical
plant machinery [8]. ROS production and antioxidant regulation all occur in a synergistic,
additive, or antagonistic way and are associated with the control of oxidative stress.

Nevertheless, plant stress response mechanisms are controlled by convoluted net-
works that are determined by environmental and genetic factors that are often difficult to
untangle, thereby impeding traditional breeding approaches [9]. Considering that the con-
ventional breeding strategies for crop improvement are largely aimed at improving yield
to meet the demands of an ever-growing world population, breeders have to implement
innovative approaches in agriculture to combine high-yield and abiotic stress-tolerant traits
in crops [10]. Recent scientific advances and the abovementioned challenges in agricul-
ture have directed the development of high-throughput techniques to pursue and take
advantage of plant genome research for the improvement of stress-tolerant crops. Thus,
these genomics approaches focus on the entire genome, involving genic and intergenic
positions, to attain new insights into the functional and molecular responses of plants,
which will sequentially offer specific techniques for crop plant improvement. Recently,
many scientists have revealed promising outcomes toward understanding the molecular
mechanisms of abiotic stress tolerance in prospective crops using progressive molecular
biology practices [10–21]. The mechanisms involved in crop salt and drought stress re-
sponses are discussed in Figure 1. In this review, we described in detail how to mine the
functional genes involved in drought and salt response in plants, using methods such as
traditional QTL, transcriptomic analysis, and GWAS. Then, we explored approaches such
as epigenetic regulators, gain-of-function, RNAi, TALENs, ZFNs, CRISPR, base editing,
and primer editing for functional verification with an example of target genes generated
by the aforementioned approaches. Finally, we summarized the methods for generating
salt and drought-tolerant crops. The review aimed to offer comprehensive knowledge for
improving salt- and drought-tolerant crops using modern genomics strategies regarding
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ROS regulatory networks. The overview of earlier studies on the advancement of genomics
approaches will help in the investigation of upcoming research instructions for improving
salt- and drought-tolerant crops.
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Figure 1. The mechanisms involved in crop salt and drought stress responses.

2. Mining Approaches for Salt and Drought Stress Response Genes

To improve drought and salinity stress tolerance in crops, we first require comprehen-
sive knowledge concerning the complex mechanisms of plants that respond to stresses.
Detecting the genes/markers/QTL regions associated with drought and salinity stress
responses is the first crucial step toward reaching the required understanding for breeding
drought and salinity stress-tolerant crop varieties. For the discovery of a gene, various
strategies are available in both model and nonmodel crops; here, some of the most advanced
are discussed briefly.

2.1. Quantitative Trait Loci (QTL) Analysis

A quantitative trait locus (QTL) is a gene or a region of DNA that is associated with
the variation of a quantitative/phenotypic trait that must be polymorphic to affect the
biological population. QTL mapping has been a powerful tool for dissecting genetic vari-
ants underlying quantitative traits in numerous biological studies and breeding programs.
There are two primary concerns when using QTL mapping. One is the power for QTL
identification under a controlled false-positive rate, and the other is the accuracy of QTL
localization [22]. QTL mapping has been applied as a technique for identifying genomic
regions significantly correlated with grain output and various genetically intricate char-
acteristics in cereal crops. This technique is particularly powerful when genetic variation
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is studied concerning numerous complex traits, where it is possible to identify and dif-
ferentiate genomic regions that contribute to different characteristics of interest. The data
relevant to QTL mapping can be conducive to enhancing the genetic potential of crops via
marker-assisted breeding [23]. Currently, scientists can link the molecular mechanisms of
genes found in QTLs to demonstrate the genetic and physiological basis of traits such as
grain yield. A nice example of this cooperation of QTL mapping, trait scoring, and breeding
can be found in using green coloration as a metric of drought resistance in sorghum. The
genetic dissection of molecular QTLs associated with green coloration during drought
lends convenience to demonstrate the basic mechanisms of physiology and investigate the
molecular causes of drought tolerance in sorghum and different grasses [24]. Reducing
the genomic sizes of QTLs facilitates enhanced targeting of pertinent genomic regions.
Improving the fine mapping of QTLs improves the efficiency with which breeders can
understand the significance and mechanisms of QTLs relevant to their traits of interest [24].
Enhanced QTL mapping is particularly relevant when deconvolving complex genomic
regions. For example, hypostasis of alleles within QTLs, QTL-QTL genetic interactions,
context-dependent activities of QTLs, and the QTL marker position itself impact the articu-
lation of a complex trait such as the yield of grain under drought stress [25]. Interestingly,
fine mapping of QTLs revealed that an individual main QTL controlling membrane po-
tential vastly improved marker-assisted selection for salinity-stressed barley [26]. Thus,
fine QTL mapping is required for marker-aided QTL pyramiding to improve drought toler-
ance [27]. Identification of QTLs for abiotic stress tolerance suggests augmentations that
can be used for further genomics studies toward the detection of noble genes of salt and
drought tolerance to develop a new variety [28]. Several examples of QTLs (quantitative
trait loci) for improving crop plant production under salinity and drought stresses are
discussed in Table 1.

Table 1. Known QTLs (quantitative trait loci) for improving crop plant production under salinity and drought stresses.

Stresses Crops Major Effect/Finding References

Drought stress Cowpea Detected QTL relevant to salt-tolerant and
sensitive varieties [29]

Drought stress Wheat
Detected genetic loci to major

morpho-physiological traits, components of
yield, and grain yield

[30]

Salinity Barley
Detected QTLs related to stomatal and

photosynthetic traits associated with salinity
tolerance

[31]

Drought Sorghum Identified QTLs associated with flowering and
drought resistance [24]

Drought Rice Improved crop yield under drought tolerance [25]
Drought and submergence

tolerance Rice (TDK1) Drought and submergence tolerance and yield
stability [25]

Drought and flood Rice
Detected drought and salinity tolerance
varieties based on developmental and

physiological traits
[32]

Salinity Rice (Pusa Basmati 1121) Detected two QTLs for drought and one QTL
for salt stress [32]

Drought Upland rice
Identified QTLs relevant to leaf rolling, leaf

drying, leaf relative water content, and relative
growth rate under water stress

[33]

2.2. Forward Genetics and the Candidate Gene Strategy

Crop plants with stress tolerance have been generated by the transference of genes/loci
from definite donor parents, either through a forwarding genetics method that includes
the determination of a gene function linked with a phenotype or the identification of
novel stress-tolerant donor lines created by the use of mutagenesis. In contrast, reverse
genetic breeding approaches could offer an understanding of gene functions and struc-
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ture/sequence information to predict traits for adapting stress-tolerant cultivars using
transgenic and advanced breeding tools. In genomic studies, researchers have implemented
these approaches for the genetic improvement of various model and nonmodel species
toward salt and drought stress tolerance [34–41].

