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There is a medical need to develop new treatments for patients suffering from atopic dermatitis (AD†). 
To improve the discovery and testing of novel treatments, relevant animal models for AD are needed. 
Generally, these animal models mimic different aspects of the pathophysiology of human AD, such as 
skin barrier defects and Th2 immune bias with additional Th1 and Th22, and in some populations Th17, 
activation. However, the pathomechanistic characterization and pharmacological validation of these 
animal models are generally incomplete. In this paper, we review animal models of AD in the context of 
preclinical use and their possible translation to the human disease. Most of these models use mice, but 
we will also critically evaluate dog models of AD, as increasing information on disease mechanism show 
their likely relevance for the human disease.
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INTRODUCTION

Atopic dermatitis (AD) is characterized by high-
ly pruritic inflamed skin lesions and dry skin (xerosis). 
The prevalence of human AD is 10 to 20 percent of the 
population in developed countries, and its onset is most 
common in early childhood; the disease has a severe im-
pact on quality of life [1]. The first-line treatments for 
human AD include topical glucocorticoids or calcineurin 
inhibitors, whereas systemic immunosuppressants are 
used for more severe cases [2]. The efficacy and adverse 
event profiles of the currently available treatments are not 
always favorable, and this should prompt us to develop 
safer and/or more effective interventions [1].

In general, drug development is impaired by the 
failure to replicate preclinical in vivo studies in human 
clinical trials, thus emphasizing a problem in the trans-
lation from animals to humans [3]. At this time, there is 
an overestimation of the potential efficacy of new treat-
ments following encouraging results of preclinical in vivo 
studies; current recommendations to alleviate this prob-
lem include the performance of power calculation, ran-
domization and blinding, which are relatively simple to 
implement in a preclinical setting [4]. In contrast, the rec-
ommendations to “match the models to human manifes-
tation of the disease” and “to replicate in different models 
of the same disease” are far more difficult to satisfy [4].

Our objectives are to review the most commonly 
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reported animal models for AD and to match their char-
acteristics to the human disease. Furthermore, we will 
discuss the strength and limitation of each model with 
respect to its use in preclinical studies.

HUMAN ATOPIC DERMATITIS

The diagnosis of human AD usually relies on clinical 
features matched with diagnostic criteria [1]. These major 
criteria are pruritus, age-associated typical morphology, 
distribution of lesions, chronic or chronically relapsing 
dermatitis, and a personal or family history of atopic dis-
eases. Even though the diagnosis of AD depends on cer-
tain clinical characteristics, both the clinical presentation 
and the intra- and inter-personal inflammatory profiles 
underlying the lesional and non-lesional skin seem highly 
heterogeneous [5]. Patients with AD can be stratified into 
groups (i.e. “endotypes”) based on a normal or elevated 
serum total IgE levels (i.e. intrinsic or extrinsic forms of 
AD), the presence of filaggrin gene mutations, race, or 
presence of persistent secondary bacterial and viral infec-
tions. Disease flares can be caused by various triggers that 
include aeroallergens, food allergens, climate changes, 
hormonal changes, stress, and other irritants [6]. Major 
triggering allergens are those of the Dermatophagoides 
farinae and pteronyssinus house dust mites (HDM) [7], 
with 95 percent of human patients with moderate-to-se-
vere AD having detectable serum levels of HDM-specific 
IgE [8].

The Harmonising Outcomes Measures for Eczema 
(HOME) working group recently defined excoriation, 
erythema, edema/papulation, and lichenification as the 
minimum clinical signs that should be measured in clin-
ical trials for AD [9]. Erythema and edema/papulation 
are characteristic of acute stages while excoriation and 
lichenification represent more chronic lesions [1]. In pa-
tients with AD, the epidermal barrier integrity is altered 
due to the reduced expression of epidermal structural 
protein and a deregulation of lipid composition and orga-
nization, resulting in impaired protective function of the 
skin barrier. A disrupted skin barrier can be caused by ge-
netic mutations and, in patients with moderate-to-severe 
AD, the expression of the epidermal proteins filaggrin 
and loricrin is typically reduced in non-lesional as well 
as lesional skin [10]. An impaired skin barrier function 
allows for the increased penetration of antigens into the 
skin leading to the activation of local immune responses 
and increased transepidermal water loss across the skin 
barrier promoting xerosis. Furthermore, the clinically 
unaffected skin of patients with AD is typically charac-
terized by higher numbers of resident immune cells com-
pared to healthy control, especially Th2 and Th22 cells, 
which quickly secrete pro-inflammatory cytokines upon 
local stimulation [1]. Antigens penetrating the skin stimu-

late the cellular interplay between skin immune cells and 
keratinocytes, further promoting inflammatory responses, 
increased disruption of the skin barrier, and the addition-
al stimulation of a neurogenic itch response that causes 
scratching and thereby mechanical damage of the skin 
barrier. Thus, the progression of chronic skin lesions is 
driven by a vicious circle of mutually reinforcing pro-
cesses promoting disruption of the skin barrier function, 
itch-scratch cycles, and cutaneous inflammation.

