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Abstract

In this study, we want to explore evidence for the causal relationship between the ana-

tomical descriptors of the cingulate cortex (surface area, mean curvature-corrected thick-

ness, and volume) and the performance of cognitive tasks such as Card Sort, Flanker, List

Sort used as instruments to measure the executive functions of flexibility, inhibitory con-

trol, and working memory. We have performed this analysis in a cross-sectional sample

of 899 healthy young subjects of the Human Connectome Project. To the best of our

knowledge, this is the first study using causal inference to explain the relationship

between cingulate morphology and the performance of executive tasks in healthy sub-

jects. We have tested the causal model under a counterfactual framework using stabi-

lized inverse probability of treatment weighting and marginal structural models. The

results showed that the posterior cingulate surface area has a positive causal effect on

inhibition (Flanker task) and cognitive flexibility (Card Sort). A unit increase (+1mm2) in

the posterior cingulate surface area will cause a 0.008% and 0.009% increase from the

National Institute of Health (NIH) normative mean in Flankers (p-value <0.001), and Card

Sort (p-value 0.005), respectively. Furthermore, a unit increase (+1mm2) in the anterior

cingulate surface area will cause a 0.004% (p-value <0.001) and 0.005% (p-value 0.001)

increase from the NIH normative mean in Flankers and Card Sort. In contrast, the

curvature-corrected-mean thickness only showed an association for anterior cingulate

with List Sort (p = 0.034) but no causal effect.
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1 | INTRODUCTION

The neural basis of executive functions (EFs) is a key topic in neurosci-

ence research. Up to this date, we do not have a mechanistic explana-

tion of the anatomic structures that cause individual differences. One

of the most relevant structures associated with EF is the cingulate

cortex (CC), as evidenced by studies based on functional magnetic res-

onance imaging (MRI) (Amanzio et al., 2020; Palermo et al., 2018) for

group average and clinical populations (Braden et al., 2017; Zhan

et al., 2018).

Instead of focusing on functional brain research (fMRI), here

we will focus on structural correlates. The literature shows thatFuleah A. Razzaq and Maria L. Bringas Vega shared first authors.
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structure follows functions (Wenger et al., 2017), and the structural

differences may underpin the intra- and inter-individual differences

in cognitive functions. An extensive recent study found some of

the strongest associations between overall intelligence and the vol-

ume of the insula and posterior cingulate (Deary et al., 2021). How-

ever, they did not use the components of the volume: thickness

and cortical surface area (Deary et al., 2021). Other studies relate

the EFs with structural correlates of the CC in the clinical

(Kempton, 2011; McClintock et al., 2010; Saleh et al., 2017; Shinde

et al., 2021) and healthy population (Amiez et al., 2018; Bento-

Torres et al., 2019).

These studies are associational and based on the clinical

populations and very few controls or small sample sizes. Associa-

tion is much less than causal analysis, specifically under the modern

framework of potential outcomes and counterfactuals. We have

implemented the causal modeling under the counterfactual frame-

work using stabilized inverse probability of treatment weighting

(IPTW) and marginal structural models (MSMs). We want to assess

how the structural properties of the CC causally affect the perfor-

mance of EFs. Individual differences in the performance of cogni-

tive tasks related to the EFs like flexibility, inhibitory control, and

working memory can be measured in well-known tasks such as the

Dimensional Change Card Sort (DCCS) (Zelazo, 2006), the

Ericksen's Flanker task (Eriksen & Eriksen, 1974), and List Sorting

(Tulsky et al., 2013). The current study is based on a cross-sectional

sample of healthy young subjects of the Human Connectome Pro-

ject (HCP).

To the best of our knowledge, no studies demonstrate the causal

relationship between cingulate structural anatomy and individual per-

formance of EFs under the modern statistical framework of counter-

factual analysis.

2 | MATERIAL AND METHODS

This section describes the data and the details of statistical analysis.

All the analysis was done in R (R Core Team, 2020). Figure 1 shows an

overview of the methodology.

2.1 | Participants

Our data sample consisted initially of 1206 subjects from Human

Connectome Data (HCP) (WU – Minn Consortium Human

Connectome Project, 2017), from which we excluded 307 subjects

(one subject from each pair of mono and dizygotic twins) to avoid

inter-sibling correlations. We have included 899 subjects in this study,

aged 22–36 years. Of all subjects, 47.6% were male; see Table 1 for

descriptive data statistics. All subjects are healthy and do not have sig-

nificant neurological or psychiatric disorders. More details can be found

at http://humanconnectome.org/storage/app/media/documentation/

s1200/HCP_S1200_Release_Reference_Manual.pdf).