2.3. Transcriptomics Analysis

Transcriptome analysis refers to the study of the transcriptome of the entire set of
RNA transcripts that are generated by a genome, under given times and circumstances or
in a specific cell. Transcriptomic analysis techniques play a crucial role in the identification
of candidate gene functions and pathways that respond to specific environments [42].
In the last decade, universal transcriptome analysis approaches have been particularly
advantageous for functional genomic studies that offer comprehensive molecular mecha-
nisms of certain phenomena. Primarily, a global transcriptome study was initiated with
suppression subtractive hybridization (SSH) and cDNA-AFLP and acquired a quantum
dive to RNA-seq with the progression of NGS platforms [10]. The information content
of an organism is held in its genome and articulated through transcription. The basic
purposes of transcriptomics are to record the transcription of all species, including mRNAs,
noncoding RNAs, and small RNAs; to determine the transcriptional configuration of genes
in terms of their start sites, 5′ and 3′ ends, splice variants, and other posttranscriptional
modifications; and to calculate the varying expression patterns of every transcript through-
out development and under diverse conditions [40,41]. Currently, transcriptome profiling
has progressed into nearly all organisms and represents how information attained from
sequence data can be converted into a wide knowledge of gene functionality [42]. Plant
stress-response mechanisms frequently employ the use of transcription factors (TFs). A TF
is a protein that targets, typically, multiple genes that comprise a regulon and influences
their expression patterns. Thus, TFs are a powerful tool for the genetic regulation of many
downstream genes and processes, including abiotic stress responses [43]. In the case of salt
and drought stress, transcripts related to the upregulation of vital biochemical pathways
required for cellular osmotic balance, abscisic acid, and cellular water uptake are controlled
by TFs [44]. The role and example of various transcription families through transcriptome
analysis relevant to salt and drought stress tolerance are discussed in Table 2.

Table 2. Identification of different TF families through transcriptome analysis relevant to salt and drought stress tolerance.

SL No. TF Family Gene ID Crop Variety Target Stresses References

1 AP2/EREBP TaERF3 Triticum aestivum Drought, Salt [45]
2 bZIP GmbZIP1, Glycine max Drought, Salinity, [46]
3 MYB/MYC StMYB1R-1 Solanum tuberosum Drought [47]

4 NAC OsNAC5,
GmNAC20

Oryza sativa,
Glycine max Drought [48,49]

5 WRKY TaWRKY44 Triticum aestivum Drought, Salt [50]

6 AREB/ABF
AREB1,

AREB2/ABF4
and ABF3

Arabidopsis thaliana, Drought [51]

2.4. Association Mapping

In genetics studies, association mapping (also well known as linkage disequilibrium
mapping) refers to the regular genome-wide distribution of several genes together with
other measurable loci (markers) in predicting marker-trait relatives [52] applied in vari-
ous crops, including rice, barley, maize, sorghum, and wheat, to identify the significant
genes or markers that confer a given trait [53]. Numerous genes have been indicated as
being connected with abiotic resistance by applying association mapping [54]. It has also
been applied to inquire about the limitations within focused parameters and molecular
markers in different crops [55]. Association mapping is extremely efficient in experimental
varieties with complex or unknown genotypes or those that have a large regeneration time.
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Association mapping of drought-related varieties in barley was applied to terminate a
conventional biparental system of QTL mapping [56]. Furthermore, association mapping
has been used to progress the development of QTL maps [57]. A detailed discussion on the
association mapping for the sustainability of crop production under salinity and drought
stresses is available in Table 3.

Table 3. Association mapping for improving crop production under salinity and drought stresses.

Stresses Crops Target Gene Major Findings References

Salinity Cowpea (Vigna
unguiculata (L.)

Association mapping for salt tolerance at
germination and seedling stages and the
identification of SNP markers associated

with salt tolerance in cowpea

[58]

Drought Wheat RM223

Demonstrated a strong power of joint
association analysis and linkage mapping
for the identification of important drought

response genes in wheat

[59]

Salinity Cotton (Gossypium
hirsutum L.)

Provided reference data for the use of MAS
for salt tolerance in cotton [55]

Salinity Cotton (Gossypium
arboretum)

(Cotton_A_37775
and Cotton_A_35901)

Provided fundamental information to
produce novel salt-tolerant cultivars [54]

Drought Pearl Millet PMiGAP
Development of high-yielding drought- and
submergence-tolerant rice varieties using

marker-assisted introgression
[60]

2.5. Genome-Wide Association

GWAS (genome-wide association study) is a potent presumption-free method used to
identify and dissect the genetic regions associated with a certain trait. Typically, GWAS is
performed by scoring the phenotypes and sequencing many individuals to link genotype
to phenotype, thereby linking genetic variants to a given trait (Figure 2) [61].
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GWAS applies large markers and several populations of non-cross-executed lines
to provide larger mapping exploration than traditional QTL mapping based on a cross-
evolved segregating population, leading to the detection of unknown or unexpected genes.
It has been applied to separate complicated genetic parameters in leading crops such as
rice and wheat under salt and drought stress. Additionally, GWAS has been effectively
conducted to designate QTLs for particular characteristics in wheat (e.g., grain yield,
morphology relevant to leaf rust disease, and end-usage quality), thereby applying various
systems of molecular markers to bolster breeding resources [62,63]. GWAS has detected
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more than 2000 loci for simple human diseases to date [64]. Therefore, compared with
QTL mapping, GWAS delivers an in-depth, cost-efficient mode of gene investigation and
detection of molecular markers.

GWAS focused on the flowering period of saline-treated rice identified 11 loci bearing
22 important SNPs linked to stress responses. The potential genetic determinant of germi-
nation was identified on chromosome one, close to the saline conditional QTL regulating
Na+ and K+ levels. Approximately 1200 candidate genes linking development to sodium
and potassium ion allowances were detected [65]. Thus, GWAS offered an informed list
of candidates for saline tolerance-connected gene cloning and uncovered responsive ge-
netic elements relevant to salt stress [66]. GWAS is also important to perceive the genetic
architecture of complex characteristics to improve drought tolerance [67]. Recently, “No-
Genome-Required-GWAS” approaches have provided easy and efficient identification of
genetic variants underlying phenotypic variation in plants [68]. Details on genome-wide
association mapping for identifying QTLs under salinity and drought stresses are discussed
in Table 4.