Histologically, skin lesions of AD include spongiosis 
in acute lesions and epidermal hyperplasia with develop-
ing chronicity; the latter is associated with an increased 
expression of the proliferation-associated markers keratin 
16 (K16) and Ki67 [11]. Immunologically, skin lesions are 
characterized by infiltrating T cells, predominantly CD4+, 
group 2 innate lymphoid cells (ILC2s), and dendritic cells 
along with an increased number of dermal mast cells and 
eosinophils [11]. Lesion development is associated with 
an upregulated expression of thymic stromal lympho-
poietin (TSLP), IL-25, and IL-33 by keratinocytes [1]. 
Acute lesions are dominated by Th2-associated cytokines 
(IL-4, IL-13, and IL-31) as well as IL-22, with the added 
presence of IL-17, especially in Asian populations [1,12-
14]. During the shift from acute to chronic lesions, the 
Th2- and Th22-associated inflammatory response ampli-
fies further, and there is an additional increase in the ex-
pression of Th1-associated cytokines (IFN-γ and IL-12) 
[12,13].

Recently, clinical studies have included biomark-
ers that could be used to assess treatment efficacy for 
human patients with AD. Some of the best described 
treatment-responsive biomarkers found in the skin are a 
decreased skin thickness and the downregulation of the 
proliferation-associated marker Ki-67. Inflammatory 
markers such as the wound-inducible keratin-16, which 
is upregulated in keratinocytes under inflammatory con-
ditions, the metalloproteinase MMP12 that degrades 
primarily elastin and hence further impairs epidermal 
barrier function, the antimicrobial proteins S100A7-9, 
and S100A12 are recognized as alarmins and contribute 
to chronic inflammation. To these are added the chemo-
kines MCP-4/CCL13, TARC/CCL17, PARC/CCL18, 
and MDC/CCL22 that promote local inflammation and 
the recruitment of immune cells. The cytokines IL-13, 
an amplifier of the inflammatory function of Th2 cells, 
IL-22, which induces keratinocyte proliferation and al-
ters their differentiation and the pruritogenic IL-31 [15]. 
Furthermore, IL-31 and TARC/CCL17 can also be mea-
sured in serum where total IgE levels can also be used as 
a treatment biomarker [15]. Ideally, biomarkers found to 
be most relevant for human AD should be investigated 
also in animal models mimicking the human disease to 
establish a panel that could be used to assess the efficacy 
of treatment across species. For the models described in 
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the following sections, we will discuss molecular features 
including treatment biomarkers, when available.

GENERAL CONSIDERATIONS FOR 
PRECLINICAL STUDIES

In drug discovery, in vivo pharmacology studies are 
used for several purposes, e.g. for target validation and 
assessment of drug candidates in relation to pharmaco-
kinetics/pharmacodynamic (PK/PD) parameters, pre-
clinical efficacy as well as dose-to-man prediction. To 
be useful for preclinical efficacy studies, animal models 
of AD should be reproducible in regard to the onset and 
severity of skin lesions. As a result, inducible models are 
generally preferred to spontaneous ones that are general-
ly less predictable in sign onset. To assess in vivo target 
activity and investigate the PK/PD of drug candidates, an 
animal model that simply represents the specific pathway 
being targeted might be sufficient. However, to increase 
confidence that a drug candidate would be effective in 
humans, the selected models should possess as many 
characteristics of the human disease as possible. This re-
quires an extensive knowledge of the pathophysiology of 
human AD to evaluate the features that are mimicked in 
the existing animal models and to understand the ones 
that are not. Furthermore, differences in skin architecture 
and immunology between animals and humans should 
be taken into account [16-18]. The divergent immune re-
sponses of inbred laboratory mouse strains should also be 
carefully considered [19]. The thickness and composition 
of the skin also vary between species and genders [20]. 
In general, the human epidermis is considerably thicker 
than that of mice and dogs, likely due to the absence of 
a protective hair coat [21]. With regard to mimicking the 

immune response of human AD, it is imperative to re-
member that the immune response of C57BL/6 mice is 
generally Th1-biased, whereas that of BALB/c mice is 
more oriented toward a Th2 response [19]. Therefore, one 
should always carefully consider which mouse model to 
use for preclinical efficacy studies and for their predict-
ability for human AD.