2.2 | Variables

2.2.1 | Demographics

We include age, gender, handedness, race, and father, mother ID of

each participant in the analysis.

• Age in years.

• Gender: female or male.

• Father/mother ID: a unique numeric ID to identify siblings and

family.

• Handedness has a value [�100, 100], where negative values were

for left-handed people and positive values for right-handed people.

We dichotomized handedness for ease of analysis.

• Race was a six-factor variable with possible values of

1. White

2. Black/African American

3. Asian/Hawaiian/Pacific Islanders

4. American Indian/Alaskan

5. More than one

6. Unknown

2.2.2 | Cognitive tests for executive functions

The National Institute of Health (NIH) designed the cognitive tasks

employed here. The brain's EF depends, among other skills, on cogni-

tive flexibility, inhibition, and working memory (Diamond, 2013). We

selected three tasks to assess EF using the neuropsychological battery

in the HCP for our study. The tasks were: DCCS (cognitive flexibility),

F IGURE 1 Overview of methodology
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Flanker (inhibition), and List Sorting (working memory). For each task,

we have used unadjusted scores. A score of 100 indicates the mean

score for NIH normative sample. A higher value indicates better per-

formance (Cole et al., 2021). Further explanation about tasks can be

found at https://wiki.humanconnectome.org/display/PublicData/HCP+

Data+Dictionary+Public-+Updated+for+the+1200+Subject+Release#

HCPDataDictionaryPublicUpdatedforthe1200SubjectRelease-Instrument:

ExecutiveFunction/Inhibition(FlankerTask).

Cognitive flexibility (Dimensional Change Card Sort)

DCCS measures cognitive flexibility where the subject matches the

initial pictures with other subsequent picture cards in terms of either

shape or color. Participants switch between the shape and colors as

per instruction in different trials. These changing instructions (sorting

based on color or shape) measure cognitive flexibility. The test scores

are acquired based on the subject's reaction time and accuracy of

sorting (Zelazo, 2006). NIH toolbox DCCS is a <5-min test and valid

for individuals 3–85 years old (Cole et al., 2021).

Inhibition (Flanker task)

The Flanker task measures both participant's attention and inhibitory

control. The test requires the participant to focus on a given stimulus

while inhibiting attention to stimuli (fish for ages 3–7 or arrows for

ages 8–85) flanking it. Sometimes the middle stimulus is pointing in

the same direction as the “Flanker” (congruent) and sometimes in the

opposite direction (incongruent). Scoring depends on accuracy and

reaction time, and the test takes approximately 3 min to administer.

This test is suitable for ages 3–85.

Working memory (List Sorting)

This task assesses the working memory using List Sorting. Participants are

required to sort pictures (from smallest to largest in terms of size) of dif-

ferent food items and/or animals. Images provide a written name as well

as a sound clip. The task has two conditions: (1) list requires sorting only

one series of items (either food or animals), whereas the (2) list condition

requires sorting both, one after other (food items followed by animals).

2.2.3 | Neuroimaging variables

The neuroimaging variables of brain gray matter employed in our

study are the FreeSurfer (FS) (https://www.sciencedirect.com/topics/

medicine-and-dentistry/freesurfer) output. FS is a suite of tools for

analyzing neuroimaging data that provides various algorithms to quan-

tify the human brain's functional, connectional, and structural proper-

ties (http://surfer.nmr.mgh.harvard.edu) (Fischl et al., 1999; Fischl &

Dale, 2000). We projected the Destrieux cortical atlas (Destrieux

et al., 2010) from FS for brain parcellation. Destrieux atlas is gyri and

sulci-based and has 148 regions.

Total gray matter volume

Total gray matter volume is the sum of the volume at each vertex

for the whole brain, and the measurement unit is mm3. Volume is

the product of cortical surface area and gray matter thickness at

each vertex.

Anatomical variables for cingulate cortex

Destrieux cortical atlas parcellates the CC into five subregions: two

from the anterior cingulate cortex (ACC) and three posterior regions

(Destrieux et al., 2010; Mashhoon et al., 2014). For this study, we

have combined the five CC subregions into two main areas, anterior

and posterior CC.