Table 4. Genome-wide association mapping for identifying QTLs under salinity and drought stresses.

Stresses Crop Variety Major Effect/Finding References

Heat prone Spring wheat Yield stability [69]

Drought Rice (indica and japonica)
Identified QTL containing promising candidate genes related to

drought
tolerance by osmotic stress adjustment

[70]

Salt stress Arabidopsis thaliana
Provided a comprehensive view of AS under salt stress and

revealed novel insights into the
potential roles of AS in plant response to salt stress

[71]

Salinity Rice Candidate genes can be identified by QTL [65]

Drought Barley (Hordeum spontaneum)
Exploring the genomic basis of reproductive success under stress

in wild progenitors with expected ecological and economic
applications

[72]

Drought Willow (paper-mulberry)
A core set of candidate genes encoding proteins with a putative

function in drought response was
identified

[73]

Salinity Wild barley Across many traits, QTLs that increased phenotypic values were
identified [74].

Salinity Rice Unveiled genomic regions/candidate genes regulating salinity
stress tolerance in rice [75]

Drought Alfalfa (Medicago sativa L.) Improved alfalfa cultivars with enhanced resistance to drought
and salt stresses [76]

Drought Rice Drought-induced alterations to DNA methylation that may
influence epigenetics [77]

Drought Wheat Thirty-seven of the significant marker-traits were detected under
the drought-stressed condition [67]

Drought Wheat Identified a QL on chromosome 4H [78]

2.6. Next-Generation Sequencing

Sequencing technologies include several techniques that generally consist of template
preparation, sequencing and imaging, and data analysis [79]. Next-generation sequencing
(NGS) integrates technologies that inexpensively and efficiently produce millions of short
DNA sequence reads mainly in the range of 25 to 700 bp in length [80]. These technologies
have made it possible for scientists to investigate crops at the genomic and transcriptomic
levels to assist diversity analysis and marker-assisted breeding [80]. The relevance of NGS
appears to be endless, permitting quick presses forward in numerous fields associated
with the biological sciences. NGS has also afforded a wealth of knowledge for biology
studies via end-to-end whole-genome sequencing of a broad diversity of organisms [81].
Whole-genome sequence studies have focused particularly on detailed information on ge-
nomics criteria, including regulatory sequences, coding and noncoding genes, GC content,
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and repetitive elements, which would be utilized in functional characterization, such as
microarray or tiling arrays. Additionally, NGS can be used to address many remaining
biological questions by means of resequencing targeted areas of concern or whole genomes
(as is being performed for the human genome [82]), de novo assemblies of bacterial and
lower eukaryotic genomes, cataloging the transcriptomes of cells, tissues, and organisms
(RNA sequencing), genome-wide profiling of epigenetic markers and chromatin structure
using additional seq-based methods (ChIP-seq, methyl-seq, and DNase-seq), and species
classification and/or gene discovery by metagenomics studies [50].

3. Functional Genomics Approaches

After identifying a QTL/allele/gene, the next sensible step is to characterize the gene
before incorporation into a cultivar by studying several physiological, molecular, and
biochemical pathways of genes. Thus, functional genomics approaches were extensively
implemented to determine the gene functions and the connections between genes in a reg-
ulatory network that would be utilized to produce improved crop varieties. Consequently,
there have been multiple tools developed for the characterization of gene function; some of
the most exploited are described briefly.

3.1. Epigenetic Regulators

In wider definitions, the term ‘epigenetics’ frequently refers to a type of overall non-
genetic (unrelated to DNA sequence per se) heredity at various levels. That is, epigenetics
illustrates a number of dissimilar methods of genetic regulation whose temporal and herita-
ble constituents have not in all cases been decided [83]. For example, methylation of DNA
generally interferes with gene expression by way of gene silencing [84]. The reduction of
methylation in resistance-associated genes activates chromatin and the expression of genes,
which offers long-term or enduring resistance under stress conditions [85]. Epigenetics
sustains the identity of stress memory in plants, which helps pre-exposed plants fight
comparable stress throughout subsequent exposures. Histone modifications, DNA methy-
lation and demethylation, and ATP-dependent chromatin remodeling are some of the
epigenetic changes performed by plants during drought stress [86]. Epigenetic responses
to drought stress have been studied in numerous plants, particularly the stress memory
and gene activation marker H3K4me3, which has been used to carry out genome-wide
ChIPseq analyses in Arabidopsis [87]. Furthermore, the HAT genes in rice (OsHAC703,
OsHAG703, OsHAF701, and OsHAM70) [88] and the HvMYST and HvELP3 genes in barley
were also shown to be involved in epigenetic regulation in drought responses [89]. DNA
methylation and histone modifications may have a similar result on stress-inducible genes,
as salinity stress influences the expression of a range of transcripts in soybean [48]. Work
in rice underlined that hypomethylation in reaction to salt stress may be associated with
changes in the expression of DNA demethylases [90]. The transcriptional adaptor ADA2b
(a modulator of histone acetyltransferase activity) is responsible for hypersensitivity to salt
stress in Arabidopsis thaliana [91].

3.2. Gain-of-Function Lines

Gain-of-function methods have been extensively used for the study of gene function
in plants and are considered among the most useful tools for gain-of-function pheno-
types. Gain-of-function lines are generated through the arbitrary activation of endogenous
genes by transcriptional enhancers and the regular expression of individual transgenes
by transformation [9]. This method employs the phenotype of gain-of-function lines that
overexpress a selected gene family and can be executed without meddling from other
gene family members that allow the categorization of functionally unwanted genes [10].
Alternatively, the overexpression of a mutant gene can be expressed due to the presence
of higher levels of nonfunctional protein causing a superseding negative interface with
the wild-type protein. To overcome this event, a mutant type could be used to compare
the wild-type protein allies, resulting in a mutant phenotype. Conversely, heterologous
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expression of a gene in the yeast-hybrid system is an alternative way to characterize genes.
In the first gain-of-function approach, a strong promoter or enhancer element is arbitrarily
inserted into the plant genome with the help of T-DNA [11], which stimulates a gene near
the site of the harbor. Other gain-of-function approaches involve cDNA overexpression
and open reading frame (ORF) overexpression, whereas full-length cDNAs or ORFs have
been cloned into a strong promoter downstream. Under the switch of the CaMV35S pro-
moter, various abiotic stress response genes have been characterized by the use of ectopic
overexpression of cDNAs [11–14].