Most models will use some procedures to better re-
produce the changes seen in the human disease and to 
enhance the absorption of AD-causing substances. To 
mimic the genetic or inflammation-induced epidermal 
barrier that exists in human AD skin, a tape-stripping 
method is often used: this procedure consists of repeated 
applications of an adhesive tape to the same area of the 
skin surface to remove successive layers of corneocytes, 
thereby altering the skin-protecting stratum corneum, its 
outermost layer. To increase the penetration of exogenous 
substances into this stratum corneum, skin occlusion with 
patches is often used. Occluding patches prevent water 
loss and thereby allow water retention within the skin 
causing damage to the epidermal barrier and, consequent 
ly, increasing the penetration of the applied substances.

Ultimately, when present, the severity of AD-like le-
sions will be generally graded with ad hoc scales rating 
the presence of several cardinal lesions of AD, such as 
acute erythema and edema, the excoriations that high-
light the presence of associated pruritus, and, for chronic 
models, ulceration, crusting, and epidermal thickening 
(lichenification).

SPONTANEOUS ATOPIC DERMATITIS IN 
ANIMALS

Atopic dermatitis spontaneously develops in dogs 

Table 1. Characteristics spontaneous mouse models for atopic dermatitis.

A) Acute (erythema, edema, papules, spongiosis), B) Chronic (lichenification, epidermal hyperplasia), C) Itch manifestation 
(excoriation, alopecia), D) ↑Th2 (IL-4, IL-5, IL-13), E) ↑total or specific IgE, F) ↑Th22 (IL-22), G) ↑Th1 (IFN-γ, IL-12), H) ↑Th17 
(IL-17), I) ↑TNF-α, J) Epidermal hyperplasia ↑K16 and/or Ki67, K) Disturbed skin barrier ↑FLG and/or LOR, L) ↑TARC/CCL17, 
M) ↑MDC/CCL22, N) ↑IL-31, O) ↑S100A7-9 or -12, P) Response to glucocorticoids. 
 
Changes in expression of specific cytokines or chemokines are only included for the skin. Included references have reported 
that the control mice were housed under specific pathogen-free conditions while diseased mice were kept under either specific 
pathogen-free conditions or a conventional environment without additional application of living mites, allergen, or hapten. “+”: data 
are available to show that this change is present in the model; “-”: studies have shown that this characteristic is not present in the 
model; “blank field”: indicates that we could find no data for this parameter. 

A B C D E F G H I J K L M N O P
Spontaneous mice                                                                                                                                   References

Flaky
Tail

+ + + + + + [75,96-98]

NC/
Nga

+ + + + + + + + [47,99,100]
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canine models for AD have been developed in atopy-pre-
disposed HDM-sensitized dogs [26,27].

Several mouse strains also have been described to 
naturally develop AD-like lesions. The most well-known 
are the NC/Nga mice, in which pruritic skin lesions devel-
op when they are housed under conventional conditions; 
AD-like signs also spontaneously occur in Flaky Tail (ft/
ft) mice (Table 1). The Flaky Tail mouse has a frameshift 

[22] that are exposed to the same environment as hu-
mans, and it is more common in dogs living indoors [23]. 
Canine AD resembles human AD with regards to clini-
cal features [24] and treatment response [25]. Preclini-
cal studies in privately-owned animals require compre-
hensive toxicology data and a high number of animals 
and, consequently, they are generally not the first choice 
to test the efficacy of new drugs. However, experimental 

A B C D E F G H I J K L M N O P
Transgenic mice                                                                                                                                      References

KIL-4 
(CByB6)

+ + + + + + + - - [101-105]

KIL-4 
(SKH1)

+ + - + - [105]

KIL-13 + + + + + (+) (+) [32]

KIL-18 + + + + - [47]

IL-31 + + - + [47]

KIL-33 + + + + + - - [106]

ApoC1 + + + + + [47]

KCASP1 + + + + - [47]

CTSS + + + + + + + (+) [107]

SCCE + + [47]

Stat6CVT + + + + + + + + + + [108-110]

KTSLP + + (+) + (-) (+) (+) (+) (-) [31,33]

Knockout mice                                                                                                                                          References

RelB -/- + + + (+) + + (+) [111,112]

CatE -/- + + + + + - [47]

KN1N2 -/- + + + - - - + (+) (-) + [31]

PLC-β3 -/- + + [113]
KCtip2ep-/- + + + + - + + - + - [114]

Table 2. Characteristics of genetically engineered mouse models for atopic dermatitis.