TABLE 1 Summary of data
Variables Mean (SD) Variables Mean (SD)

Number of subjects 899 List Sort 111.02 (11.30)

Gender = M (%) 428 (47.6) ACC area 5700.01 (781.91)

Age 28.68 (3.76) PCC area 3218.10 (448.81)

Handedness 66.34 (43.79) ACC volume 18,434.99 (2467.55)

Gray matter volume 686,095.96 (67,213.24) PCC volume 10,239.83 (1469.63)

Card Sort 114.66 (10.56) ACC thickness 2.99 (0.11)

Flanker 111.28 (10.09) PCC thickness 2.68 (0.10)

Abbreviations: ACC, anterior cingulate cortex; PCC, posterior cingulate cortex.

F IGURE 2 Parcellation of cingulate cortex (CC) in five subregions
from Destrieux cortical atlas (Destrieux et al., 2010). Parcellated
anterior CC is divided into anterior cingulate gyrus and sulcus (ACC)
and middle anterior cingulate gyrus and sulcus (aMCC). Parcellated
posterior CC is divided into middle posterior cingulate gyrus (pMCC),
dorsal posterior cingulate gyrus (dPCC), and ventral posterior
cingulate gyrus (vPCC).
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1. Anterior CC

� Anterior cingulate gyrus and sulcus (ACC)

� Middle anterior cingulate gyrus and sulcus (aMCC)

2. Posterior CC

� Middle posterior cingulate gyrus (pMCC)

� Dorsal posterior cingulate gyrus (dPCC)

� Ventral posterior cingulate gyrus (vPCC)

For illustration purposes only, Figure 2 shows a parcellation of the

CC. Morphometry statistics generated by FS are the physical brain

feature measurements like total surface area, mean cortical thickness,

and total volume. The surface area is the sum of all vertex in a brain

parcel, and the measuring unit is mm2. Thickness is measured as the

mean/average distance to the gray-CSF boundary and measured in

mm. Furthermore, we have used curvature-corrected thickness for

the HCP data set, which is available at https://balsa.wustl.edu/

sceneFile/L6vp9. Average surface curvature was regressed out,

resulting in curvature-corrected thickness, as explained in Glasser and

Van Essen (2011) and Sigalovsky et al. (2006). Volume is the product

of area and thickness at each vertex and measured in mm3. Most

studies on brain structure have focused on brain volume. However,

volume is the composition of area and thickness. Studies that analyze

all three measures simultaneously are scarce. It is also not well

established which component of volume (area or thickness or both) is

more significant (Cox et al., 2018).

2.3 | Traditional statistical analysis

2.3.1 | Handling incomplete or missing data

As the first step, we check for any missing values and omit cases with

incomplete data.

2.3.2 | Outlier detection and elimination

In the second step, we screen for the multivariate outliers. For multi-

variate outlier detection, we utilized all the measured variables. A mul-

tivariate outlier is any subject for which the combination of values for

different variables is different from most subjects. It is essential to

detect and handle such cases to avoid bias in the results. We applied

Mahalanobis distance, Leverage, and Cook's distance to detect the

outliers. Mahalanobis distance assigns a score to each subject, which

is the distance between the subject and the centroid of the distribu-

tion. The distance cut-off value was selected using a p-value <0.001

(Tabachnick et al., 2007). We implement Leverage to measure how

much one subject influences the slope of regression line β

(Welsch, 1982).

Furthermore, we administered Cook's distance which accounts

for individual Leverage and residual (Cook & Weisberg, 1982). We

carried out this analysis using “Mahalanobis,” “hatvalues,” and “cook.
distance” functions in R (R Core Team, 2020). Any subject beyond the

cut-off limit in at least two measures is considered an outlier and

excluded from the analysis.

2.3.3 | Checking data for normality,
homoscedasticity, and linearity

Checking for normality, linearity, and homoscedasticity is essential for

any inference-based analysis because results can degrade if data is

skewed or curvilinear. Therefore, we examined multivariate normality

using the standardized regression residuals for Flanker's score on all

anatomical variables. A histogram and a quantile–quantile (QQ) plot

are employed to check for the multivariate normality of data regarding

skewness and kurtosis (Tabachnick et al., 2007). Homoscedasticity

defines that residuals have the same variance for all the values of

independent variables. Homoscedasticity and normality ensure the

linear trends in data. We have used a scatter plot for standardized

residuals versus fitted values to check homoscedasticity (Tabachnick

et al., 2007).