3.3. Gene Silencing and RNA Interference Techniques for Salinity and Drought Stress

Suppression of a gene is referred to as gene silencing in plants and fungi and inter-
ference RNA (RNAi) in animals and is generally thought of as a controlling mechanism
of gene expression mostly in eukaryotic cells [92]. RNA interference (RNAi) has been
considered one of the most crucial discoveries in molecular genetics during the last several
years for posttranscriptional gene silencing (PTGS) cosuppression [93]. RNA silencing
hints at a nucleotide sequence-specific procedure that prompts mRNA degradation or
translation termination at the posttranscriptional level in plants arbitrated by small RNAs
(sRNAs), which are divided into two classes: microRNAs (miRNAs) and small interfering
RNAs (siRNAs). However, RNAi was properly adapted into antisense-stranded RNA as an
operative technique to constrain gene expression [94]. Silencing a gene through transgenic
expression of sRNAs has been extensively implemented for abiotic stress-related gene func-
tion functional efforts. Currently, the virus-induced gene silencing (VIGS) technique for
posttranscriptional gene silencing is extensively used for rapid and efficient gene function
studies related to salt and drought stresses [95–98]. It can also be used for both forward
and reverse genetic studies. Target gene silencing techniques for improving crops under
salinity and drought stresses are discussed in Table 5.

Table 5. Target gene-silencing techniques for improving crop variety under salinity and drought stresses.

Stresses Crops Silencing Gene Major Findings References

Cold, drought, salt
stress Rice OsNAC5 RNAi lines became less tolerant of

these stresses than control plants [58]

Salinity Arabidopsis sos1 thsos1-RNAi lines of Thellungiella were
highly salt-sensitive [99]

Salinity pepper CaATG8c
The silencing of CaATG8c made

pepper seedlings more sensitive to salt
stress

[100]

Salinity Alternanthera
philoxeroides ApSI1 Significantly decreased tolerance to

salinity [101]

Drought Alternanthera
philoxeroides ApDRI15 Plants were more sensitive to drought

stress than the control plants [101]

Drought Tomato SpMPK1, SpMPK2, and
SpMPK3

Reduced drought tolerance in tomato
plants [102]

Drought wheat Era1 and Sal1 Played imperative roles in conferring
drought tolerance [103]

Drought, salt stress Cotton GH3.17 Enhanced drought and salt stress [104]

Salinity Cotton GhWRKY6 Downregulation of GhWRKY6
increased salt tolerance [105]

3.4. Genome Engineering (TALENs, ZFNs, CRISPR/Cas)

Recently, several functional genomics-based strategies have been developed for ge-
netic engineering. To improve crops for sustainable food production, targeted genome
engineering has become a substitute for conventional plant breeding and transgenic (GMO)
strategies, including transcription regulators, epigenetic modifiers, DNA integrators, TAL
effector nucleases (TALENs), zinc-finger nucleases (ZFNs), clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas (CRISPR-associated proteins), and base editors



Plants 2021, 10, 1910 10 of 34

and prime editors. Until recently, the existing methods have been considered to be un-
wieldy. Both TALENs and ZFNs could be used to mutagenize genomes at exact loci.
However, the problem is that these systems need two altered DNA-binding proteins flank-
ing a sequence of interest, each with a C-end FokI nuclease unit [106]. For plant research,
these techniques have not been extensively implemented. Recently, a technique based
on the bacterial clustered regularly interspaced short palindromic repeats (CRISPR)/Cas
(CRISPR-associated proteins) type-2 prokaryotic adaptive invulnerable system has been
developed as an alternate process for genome engineering [106]. The CRISPR/Cas (clus-
tered regularly interspaced short palindromic repeats/CRISPR-associated proteins) system
was first identified in bacteria and archaea and can cleave exogenous DNA substrates [107].
CRISPR/Cas has since been modified to be used as a gene-editing technology. However,
CRISPR/Cas9 has largely overtaken the other aforementioned gene editing practices. Inves-
tigators express similar stories: a few years ago, they started working on projects using both
TALENs and CRISPR/Cas9 side-by-side but rapidly established CRISPR systems [108].
Graphical presentations of the CRISPR/Cas9 techniques are available in Figure 3.
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sequence at the double-stranded break. Source: adapted and modified from [www.stockadobe.com;
accessed date on 12 July 2021].

The beginning of CRISPR has made it conceivable to rewrite host DNA by introducing
some major amendments. These modifications include gene replacement, deletions, inver-
sion, knockouts, and translocations [109]. Using CRISPR/Cas9 tools, several genes, such as
OsERF922, OsPDS, OsERF922, ERFs, OsHAK1, Badh2, OsRR22, and TMS5, were knocked
out, and a predictable phenotype was attained [110–116]. More promising are the potential
forecasts of this technique for producing plants with specifically tailored purposes, i.e.,
biofuel production, synthetic biology, disease resistance, phytoremediation, etc. [117]. This
technique also offers a new method for abiotic stress breeding programs [113]. Several
examples of CRISPR/Cas9 technology-mediated improvements to plant tolerance to abiotic
stress are discussed in Table 6.

www.stockadobe.com
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Table 6. CRISPR/Cas9 technology-mediated improvements to plant tolerance to abiotic stress.

Target Genes Crops Target Stresses References

TaDREB2 and TaERF3 Wheat Abiotic stress response [118]
ScNsLTP Sugarcane Drought and chilling resistance [119]

MaAPS1 and MaAPL3 Banana Cold and salt [120]
MeKUP Cassava Salt, osmosis, cold, and drought resistance [121]

MeMAPKK Cassava Drought resistance [122]
GhPIN1–3 and GhPIN2 Cotton Drought resistance [123]

GhRDL1 Cotton Drought resistance [124]
CpDreb2 Papaya Drought, heat, and cold resistance [125]
OsDST Indica mega rice cultivar Salt and Drought [126]
SlNPR1 Tomato Drought [127]
Leaf1,2 Rice Drought [128]