A) Acute (erythema, edema, papules, spongiosis), B) Chronic (lichenification, epidermal hyperplasia), C) Itch manifestation 
(excoriation, alopecia), D) ↑Th2 (IL-4, IL-5, IL-13), E) ↑total or specific IgE, F) ↑Th22 (IL-22), G) ↑Th1 (IFN-γ, IL-12), H) ↑Th17 
(IL-17), I) ↑TNF-α, J) Epidermal hyperplasia ↑K16 and/or Ki67, K) Disturbed skin barrier ↑FLG and/or LOR, L) ↑TARC/CCL17, 
M) ↑MDC/CCL22, N) ↑IL-31, O) ↑S100A7-9 or -12, P) Response to glucocorticoids.  
 
Changes in expression of specific cytokines or chemokines were detected in either skin, serum, or in supernatant from isolated 
lymph node or spleen T cells. If one transgene model has been established in more than one mouse strain, data from several 
strains are reported as one model. K in front of name: keratinocyte-specific expression; -/-: homozygous knockout; ep-/-: knockout 
keratinocyte-specific. “+”: data are available to show that this change is present in the model; “-”: studies have shown that this 
characteristic is not present in the model; “blank field”: indicates that we could find no data for this parameter. Parentheses around 
“+” or “–” indicate a low level of evidence due to either absent quantification and/or statistical analyses. Abbreviations: RelB: NF-κB 
family member; CASP1: caspace 1 CatE: Cathepsin E; CTSS: Cathepsin S; N1N2: Notch1Notch2; PLC-β3: phospholipase C-β3; 
ApoC1: Apolipoprotein; SCCE: stratum corneum chymotryptic enzyme (also named kallikrein 7); Ctip2: chicken ovalbumin upstream 
promotor transcription factor (COUP-TF)-interacting protein 2 (also named BCL11B).
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or dinitrofluorobenzene (DNFB) have to be used in mice 
[42]. Because of their small size, haptens more easily 
penetrate healthy intact skin than protein allergens [43]; 
the induced immune responses are generally reproducible 
and predictive, and the cost of hapten-induced ACD in 
mice is generally low [39].

In C57BL/6 mice, DNFB, dinitrochlorobenzene 
(DNCB), trinitrochlorobenzene (TNCB), and OXA ini-
tially induce a Th1 response while toluene diisocyanate 
(TDI) has a high IL-4 expression; it is harder to discrimi-
nate between helper T cell responses induced by the same 
agents in BALB/c mice [44]. This simplified division of 
haptens as “Th1 or Th2-inducers” has been challenged 
by a study showing that the “Th1-promoting” TNCB-in-
duced ear swelling 24 h after challenge was abolished in 
IL-4 KO C57BL/6 mice, while it could be restored with 
intravenous IL-4 or IL-13 injections [45]. In contrast, the 
ear swelling after 24 h induced by OXA was not com-
promised in IL-4 KO mice [45]. Acute hapten-induced 
dermatitis models are used to mimic ACD [46], whereas 
models based on repeated hapten challenges will lead to 
alterations in the skin barrier and a Th2-biased immune 
response that can then be used to model AD [47]. The 
models described in Table 3 have used comparable pro-
tocols for lesion induction and mice being housed under 
controlled conditions; for the TNCB models, regimens 
for lesion induction were not found. Although these 
models share some similarities with human AD, several 
of these—in particular the DNFB-induced models [48-
51]—are described to exhibit crusting and desquamation 
that are not commonly present with human AD, unless 
the skin is infected secondarily with S. aureus (i.e. lesions 
are impetiginized).

In most of these hapten-induced models, the skin-in-
filtrating immune cells are not well-characterized, except 
for a common increased number of dermal mast cells and 
infiltrating T cells compared to normal skin. The T cell 
subsets in FITC-induced skin lesions are predominantly 
CD4+ cells in BALB/c mice and CD8+ cells in NC/Nga 
mice [52]; this observation highlights that the hapten-in-
duced immune response also could be influenced by the 
chosen mouse strains. This finding was described also in 
the chronic OXA-induced models in which the hairless 
mice seem to have a more restricted Th2 response than 
in the BALB/c mice where the chronic response seems 
more Th1-dominated [53,54].

In most hapten-induced models, lesions have been 
found to respond to topical and/or oral treatment with 
glucocorticoids. Both JAK and PDE4 inhibitors have 
been tested in the acute TDI model, using a prophylac-
tic (i.e. preventive) protocol design [55,56]. Similarly, to 
the situation seen with human AD [57], the non-sedative 
H1R antagonist fexofenadine did not reduce pruritus in 
the OXA BALB/c model [58]; this was also the case for 

mutation in both filaggrin (flg) and matted (ma) genes, 
the latter being responsible for the natural development 
of skin lesions [28]. The specific mutation underlying 
the NC/Nga phenotype has not been identified, but it is 
thought to involve the T-cell receptor [29].