2.3.4 | Regression analysis between anatomical
variables and EF-based tasks

To simplify and establish a causal diagram (directed acyclic graph

[DAG]), we implemented a linear regression to observe simple associa-

tions between the EFs and anatomical variables. It is evident from the

literature that the association of intelligence with cortical thickness

and area varies across different age groups and racial backgrounds

(Frangou et al., 2022; Lett et al., 2020; Menary et al., 2013). Thus, we

have included age and race as covariates for the initial estimate. We

choose the significant variables for further analysis at a p-value <0.05.

2.3.5 | Examining the multicollinearity of
anatomical markers

We tested anatomical variables for multicollinearity to identify the

relationships between the three morphological metrics (volume,

area, and thickness). We implemented bivariate correlations

between the three anatomical markers. In the case of high correla-

tion, we only selected the more simple markers to simplify the

causal DAG.

2.4 | Causal inference under the counterfactual
framework

2.4.1 | Causal directed acyclic graph

After pre-processing, cleaning, and more traditional statistical analysis,

we established a simplified causal DAG to identify the causal relation-

ship between the EFs and cingulate anatomical markers.
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2.4.2 | Marginal structural models

The MSM is a subclass of statistical models. MSMs implement the

marginal distribution of counterfactual random variables or poten-

tial outcome models for causal inference (Breskin et al., 2018). Ide-

ally, for a dichotomous treatment, the true causal effect (CE) is the

difference between the two outcomes for the same individual

(1) when the treatment was applied T¼1ð Þ and (2) when the treat-

ment was not applied T¼0ð Þ. Treatment (area, volume, or thickness)

is continuous in this study. However, we will use a dichotomized ver-

sion of the treatment variable to establish an initial model and theo-

retical basis. If MCT is the mean of the continuous treatment

CT¼ area, thickness, or volumeð Þ for HCP young adults' data set,

then Ti for ith subject is

Ti ¼
0

1

�
when CTi ≤MCT

when CTi >MCT

�
: ð1Þ

Furthermore Yi ¼Flanker scores, there is a CE if the outcome for the

ith individual is different under treatment and no treatment

Yi Ti ¼1ð Þ≠Yi Ti ¼0ð Þ: ð2Þ

However, only one of these outcomes is observable, while the other

is a counterfactual or potential outcome. For example, the ith subject

can only have the ACC surface area greater than or less than M; how-

ever, they cannot simultaneously have both. As the individual CE is

not identifiable, the average causal effect (ACE) or the average treat-

ment effect (ATE) is calculated in a population of individuals. Further-

more, for a sample (which is a subset of the population), ATE is

estimated using the conditional averages

ρ¼bE YjT¼1½ ��bE YjT¼0½ �, ð3Þ

bE is the observed average of the sample, Y j T¼1 is the outcome for

treated individuals, and Y j T¼0 is the outcome for untreated individ-

uals. ρ is the unbiased estimator for true ATE under identifiability con-

ditions (exchangeability/ignorability, positivity, consistency); more

details can be found in James and Hernán (2020). However, these

conditions can be violated by confounding factors. Therefore, con-

founding factors should be appropriately handled, and the approaches

to deal with measured confoundings are discussed in the next section.

2.4.3 | Inverse probability of treatment weighting:
A marginal method for confounding control

Measured confounding in the observational studies is commonly dealt

with using conditional approaches (stratification) and marginal

approaches (G-methods). Stratification-based methods estimate the

association between treatment and outcome in the sample under

study (conditional). In contrast, G-methods estimate the CE on the

entire population (marginal) (Ji et al., 2020).

IPTW comes under G-methods (James & Hernán, 2020). We

implemented IPTW because we are interested in the CE on the popu-

lation. IPTW creates a pseudo-population with no confounding.

IPTW¼ T
Ρ T¼1jL¼ lð Þþ

1�T
1�Ρ T¼1jL¼ lð Þ , ð4Þ

where T is 1 for treated or 0 for untreated individuals, and

Ρ T¼1jL¼ lð Þ is the probability of being treated given the confounding

levels l (Pezzi et al., 2016). We balance the confounders across treat-

ment levels by assigning weights to each sample.