3.5. CRISPR-Mediated Base Editing and Prime Genome Editor

It is well known that CRISPR is a powerful genome-editing technique. CRISPR can
change genes and edit DNA sequences by producing double-strand breaks in double-helical
DNA, leaving the cell to repair the breakage (Figure 4).
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The control mechanisms over the repair process are the main limitations in basic
research and plant sciences. However, several groups recently reported the “base editing”
system, a new approach for site-directed mutagenesis of genomic DNA. Base editing tools
are highly efficient, reduce the rate of off-target effects, and do not require DNA double-
strand cleavage or donor template repair. These methods make use of a Cas9 nickase
fused to various deaminases. Specific C-to-T or A-to-G transitions in genomic DNA are
catalyzed by these fusion proteins. The base editor and Target-AID (target-activation-
induced cytidine deaminase) systems are two representative architectures of cytidine
base [127,128]. Therefore, engineering of single-plasmid CRISPR-mediated base editing
tools for S. meliloti that included adenosine base editors (ABEs), cytidine base editors (CBEs),
and glycosylase base editors (GBEs) is capable of achieving both base transitions (A-to-G,
C-to-T) and transversions (C-to-G) [129]. Base editing has become a widely applicable tool
for gene disruption in a variety of bacteria [17,22,28,130]. Nevertheless, the new invention
“prime editor” makes the successful addition or deletion of exact sequences within the
genome possible with minimum off-target effects [129].

The creators claim that their tools can precisely target approximately 89% of recognized
pathogenic human genetic variants. Prime editing may have fewer bystander mutations
than base editing, especially when multiple Cs or As are present in the editing activity
window [131]. It is also less constrained by the availability of protospacer adjacent motif
(PAM) than other methods such as homology directed repair (HDR), non-homologous
end joining (NHEJ), or base editing, because the PAM-to-edit distance can be greater
than 30 bp on average [26]. Nevertheless, there is a large suite of base editors that have
been developed with improved efficiency, product purity, and DNA specificity, as well
as broad applicability [25]. Although prime editing has the potential to replace base
editors, the technology is still in its early stages and is typically less efficient than current
generation base-editing systems with superior on and off-target DNA editing profiles [20].
Consequently, a suitable editing strategy for specific applications must be chosen based
on various criteria for gene-editing, such as the desired edit, the availability of PAMs, the
efficiency of editing, and off-target/bystander mutations.

4. The Development of Salt- and Drought-Tolerant Crops with High Yielding Capacity

The generation of crop varieties with a high level of tolerance to salinity and drought
is vital for creating full yield potential and sustainable production. Generally, there are
two methods to integrate enhanced traits such as drought and salinity stresses in plants:
genetic engineering and breeding programs.

4.1. Genetics Engineering

The advent of modern genetic engineering strategies offers the generation of plants
with rising abiotic stress tolerance. Under abiotic stress conditions, several genes of crop
plants in different pathways lead to upregulation of expression. Stress-responsive genes
and their controlling genes can be transferred and expressed in different species using an
Agrobacterium-mediated transformation system involving molecular, biochemical, and
physiological changes that direct an increase in plant growth, development, and yield
under stress environments [16]. Currently, the use of stress-inducible promoters for the
expression of stress response genes has confirmed a time-specific and optimal level of
expression. Salinity and drought are major environmental stresses that adversely affect the
growth and development of crops; thus, a number of genes encoding proteins involved in
the biosynthesis of stress defensive elements, including glycine betaine, mannitol, and heat
shock proteins, have been used for abiotic stress tolerance, as well as several transcription
factors, such as MAPK, bZIP, AP2/EREBP, WRKY, and DREB1 [17,18]. However, over-
expressed transgenes can function as positive regulators of tolerance to a single stress or
multiple stresses, such as salinity, drought or both. Therefore, the newly developed trans-
genic plant might have to be tolerant to single or multiple stresses, have high yields, and
be devoid of harmful pleiotropic traits. Posttranslational modifications, orthologous gene
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expression of effectors from wild relatives or halophytes, gene expression by regulating
miRNA activity, osmoprotectants, gene pyramiding, engineering of transcription factors,
chaperones, late embryogenesis, metabolic pathways, abundant proteins, epigenetics,
and even chaperones have been implemented to produce a new generation of transgenic
plants [130]. Successful salinity- and drought-tolerant transgenic crops were produced and
approved for cultivation as food and feed [23,27–29].

4.2. Gene Introgression

Introgressiomics is designated as an extensive systematic improvement of plant
genomes and populations through bearing introgressions of genomic fragments from
wild crop relatives relative to the genetic background of established crops to develop new
cultivars with promising traits [24]. Through introgression, greater genomic plasticity can
be attained in a crop using exotic genetic material that was previously nonexistent within
the genome [104]. For crop improvement, genetic engineering strategies are relatively faster
than traditional breeding programs, as well as cloning of genes responsible for imperative
traits and introgression into plants [104]. To develop salt- and drought-tolerant varieties, a
particular breeding program can be established through an understanding of the physio-
logical and genetic mechanisms of these stresses. MAS improves the speed and efficacy of
breeding because genetic markers are unaffected by the environment, are efficient to use in
early generations [105], and can be useful for the introgression of target genes. Successful
stories of introgression in various crops for many traits, including both abiotic and biotic
stress tolerance/resistance, have been implicated from wild relatives in cultivation without
affecting yield and quality [24,106,107].

4.3. Marker-Assisted Breeding and Transference of Genes

Marker-assisted breeding is a process that permits breeders to track traits over genera-
tions of breeding using genetic markers associated with a given trait. In marker-assisted
breeding, DNA markers associated with desirable traits are used to identify and choose
plants containing the genetic locus that confers the desirable trait. DNA markers have a
high probability of increasing the capability and accuracy of traditional plant breeding via
marker-assisted selection (MAS). MAS allows for quicker and more efficient selection of
desired crops, as cultivators can reliably test for the presence of a genetic marker associated
with a trait rather than waiting to assess the trait itself. The most efficient and extensively
applied method for MAS is marker-assisted backcrossing [132]. Marker-assisted breeding
is in contrast to the direct addition of a gene or multiple genes to enhance a trait, such
as genetic modification. Using genetic markers in breeding depends on the phenological
acclimatization of the acceptor genotype, and the introduction of a new marker or allele
may be necessary to increase the yield. With the advent of molecular markers and MAS
technology, numerous studies have capitalized on such technology to identify genes or
QTLs affecting sequence tagging in different plant species during different developmental
stages, to identify genes or QTLs that were introduced into different plant varieties, and
to gain an overall deeper and more efficient understanding of QTLs that contribute to
complex traits [133]. Marker-assisted breeding for improving crop quality under salinity
and drought stresses is discussed in Table 7.
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Table 7. Marker-assisted breeding results for improving crop quality under salinity and drought stresses.