GENETICALLY-ENGINEERED MODELS 

Transgenic and knockout (KO) mice are highly valu-
able to elucidate the biological function of a single pro-
tein or pathway for target validation, as well as to model 
human diseases caused by specific mutations. However, 
these models might not always be relevant for preclinical 
efficacy studies due to their non-physiological inhibition 
or the activation of a single pathway with a resulting lack 
of complexity compared to that of human AD. For the 
mice presented in Table 2, the expression of the transgene 
is under the control of a basal keratinocyte keratin (K5 or 
K14) promoter that permits a constitutive epidermal-spe-
cific expression. All the models in Table 2 have been re-
ported to exhibit varying degrees of dermal leukocytosis, 
which consists generally of T cells, macrophages, eosino-
phils, or neutrophils, and an increased number of dermal 
mast cells.

The use of knockout models for AD is limited. Filag-
grin-/- KO mice have been generated in both C57BL/6 and 
BALB/c strains, but these mice do not develop dermatitis 
under specific pathogen free conditions [30].

Conditional models, such as the tamoxifen-inducible 
Notch1/Notch2 KO [31], and the IL-13 [32] and TSLP 
[33] transgenic models were generated to offer the advan-
tage of controlling the onset of skin lesions. An important 
disadvantage of these models is the added variability of 
the agent inducing the transgene expression, as too little 
could cause an insufficient protein expression whereas too 
much could lead to the development of toxic side effects 
[34]. Furthermore, the inducing agent could potentially 
affect the disease phenotype and the efficacy of any com-
pound being tested as, for example, tetracyclines could be 
both neuroprotective [35], have an effect against proteas-
es [36], and they are well-known antibiotics that could 
affect the surface microbiota [37]. Finally, the penetrance 
of the disease phenotype might also be variable in these 
models [38], they are time-intensive to generate, and their 
commercial availability is therefore limited [39,40].

HAPTEN-INDUCED MODELS

Haptens are small molecules that easily penetrate the 
epidermis and can provoke an immune response when 
they bind to tissue proteins, thereby leading to the de-
velopment of allergic contact dermatitis (ACD). In con-
trast to humans in whom ACD can be induced by weak 
haptens [41], strong sensitizers such as oxazolone (OXA) 
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VITAMIN D- AND VITAMIN D ANALOGUES-
INDUCED MODEL

The topical application of vitamin D3 or its synthetic 

chlorpheniramine treatment of hairless mice challenged 
with TNCB [59].

A B C D E F G H I J K L M N O P
Hapten-induced models                                                                                                                           References

Acute TDI + + + + + + [55,56,115]

Chr. DNCB + + + + + + [116,117]

Chr. DNCB 
+ SDS

+ + + + [118]

Chr. DNCB 
+ patch

+ + + [117,119]

Chr. DNCB 
Nc/Nga

+ + + + + + + + + + [120-123]

Chr. DNFB + + + + - + - + [48,49,124]

Chr. DNFB
Nc/Nga

+ + + + + + + + + [50,51,125,
126]

Chr. FITC + [52]

Chr. FITC
Nc/Nga

+ + + + + + + + [52,127]

Chr. OXA
BALB/c

+ + + + + - + + + - + + [58,128-
132]

Chr. OXA
hairless

+ + + + + - + [47,53,133]

Chr. OXA
Flaky tail

+ + + + [134]

Chr. TNCB + + + + [135,136]

Chr. TNCB
hairless

+ + + + + + [47,59,137]

Chr. TNCB
Nc/Nga

+ - + + - [138,139]

MC903-induced model                                                                                                                             References

MC903
chronic
BALB/c

+ + + + + + [62-64,140]

Table 3. Characteristics of hapten and MC903 induced models for atopic dermatitis.

A) Acute (erythema, edema, papules, spongiosis), B) Chronic (lichenification, epidermal hyperplasia), C) Itch manifestation 
(excoriation, alopecia), D) ↑Th2 (IL-4, IL-5, IL-13), E) ↑total or specific IgE, F) ↑Th22 (IL-22), G) ↑Th1 (IFN-γ, IL-12), H) ↑Th17 
(IL-17), I) ↑TNF-α, J) Epidermal hyperplasia ↑K16 and/or Ki67, K) Disturbed skin barrier ↑FLG and/or LOR, L) ↑TARC/CCL17, 
M) ↑MDC/CCL22, N) ↑IL-31, O) ↑S100A7-9 or -12, P) Response to glucocorticoids.  
 