2.4.4 | Problem formulation for marginal structural
model

MSM estimation via IPTW is a two-step process. Firstly, IPT weights

are computed. We use these weighted samples to fit an outcome

model in the second step. Moreover, the unmeasured confounding is

handled using a sensitivity analysis, which estimates the amount of

unmeasured confounding required to nullify the estimated ATE

(VanderWeele & Ding, 2017).

We implemented the marginal models, using cingulate anatomy

as a continuous treatment variable T¼ anatomical variablesð Þ and

EFs as an outcome Y¼EF-based test scoresð Þ, age, and race as

covariates V¼ ageþ raceð Þ. The measured confounding Lð Þ is age,

race, gender, handedness, father ID, mother ID, and total gray matter

volume. Father and mother ID account for any unmeasured common

genetic and environmental factors within families. L also includes age

and race to ensure exchangeability within levels of covariates

(James & Hernán, 2020). We applied stabilized or augmented IPTW to

avoid biased results due to large weights for the measured con-

founding variables L. The outcome model for ATE on Y is

ATE Yð Þ¼ β0þβ1Tþβ2VT: ð5Þ

We evaluated the outcome model for the MSM using the GeePack R

package (Halekoh et al., 2006). The R code can be found at https://

github.com/CCC-members/HCP-Anat-R.

2.4.5 | Sensitivity analysis

Sensitivity analysis assesses the robustness of CEs against

unmeasured confounding. We implement “E-value” as a sensitivity

parameter administered for the stability of causal estimates in obser-

vational studies. E-value defines the association between the

unmeasured confounder and treatment/outcome in the risk ratio

scale, which is needed to completely explain the estimated ATE. Thus,

the larger the E-value, the more stable the estimated ATE

(VanderWeele & Ding, 2017). However, E-value should not be used

alone and should be administered cautiously (Ioannidis et al., 2019;

VanderWeele et al., 2019). We will only consider the E-value for this
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study if the p-value is significant at alpha 0.05. We applied the E-value

function for continuous treatment and outcome (Mathur et al., 2018)

based on estimates from MSM. E-value takes a parameter delta to

dichotomize the exposure. Our choice for delta is the mean value for

each anatomical variable. For dichotomization of the continuous out-

come, the E-value function utilizes the effect size (Chinn, 2000;

VanderWeele, 2017).

3 | RESULTS

3.1 | Data pre-processing and cleaning

Our data consist of 899 samples, out of which 231 subjects had miss-

ing values. We excluded those subjects from the analysis, and

668 subjects remained in the study. We implemented outlier

detection based on Mahalanobis, Leverage, and Cook's distance; and

excluded 17 more subjects as outliers from the analysis based on the

distance cut-off value (if the subject was an outlier in two out of three

distances). The outlier elimination resulted in n = 668 valid samples

with which we carried out the rest of the analysis. We checked for

multivariate normality, linearity, and data homogeneity using stan-

dardized results from regression Flanker ~anatomical variables. Figure 3

summarizes the results. The QQ plot (Figure 3a) for standardized

residuals from the regression shows a linear trend. The histogram for

standardized residuals (Figure 3b) shows a normal distribution, so no

corrective measures were needed.

Furthermore, to check for homogeneity/homoscedasticity, we

have plotted z-scored fitted values versus standardized residuals in a

scatter plot (Figure 3c). The results are homogenous as the spread

across zero for both axes [�2, 2] is the same. The solid red line in the

plot marks zero for both axes.

F IGURE 3 Results for data's multivariate normality, linearity, and homogeneity. The plots show the result of regression “Flanker�anatomical
variables.” (a) A quantile–quantile plot for the standardized residual versus a theoretical normal distribution shows a linear trend. (b) Histogram for
standardized regression residuals to check for multivariate normality. (c) A scatter plot between standardized residuals and z-scored predicted
values. The resultant spread is homogeneous.
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3.2 | Linear trend

Before estimating the ATE using MSM, we used linear regression with

covariates (age, race) to check for simple associations between the

EFs and measured anatomical variables. Results are in scatter plots

(Figures 4–6) for Flanker, Card Sort, and List Sort, respectively. Each

figure shows six subplots for anatomical measurements and test

scores; the first column is for surface area, the second for curvature-

corrected mean thickness, and the third for volume. Each column has

two subplots, one for each subregion in the CC; anterior and poste-

rior. The x-axis shows the z-scored area/thickness/volume, and the y-

axis shows test scores (Flanker in Figure 4, Card Sort in Figure 5, List

Sort in Figure 6). The solid red line shows the linear trend between

x and y, and the plots also exhibit a p-value for the regres-

sion EF scores ~Anatomical variablesþageþ race.