Stresses Crops Target Genes Major Effect/Finding References

Drought and Salt Cotton

Significant associations between
polymorphic markers and drought and
salt tolerant traits were observed using

the general linear model (GLM)

[48]

Salinity Rice RM223 Transferring genes from one variety to
another and their use in MAS [134]

Drought Rice
Developed high-yielding rice cultivars

suitable for water-limited environments
through marker-assisted breeding

[135]

Salinity Rice NAL1
High yield through optimizing

transportation efficiency of photosynthetic
products by marker-assisted selection

[136]

Drought and flood Rice
Developed high-yielding drought- and

submergence-tolerant rice varieties using
marker-assisted introgression

[25]

Drought Rice Provided a higher yield advantage [137]

Drought maize Improved grain yield under drought
stress conditions [138]

Drought and salt Wheat TaCRT-D

Increased plant stress tolerance and the
functional markers of TaCRT-D for
marker-assisted selection in wheat

breeding

[139]

Salinity Rice Developed new salt-tolerant rice
germplasm using speed-breeding [140]

Drought Rice Stimulated 10–36% higher yield among
different inbred lines [141]

Current advances in genomics and genome sequencing in rice have made it feasible
to locate and precisely map a certain number of genes via linkage to DNA markers. MAS
can be applied to control the presence or absence of genes and has also been applied to
assess the contributions of such genes conferring traits that have been introduced into
extensively developed varieties [26]. Coupling genomic resources with the utility of MAS,
breeders can now gain unprecedented insight into the genetic regulation of complex traits.
MAS is a large advantage for developing new crop varieties because crops with ineligible
gene aggregations can be dispelled from the selection process. This offers breeders the
opportunity to focus on a reduced number of candidate lines for breeding targets in
successive generations [131]. It has been shown that association mapping along with
population formation and screening of cotton germplasm can improve QTL assignment
and MAS [131]. Combining MAS and GS (genomic selection) with adequate genetic
variety, databases, analytical instruments, and well-established climate and soil data is
a powerful way to produce modern varieties with high drought resistance that can be
readily inaugurated into appropriate agricultural programs [27]. These methods could
produce a high number of lines of a crop appropriate for propagating crops in a range
of drought and salinity stress ecosystems. Furthermore, incorporating these data can
lead to the creation of varieties that can be further optimized to control largely heritable
principal secondary characteristics. MAS delivers precise, rapid, and profitable progress
toward the development of crop varieties that can be applied to abiotic stress tolerance [26].
A graphical presentation of the development of a new crop variety by marker-assisted
selection is available in Figure 5.
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5. Involvement of Genes in the Regulation of ROS in Abiotic Stress Tolerance

Reactive oxygen species (ROS) are assumed to play roles in many noteworthy signaling
reactions in plant metabolism. Under drought and salinity environments, interrupting
photosynthesis and increasing photorespiration intermittently alter the regular homeostasis
of cells and influence the production of ROS in mitochondria, chloroplasts, and peroxisomes
(Figure 6) [142,143].

http://b4fa.org/bioscience-in-brief/plantbreeding/how-do-you-develop-a-new-crop-variety-by-marker-assisted-selection-mas/
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In addition to organelles, the plasma membrane together with the apoplast is the main
site for ROS production in response to endogenous signals and exogenous environmental
stimuli [144]. Overproduction of ROS in plant cells is extremely reactive and noxious
to proteins, lipids, and nucleic acids, which finally results in cellular damage and death
initiated by stressful environments [142]. ROS-scavenging enzymatic antioxidants (SOD,
APX, CAT, GPX, MDHAR, DHAR, GR, GST, and PRX) and nonenzymatic antioxidants
(GSH, AsA, carotenoids, tocopherols, and flavonoids) are located in different sites of plant
cells, and they directly or indirectly play a key role in ROS homeostasis via different unique
pathways to avoid oxidative damage. In addition, soluble sugars as well as disaccharides,
raffinose family oligosaccharides, and fructans play a dual role in ROS maintenance [145].
Consequently, crop plants have executed several interrelated signaling pathways to operate
different groups of genes (Figure 7), which are induced under stress conditions to generate
different classes of proteins, for example, protein kinases, enzymes, transcription factors,
molecular chaperones, and other efficient proteins, subsequent to various physiological
and metabolic reactions to improve tolerance to multiple environmental stresses.
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It is well known that antioxidants stimulate gene expression linked with responses
to various environmental signals to exploit protection through the regulation of cellular
ROS levels and redox state [146]. The characteristics and roles of selected genes and their
processes under salinity and drought stresses are discussed in detail in Tables 8 and 9.
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Table 8. Characterized genes involved in abiotic stress tolerance through ROS regulation in crops.

Genes Origin Transformation
Receptor Protein Function Major Functions Signaling

Hormone Approaches Used References

GhMKK1 G. hirsutum N. benthamiana MAPKK
Influences oxidative, ROS

scavenging, salt and
drought tolerance

Abscisic acid (ABA) Reverse genetics [147]

DSM1 O. sativa O. sativa MAPKKK
Influences oxidative, ROS

scavenging, drought
tolerance

ABA RNA interference,
Reverse genetics [148]

DSM2 O. sativa O. sativa MAPKKK
Influences oxidative, ROS

scavenging, drought
tolerance

ABA RNA interference,
Reverse genetics [149]

MEKK1 Arabidopsis Arabidopsis MAPKKK
Influences oxidative, ROS
scavenging, abiotic stress

tolerance
ABA Reverse genetics [150]

GhMAPKKK49 G. hirsutum G. hirsutum MAPKKK
ROS scavenging, salt,

drought, and wounding
stresses

ABA, gibberellins
(GB), methyl

jasmonate (JA),
salicylic acid (SA),

6-benzyl amino
purine, a-naphthyl

acetic acid, and
ethylene (ET)

Transcriptome [151]

MKK1, MKK2,
MKK6 Arabidopsis MAPKK Stimulate oxidative, ROS

scavenging, abiotic stresses SA RNA interference [150,152]

OsCPK4 O. sativa O. sativa Calcium-dependent
protein kinase

ROS scavenging, drought,
and salt stress SA Reverse genetics [153]

OsCPK12 O. sativa O. sativa Calcium-dependent
protein kinase

ROS scavenging,
influences oxidative salt

stress
ABA RNA interference,

Reverse genetics [154]

SiCDPK24 Setaria italica Arabidopsis Calcium-dependent
protein kinase

ROS scavenging, drought
stress ABA Reverse genetics [155]

TaCIPK29 T. aestivum N. benthamiana CBL-interacting
protein ROS scavenging, salt stress ABA and ET Reverse genetics [156]

MdCIPK6L Apple Arabidopsis CBL-interacting
protein kinase

ROS scavenging, salt,
osmotic/drought and

chilling stresses
ABA Reverse genetics [157]
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Table 8. Cont.