Changes in expression of specific cytokines or chemokines are only included for skin, and all included references have reported that 
the mice were housed under specific pathogen free or controlled conditions, except for the TNCB model where no such publications 
were found. “+”: data are available to show that this change is present in the model; “-”: studies have shown that this characteristic 
is not present in the model; “blank field”: indicates that we could find no data for this parameter. Abbreviations: chr.: chronic; DNCB: 
dinitrochlorobenzene; DNFB: dinitrophenylbenzene; FITC: fluorescein isothiocyanate; OXA: oxazolone; SDS: sodium dodecyl 
sulfate; TDI: toluene diisocyanate; TNCB: trinitrochlorobenzene.
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human AD skin lesions [78]. In contrast to HDM, OVA 
does not induce epidermal hyperplasia in NC/Nga mice, 
likely due to its less complex allergen content that does 
not contain proteases, as do HDMs [71]. The inflammato-
ry response in the BALB/c tape-stripped OVA patch tests 
is dependent on αβ and independent of γδ T-cells [74]; an 
increased number of dermal mast cells, eosinophils, and 
dendritic cells are also present [79]. After three patch pe-
riods, the skin inflammation and IL-4 levels normally will 
subside [47]. As a result, this OVA patch model may not 
be optimal for preclinical studies of topical compounds, 
as the applications of tested products in the patch peri-
od would be complicated, and the occlusion would like-
ly enhance the epidermal penetration of the tested drugs 
[80,81]. However, this model may be useful and valid for 
testing the efficacy of oral and injectable compounds.

The co-administration of HDM and staphylococcal 
enterotoxin B (SEB) has been found to increase the se-
verity of dermatitis in NC/Nga mice and to induce mild 
lesions in BALB/c mice [82]. In this model, SEB not 
only functions as a superantigen, but it also serves as an 
allergen that induces the production of specific IgE, as 
seen in human AD [83,84]. To decrease the variability in 
HDM-induced models, the application of the recombi-
nant HDM allergens Der (rDer) p 1 and rDer p 2 was test-
ed on BALB/c mouse skin [85]. This model was found to 
exhibit epidermal thickening and dermal infiltration with 
leucocytes and eosinophils, while there were no detect-
able increases in serum IgE or dermal mast cells.

A recent study by Ewald and colleagues [54], com-
pared the transcriptomic profile of several AD mouse 
models with that of human AD. Models with the highest 
overall similarity to the human disease homologue were 
IL-23-injected mice followed by the HDM-induced NC/
Nga, the chronic OXA and the OVA-challenged mouse-
models. Although the IL-23 model exhibited the highest 
overall resemblance with human AD at the transcriptomic 
level, the expression of the treatment biomarkers TARC/
CCL17 and MAD/CCL22 was not increased. Further-
more, the IL-23 model shared the highest resemblance 
with human psoriasis, and it had more than twice as many 
differentially expressed genes as any of the other mod-
els, thereby underlining the concept that it is a broadly 
inflamed model that likely shares a high similarity with 
multiple human inflammatory diseases (i.e. a broad skin 
inflammation model). Beside the inflammatory aspect, 
the IL-23 model also seems to display some of the down-
regulation of genes involved in epidermal barrier func-
tion, changes that are not detected in the other models. 
Nevertheless, when looking at the clinical and histologi-
cal characteristics of all these models, the HDM-induced 
NC/Nga and the chronic OXA models reproduce most 
of the key characteristics of human AD. These include: 
an epidermal hyperplasia, an increased transepidermal 

analogues induces AD-like inflammation in mouse skin 
[60,61]. More specifically, the skin inflammation model 
induced by the vitamin D analog calcipotriol (MC903), 
has recently gained an increased attention (Table 3). The 
repeated topical application of MC903 induces a high 
levels of TSLP and the infiltration of group 2 (IL-5+ 
and IL-13+) ILCs to the skin, thereby resembling some 
immune perturbations observed in skin lesions of hu-
mans with AD [62,63]. MC903-induced inflammation is 
TSLP-dependent in C57BL/6 mice [60,62], but TSLP-in-
dependent in BALB/c mice since the knockout of the 
IL-25R and to a lesser degree of ST2 (IL-33 receptor) 
decreases MC903-induced inflammation more than the 
removal of the TSLPR [64]. These results again indicate 
that differing genetic backgrounds could affect the cyto-
kine cascade initiating the inflammatory responses in the 
skin of different strains of mice. However, the use of this 
model is only mechanistically addressing the infiltration 
of ILC2s, as MC903 has been shown not to induce the 
expression of TLSP in either healthy human skin, nonle-
sional AD skin, or skin from non-human primates [65].