Results showed that the variables for area/volume have a signifi-

cant association with Flanker and Card Sort with p-values ≤0.05. In

contrast, variables for curvature-corrected-mean thickness only

showed an association for anterior cingulate with List Sort at a signifi-

cance level of 0.05. We do not adjust these results for multiple

comparisons.

3.3 | Multicollinearity in morphological metrics

We have also tested anatomical variables for multicollinearity. To

check for the relationship between the three morphological metrics

(volume, area, and thickness), we have used bivariate correlations and

found that the surface area and volume are highly correlated. Figure 7

shows a correlation plot between anatomical variables; the dark blue

indicates highly correlated variables with the highest correlation value,

0.96. Volume is a composite variable based on area and thickness.

Based on high correlation values of volume with surface area, we have

decided to exclude volume and use only the surface area and cortical

thickness for causal analysis.

3.4 | Inverse probability treatment weighting

The stabilized IPTW resulted in a nominal range with no extreme

weights. The weight range was [0, 26] for surface area and [0, 4] for

thickness. Figure 8 shows the density plot for weights. The x-axis is the

weights in the log scale, and the y-axis is the density for each weighting

value, whereas different colors represent the CC-specific weights.

F IGURE 4 Six scatter plots for measured anatomical variables versus Flankers. The first row from the top is for anterior cingulate cortex (CC;
area, followed by curvature-corrected thickness and volume). The second row is for posterior CC. The y-axis is test scores for the Flanker and the
x-axis for standardized anatomical measurements. The solid red line shows the linear trend between x and y with respective p-values for
“Flanker�Anatomy+ Age+ Race” regressions. Area and volume are significant at alpha 0.05.
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3.5 | Marginal structural modeling

After analyzing the linear trends and collinearity between the anatom-

ical variables, we modified our initial MSM model based on the find-

ings; volume was excluded from the causal analysis. Figure 9

illustrates the updated model for MSM.

We tested four marginal models for each cognitive test score, two

for the area and two for the thickness. We tested 12 marginal models

and summarized the results in Table 2. Four models were significant at a

significance level of 0.05. None of the List Sort tests were significant.

ATE for Flanker and posterior surface area was highly significant with a p-

value <0.001 and a causal estimate of 0.008 (95% CI [0.003–0.012]). PCC

area and Card Sort also resulted in significant CE with ATE 0.009 (95% CI

[0.003–0.015]) and p-value = 0.005. Anterior surface area also showed a

significant CE for both Flanker and Card Sort with a p-value of <0.001

and 0.001, respectively. ATE of ACC area on Flanker was 0.004 (95% CI

[0.002–0.006]), and on Card Sort was 0.005 (95% CI [0.002–0.008]).

3.6 | Sensitivity analysis

To check for the stability of MSM results, we have used E-values as

sensitivity analysis. The significant models from MSM at alpha 0.05

resulted in the largest E-values. The PCC area resulted in 16.639 for

the Flanker and 20.901 for Card Sort (Table 2). E-values for ACC

models were 21.455 for Card Sort and 12.915 for Flanker (Table 2).

4 | DISCUSSION

We have analyzed healthy young adults' data to estimate the CEs of

cingulate anatomy (total surface area, curvature-corrected mean

thickness, and total volume) on the brain's EFs for cognitive flexibility,

control inhibition, and working memory. We found that the CC sur-

face area and volume were associated with EFs (Card Sort and

Flankers task) with a p-value <0.01 when age and race were included

as covariates. On the other hand, curvature-corrected mean thickness

for anterior cingulate showed association with List Sort with a p-value

of 0.0348. These results are supported by previous studies, which

state that thickness and cortical surface area are phenotypically differ-

ent and evolve independently (Chen et al., 2015; Geschwind &

Rakic, 2013; Winkler et al., 2010) and have different associations with

cognition and brain disease (Schnack et al., 2015; Vuoksimaa

et al., 2016). In a study of human intelligence and its relationship with

the cortical thickness (structural) and neural activations (functional),

(Choi et al., 2008) found that ACC is functionally associated with

F IGURE 5 Six subplots each for one measured anatomical variable. The first row is for anterior cingulate, and the second row is for posterior
cingulate. Each row includes three subplots for anatomical measures. The y-axis is test scores for Card Sort and the x-axis for anatomical
measurements. The solid red line shows the linear trend for y�x.
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F IGURE 6 Linear trend between List Sort and anatomical variables. Columns represent the area, thickness, and volume, respectively, whereas
rows are for subregions anterior cingulate cortex (CC) and posterior CC.