Genes Origin Transformation
Receptor Protein Function Major Functions Signaling

Hormone Approaches Used References

MdSOS2L1 Apple tomato CBL-interacting
protein kinase

ROS scavenging, salt
stresses ABA Reverse genetics [158]

AtCIPK5 Arachis diogoi Arabidopsis CBL-interacting
protein kinase

Salt and osmotic stress
tolerance NA Reverse genetics [159]

SIT1 O. sativa O. sativa Lectin receptor-like
kinase

ROS production, salt
sensitivity ET Reverse genetics [160]

OsMPK6 O. sativa O. sativa MAPK ROS scavenging, salt
stresses SA RNA interference [161]

ZmMPKL1 Zea mays Zea mays MAPK ROS production, drought
sensitivity ABA CRISPR/Cas9,

Reverse genetics [162]

MeMAPK Cassava NA MAPK osmotic, salt, cold,
oxidative stressors ABA Transcriptome [163]

ZmMKK3 Zea mays N. benthamiana MAPK ROS scavenging, osmotic
tolerance ABA Reverse genetics [164]

OsPP18 O. sativa O. sativa Protein phosphatase
2C

ROS scavenging, drought
and oxidative stress ABA RNA interference,

Reverse genetics [165]

DST O. sativa O. sativa zinc finger C2H2 ROS scavenging, drought
and salt stress Cytokinins

QTL,
RNA interference,
Reverse genetics

[166,167]

ZFP36 O. sativa O. sativa zinc finger C2H2 ROS scavenging, stress
and oxidative stress ABA RNA interference,

Reverse genetics [168]

OsTZF1 O. sativa O. sativa Zinc Finger Protein
CCCH

ROS scavenging, drought,
high-salt stress ABA RNA interference [169]

OsWRKY30 O. sativa O. sativa WRKY ROS scavenging, drought
tolerance SA Reverse genetics [170]

GhWRKY6 G. hirsutum Arabidopsis WRKY ROS production, drought
and salt stress ABA Transcriptome, VIGS,

Reverse genetics [105]

EcNAC1 Helianthus annus Helianthus annus NAC ROS scavenging, salt stress ABA Reverse genetics [171]

NTL4 Arabidopsis Arabidopsis NAC ROS production, drought
stress ABA RNA interference,

Reverse genetics [172]

EcbHLH57 Eleusine coracana N. benthamiana bHLH
ROS scavenging, salt,

oxidative and drought
stress

ABA Reverse genetics [173]
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Table 8. Cont.

Genes Origin Transformation
Receptor Protein Function Major Functions Signaling

Hormone Approaches Used References

JERF3 O. sativa O. sativa Ethylene response
factor (ERF)

Drought and osmotic
stress ET Reverse genetics [174]

MnSOD N. plumbaginifolia M. sativa MnSOD ROS scavenging drought
stress NA Reverse genetics [175]

OsAPX2 Medicago sativa Medicago sativa APX ROS scavenging, salt
tolerance ABA Reverse genetics [176]

PgGPX Pennisetum glaucum O. sativa GPX ROS scavenging, salinity
and drought stress SA Reverse genetics [177]

MsALR M. sativa N. benthamiana
NADPH-dependent

aldose/aldehyde
reductase

Antioxidative
metabolism,

drought and oxidative
stress

NA Reverse genetics [178]

AtMIOX4 Arabidopsis Arabidopsis MIOX ROS scavenging, salt
tolerance ABA Reverse genetics [179]

MtPP2C Medicago truncatula NA PP2C ROS scavenging, drought
and cold stress responses ABA Transcriptome [180]

OsAHL1 O. sativa O. sativa AHL ROS scavenging, drought
resistance ABA, SA GWAS, Reverse

genetics [181]

OsHK3 O. sativa NA HK ROS scavenging, salinity
and drought stress ABA RNA interference [182]

IcSRO1 Ipomoea cairica Arabidopsis SRO ROS scavenging, salt and
drought tolerance ABA Transcriptome,

Reverse genetics [183]

OsCATB O. sativa O. sativa CATB ROS production, drought
stress ABA Transcriptome [184]

RBOHH O. sativa O. sativa NADPH Oxidase ROS production, drought
stress ET CRISPR/Cas9,

Reverse genetics [185]
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Table 9. A summary of identified genes and their processes under salinity and drought stresses.

Functional Category List of Genes Type of Stress Biological Function
and Signaling Pathway Tools Used References

Protein kinase

MAPKKK

MEKK1, MEKK2,
MEKK3, MEKK4,

MAPKKK18, GhMAP3K40, OsMAPKKK63,
GhMAPKKK49
DSM1, DSM2

Influences oxidative, abiotic, and
biotic stress.

Growth and development;
ABA RNA interference, reverse genetics [150,186,187]

MAPKK

MKK1, MKK2,
MKK6, GhMKK1, Influences oxidative, salt and drought Growth and development;

SA Transcriptome, reverse genetics

[150,188]MKK3, GhMKK3 Influences oxidative, salt, and
drought stresses

Growth and development;
SA RNA interference, reverse genetics

MKK4, MKK5 GhMKK4,
GhMKK5, Influences oxidative, drought Growth and development; JA RNA interference, reverse genetics

MKK7, MKK8, MKK9,
MKK10, RhMKK9,

GhMKK9, ZmMKK10
Salt and/or drought Growth and development; ET Reverse genetics

VvMKK2, VvMKK4 Influences oxidative, salt, and
drought Growth and development; SA Reverse genetics [177]

MAPK

MPK3, MPK6, MPK10
OsMPK6, ZmMPK3, RhMPK6,

ZmMPK6-2, OsMPK3,
ZmMPK3

Influences oxidative, abiotic, and
biotic stresses

Cell cycle regulation,
cell division; JA and ET RNA interference, reverse genetics [150,189]

MPK4, MPK5, MPK11, MPK12, MPK13,
OsMPK4ZmMPK4-1,

OsMPK5, OsMPK5, ZmMPK5

Influences oxidative, salt, and/or
drought Cell cycle regulation; SA RNA interference, reverse genetics [150]