ALLERGEN-INDUCED AND MIXED MODELS

Most allergen-induced animal models for human AD 
involve sensitizing mice to HDM or ovalbumin (OVA), 
(Table 4). Currently, 48 HDM and 10 egg white aller-
gens have been recognized [66]. Commercially available 
HDM and OVA allergen extracts are likely to vary in their 
allergen composition and concentration, and this may ac-
count for differences seen when comparing results across 
in vivo studies [67,68]. The epicutaneous application of 
OVA or HDM to intact skin does not easily sensitize and 
initiate lesion development in BALB/c or C57BL/6 mice 
[69-71]. In contrast, the repeated application of HDM to 
a compromised skin barrier easily elicits dermatitis [72], 
while an additional occlusion is needed for OVA-induced 
skin lesions [73,74]. Both the NC/Nga and Flaky Tail 
mice exhibit spontaneous skin barrier deficiencies that 
facilitate their easier sensitization and the induction of le-
sions by epicutaneous application of HDM without prior 
barrier disruption [71,75,76].

In these mice, skin lesions are infiltrated by lympho-
cytes and a high number of dermal mast cells. The der-
mis of NC/Nga mice also contains numerous eosinophils 
[76], while that of Flaky Tail mice is more neutrophilic 
[75]. In NC/Nga mice, treatment with tacrolimus reduced 
both severity scores and TARC/CCL17 levels in the skin 
[76]. The high inter-individual variability in lesion sever-
ity scores [71] can be reduced by the application of sodi-
um dodecyl sulphate (SDS) or mild tape-stripping (TS) 
(WB: personal observation). In the NC/Nga SDS+HDM 
model, an increased number of intra-epidermal nerve fi-
bers has been reported recently [77], a characteristic of 
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studies with a more detailed analysis of biomarkers of in-
terest, are necessary to gain a deeper understanding of the 
strengths and limitations of the various mouse models.

In the experimental canine models of HDM-induced 
AD, allergen challenges can be done in the environment 
or after epicutaneous applications, the latter being done 
either with (patch) or without occlusion. In these models, 
acute AD lesions (i.e. erythema, edema, papules) devel-
op [86,87] and pruritus manifestations (e.g. excoriations) 
are seen more often after widespread rather than local-
ized allergen challenges. Skin lesions are infiltrated with 
T cells, dendritic cells, and eosinophils [86,87]. A recent 

water loss with a decreased stratum corneum water con-
tent, parameters that all converge to highlight a disturbed 
epidermal function. These observations corroborate that 
microarray analyses cannot stand alone and must be ex-
amined in the context of other changes. Because microar-
ray analyses are generally done on full thickness biopsies, 
mRNA expressed by small cell subsets in the biopsies are 
often below the detection threshold (e.g. mRNA encoding 
for the cytokines IL-4 and IL-13), thus excluding many of 
the biomarkers that are used for AD molecular profiling 
from the overall comparison analysis. Additional studies 
like the one done by Ewald [54], including follow-up 

A B C D E F G H I J K L M N O P
Allergen-induced models                                                                                                                         References

Flaky Tail
HDM

+ + + + [75]

Flaky Tail 
OVA patch

+ + + + + + [141]

NC/Nga 
HDM

+ + + + + + + + + + [76,133]
(WB: 
personal 
observation)

Nc/Nga SDS 
HDM

+ + + + + + + (+) [77,142,
143]

Der p 1/Der 
p 2

+ + + [85]

TS OVA
patch

+ + + + + + + (-) + [47,79, 
119,144]

TS SEB
patch

+ + + + + + + [83,84,144]

Dog epi
HDM

+ + + + + (-) (-) + + + + + + [26,86,88,
89,45,146]

Dog env
HDM

+ + [87,90]

Mixed models                                                                                                                                            References
TS DNCB 
HDM 
BALB/c

+ + (+) + + + + + + + + [147-150]

TS OVA 
SEB patch

+ + + + + [83]

Table 4. Characteristics of allergen induced models for atopic dermatitis.

A) Acute (erythema, edema, papules, spongiosis), B) Chronic (lichenification, epidermal hyperplasia), C) Itch manifestation 
(excoriation, alopecia), D) ↑Th2 (IL-4, IL-5, IL-13), E) ↑total or specific IgE, F) ↑Th22 (IL-22), G) ↑Th1 (IFN-γ, IL-12), H) ↑Th17 
(IL-17), I) ↑TNF-α, J) Epidermal hyperplasia ↑K16 and/or Ki67, K) Disturbed skin barrier ↑FLG and/or LOR, L) ↑TARC/CCL17, 
M) ↑MDC/CCL22, N) ↑IL-31, O) ↑S100A7-9 or -12, P) Response to glucocorticoids.  
 