MPK1, MPK2, MPK7,
MPK14, ZmMPK7,
OsMPK2AtMPK7,

OsMPK7, GhMPK7

Influences oxidative, salt, drought Circadian-rhythm-regulated; JA, SA RNA interference, reverse genetics [150]

MPK8, MPK9,
MPK15/16/17/18/19/20
GhMPK17, ZmMPK17

Influences oxidative, salt, drought Cell cycle regulation; JA RNA interference, reverse genetics [161]

CDPK

OsCPK4
OsCPK12
SiCDPK24

FaCDPK4, FaCDPK11
StCDPK3, StCDPK23

Influences oxidative, salt, drought Responses to developmental and
environmental cues; SA, ABA

Transcriptome, RNA interference,
reverse genetics [190]

CIPK

TaCIPK29
MdCIPK6L
MdSOS2L1

AtCIPK5

ROS scavenging, salt and osmotic
stress tolerance tissue and organ development; ABA Reverse genetics [167–170]
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Table 9. Cont.

Functional Category List of Genes Type of Stress Biological Function
and Signaling Pathway Tools Used References

Transcription factor

bZIP

ABF3, BF4
ABF3, ABF4

FtbZIP5, PtrABF
OsbZIP23,
OsbZIP12,

OsbZIP71, OsbZIP46
OsbZIP72, ZmbZIP4

OsbZIP62, TabZIP

Salt, drought Light signaling, seed maturation, flower
development; ABA

Transcriptome, RNA interference
reverse genetics [191–200]

bHLH MYC2, AtbHLH17, AtbHLH68, AtbHLH122,
FtbHLH2, FtbHLH3, PebHLH35, OsbHLH148 Salt, drought Growth, development, response to

various stresses; JA, ABA
Transcriptome, RNA interference,

reverse genetics [201–208]

NAC

ANAC019, ANAC055,
ANAC072, ANAC042,
TaNAC29, OsNAC6,
OsNAC5, OsNAC9,

OsNAC10, TaRNAC1,
GmNAC109,
CaNAC035

Salt, drought

Plant growth and development range
from the formation of shoot apical

meristem, floral organ development,
reproduction, lateral shoot development;

ABA

Transcriptome, RNA interference,
reverse genetics [209–219]

AP2/ERF

CBF1, CBF2, CBF3,
AtERF53, AtERF74,

AhDREB1, OsDREB1, OsEREBP1, OsERF7,
GmERF3, ZmDREB2A,

SlERF5

Salt, drought Regulation of plant growth and
development; ABA

Transcriptome, RNA interference
reverse genetics [220–230]

MYB

AtMYB44, AtMYB96,
AtMYB20, OsMYB4,

OsMYB6, OsMYB48-1,
OsMYB91, GmMYB76,

GmMYB92, GmMYB177

Abiotic stresses Circadian rhythm, regulation of primary
and secondary metabolism; ABA, JA

Transcriptome, RNA interference
reverse genetics [231–239]

WRKY
OsWRKY11, OsWRKY45, TaWRKY1,

TaWRKY33,
cWRKY023, ZmWRKY33, VvWRKY2

Salt, drought Growth and development; ABA Transcriptome, RNA interference
reverse genetics [240–245]

ROS-scavenging

SOD

FSD1, FSD2, FSD3
CSD1, CSD2, CSD3

MSD1
Salt, drought Antioxidant defense against oxidative

stress; ABA RNA interference, Reverse genetics [246]

CmSOD Oxidative stress ABA reverse genetics [247]
CsSOD Drought JA and gibberellin (GA3) Transcriptome [248]



Plants 2021, 10, 1910 23 of 34

Table 9. Cont.

Functional Category List of Genes Type of Stress Biological Function
and Signaling Pathway Tools Used References

APX

APX1-APX7 Salt and or drought Growth regulation; ABA Transcriptome [246]
OsAPX1, OsAPX2 Oxidative, Salt, drought ABA Transcriptome [249]
OsAPX3, OsAPX4 Salt and drought ABA Transcriptome [249]

OsAPX5, OsAPX6 and OsAPX7 salinity ABA Transcriptome [250]
AgAPX1 Drought NA Reverse genetics [251]
TbAPX Salt ABA Reverse genetics [252]
CytAPX Salt ABA Reverse genetics [253]

CAT

CAT2, CAT3, ScCAT1 Salt and/or drought ABA Transcriptome [254]
HuCAT3 Salt and drought NA Transcriptome [255]

VsCat Salt Salt CRISPR/C as9 [198]

CsCAT3 Tolerance to heat, cold, salinity and
osmotic condition ABA Transcriptome, Reverse genetics [256]

GPX

GPX1, GPX2, GPX5, GPX6
and GPX7 Abiotic stress Plant development, multiple signaling

pathways Transcriptome [257,258]

PgGPx Salinity and Drought NA Reverse genetics [177]
ClGPX Salinity and Drought ABA Transcriptome [258]
NnGPX Salt NA Reverse genetics [259]
OsGPX5 Salt ABA Transcriptome, RNA interference [260]

MDHAR

MDAR2-4 Salt Stress protection; ABA Transcriptome [256]
AeMDHAR Salt NA Reverse genetics [261]
AtMDAR1 Ozone, salt and drought stress ABA Reverse genetics [262]
TrMDHAR salt ABA Transcriptome [261]

DHAR

SlDHAR1 and SlDHAR2 salt Stress protection; NA Transcriptome [263]
DHAR1 and DHAR3 Salt ABA Transcriptome [256]

LcDHAR Salt and drought NA Transcriptome, Reverse genetics [264]
TrDHAR Salt ABA Transcriptome [265]
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6. Conclusions

The adverse effects of climatic change and an increasing population pose a momentous
challenge to crop production and food security, particularly in developing countries. Thus,
it is a prerequisite to understand plant response mechanisms to abiotic stresses, namely,
salinity and drought, at the molecular level to improve crop productivity. To overcome these
circumstances, conventional breeding systems are no longer appropriate avenues to bolster
crop production. In this review, we mainly discussed advanced molecular genomics tools
focusing on plant genes in response to abiotic stress mechanisms to update our knowledge
on the rapid development of high-yielding crop varieties under salt and drought stresses.
Moreover, we summarized the recent studies of plant genes and differentiated them
according to their molecular functions in response to salt and drought and reported recent
advances in these stress-response mechanisms. Finally, the integration of any two or all
three genomics approaches would be used to generate salinity- and drought-tolerant crops.
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