Changes in expression of specific cytokines or chemokines are only included for skin, and all included references have reported that 
the mice were housed under specific pathogen free or pathogen controlled conditions. “h”: elevated; “i”: decreased; “+”: data are 
available to show that this change is present in the model; “-”: studies have shown that this characteristic is not present in the model; 
“blank field”: indicates that we could find no data for this parameter. Parentheses around “+” or “–” indicate a low level of evidence 
due to either absent quantification and/or statistical analyses. Abbreviations: DNCB: dinitrochlorobenzene; epiHDM: epicutaneous 
HDM; envHDM: environmental HDM exposure; SDS: sodium dodecyl sulfate; TDI: toluene diisocyanate; TS: tape-stripping.



Martel et al.: Animal models of atopic dermatitis 397

conduct of preclinical efficacy studies: a systematic review 
of guidelines for in vivo animal experiments. PLoS Med. 
2013;10(7):e1001489.
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titis results in intrinsic barrier and immune abnormalities: 
implications for contact dermatitis. The Journal of allergy 
and clinical immunology. 2013;131(2):300-313.

12. Gittler JK, Shemer A, Suarez-Farinas M, Fuentes-Duculan 
J, Gulewicz KJ, Wang CQ, et al. Progressive activation of 
T(H)2/T(H)22 cytokines and selective epidermal proteins 
characterizes acute and chronic atopic dermatitis. J Allergy 
Clin Immunol. 2012;130(6):1344-1354.

13. Hamid Q, Naseer T, Minshall EM, Song YL, Boguniewicz 
M, Leung DY. In vivo expression of IL-12 and IL-13 in 
atopic dermatitis. J Allergy Clin Immunol. 1996;98(1):225-
231.

14. Noda S, Suarez-Farinas M, Ungar B, Kim SJ, de Guzman 
Strong C, Xu H, et al. The Asian atopic dermatitis pheno-
type combines features of atopic dermatitis and psoriasis 
with increased TH17 polarization. J Allergy Clin Immunol. 
2015;136(5):1254-1264.

15. Mansouri Y, Guttman-Yassky E. Immune Pathways 
in Atopic Dermatitis, and Definition of Biomarkers 
through Broad and Targeted Therapeutics. J Clin Med. 
2015;4(5):858-873.

16. Haley PJ. Species differences in the structure and function 
of the immune system. Toxicology. 2003;188(1):49-71.

17. Mestas J, Hughes CC. Of mice and not men: differences 
between mouse and human immunology. J Immunol. 
2004;172(5):2731-2738.

18. Pasparakis M, Haase I, Nestle FO. Mechanisms regulat-
ing skin immunity and inflammation. Nat Rev Immunol. 
2014;14(5):289-301.

19. Sellers RS, Clifford CB, Treuting PM, Brayton C. Im-
munological variation between inbred laboratory mouse 

microarray study of early HDM patch test-induced skin 
lesions revealed a Th2 and Th22 associated cytokines and 
chemokines dominating profile that is similar to that seen 
in human AD [88]. Finally, these HDM-induced acute 
skin lesions are responsive to the preventive treatment 
with topical or oral glucocorticoids. As the lesions spon-
taneously resolve within a week or two, these models are 
therefore best suited to the testing of drugs in a preven-
tive rather than therapeutic manner. Examples of usage of 
these models for preclinical testing of both topically- and 
orally-administered compounds have been published re-
cently [89,90].

CONCLUSIONS

Published studies on the characterization and phar-
macological validation of animal models for human AD 
are incomplete. Information from several microarray 
studies of comparing gene expression before and after 
treatment in humans with AD are available [91-95]. These 
datasets provide a great opportunity for comparing results 
from pharmacological validation studies on animal mod-
els with those of human AD. A thorough comparison of 
detailed transcriptomic data in the animal models com-
pared to those of human AD, such as that done recently 
by Ewald and colleagues [54], would help elucidating 
which one(s) of the treatment biomarkers identified in 
human studies would also be of interest in the various 
animal models. This, together with an increasing under-
standing of the various human AD endotypes, would pro-
vide a guide for better choosing the most optimal models 
to investigate a specific target as well as to select the most 
relevant outcome measures in preclinical efficacy studies.

In conclusion, we believe that the increased knowl-
edge of animal model characteristics will help in select-
ing the proper model for a specific study purpose. Ulti-
mately, this will likely lead to a better predictability and 
translatability of results to human clinical studies. 
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