F IGURE 7 Correlation plot for anatomical measurements. The
blue color shows a positive correlation with the darkest value of 0.96
between area volume variables for any specific region.

F IGURE 8 Inverse probability of treatment weighting (IPTW)
density plot, the x-axis is log weights for the pseudo-population
adjusted for age, gender, race, handedness, father and mother ID, and
total gray matter volume.
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intelligence. Moreover, a recent study by Lett et al. (2020) found that

general intelligence scores were associated with ACC surface area

and thickness (Lett et al., 2020).

Furthermore, as the volume is a composite measure based on

area and thickness, we found volume is highly associated with the sur-

face area with a positive correlation value of 0.96. That suggests that

the cortical surface area is CC's most relevant morphological metric

for the EFs. The importance of the cortical surface area has also been

stressed by Lett et al. (2020) as a mediator of the relationship

between polygenic scores for intelligence and general intelligence.

Based on the findings mentioned above, we analyzed only the sur-

face area and average cortical thickness for the causal inference. We

have implemented IPTW and MSMs to estimate the CEs under the

potential outcome/counterfactual paradigm. The results showed that the

surface area of the posterior cingulate has a positive ACE on test scores

for Flanker (control inhibition) and Card Sort (cognitive flexibility). A unit

increase (+1mm2) in posterior cingulate surface area will cause a

0.008% (Flanker), 0.009% (Card Sort) increase in the test scores from the

NIH normative mean score of 100, after accounting for age, gender,

handedness, total gray matter volume for the brain, race, and family (indi-

rectly accounting for common genetic and environmental factors).

E-values test for the robustness of the results under any

unmeasured confounding factors, and the results showed that poste-

rior CC has robust ATE. E-value used dichotomization of the indepen-

dent/treatment variable, and results are in risk ratio scale. We used

the average surface area for dichotomization. The results showed an

E-value of 16.639 for Flanker and 20.901 for Card Sort. This suggests

that for any unmeasured confounding factor to change the ATE of

PCC, it would need to have a 16- to 20-fold stronger association with

both exposure and outcome. Some recent associational studies

between posterior cingulate and general intelligence scores support

our findings (Basten et al., 2015; Nomi et al., 2018). An extensive

recent study from UK BIOBANK data found some of the strongest

associations between a latent variable of intelligence “g” (integrated

by Matrix Reasoning, Trail Making, Symbol-Digit, and Verbal Numeri-

cal Reasoning) and the volumes of the insula, posterior cingulate/

precuneus r < 0.20 (Deary et al., 2021). Zhao et al. (2019) found in

another large-scale study that posterior cingulate volume and generic

intelligence have shared genetic variants.

Moreover, the anterior surface area also showed a significant CE

for Flanker and Card Sort, with a p-value of ≤0.001. A unit increase

(+1mm2) in the anterior cingulate surface area will cause a 0.004%,

0.005% increase in Flankers and Card Sort. E-values for ACC models

were 21.455 for Card Sort and 12.915 for Flanker. Lett and colleagues

found similar results where general intelligence scores were associ-

ated with ACC surface area (Lett et al., 2020).

F IGURE 9 Directed acyclic graph (DAG) for inverse probability of
treatment weighting (IPWT) and marginal structural model (MSM).

DAG shows the average treatment effect (ATE) direction from
treatment variable T as cingulate surface area/to outcome Y
(cognitive test scores); age, race, gender and handedness, and total
gray matter volume are confounding factors.

TABLE 2 Results for marginal
structural model (MSM) between
executive functions test scores (Card
Sort, Flanker, List Sort) and CC surface
area (anterior and posterior)

Y X (CC) p-value ATE 95% CI-lower 95% CI-upper E-value

Card Sort ACC area 0.001** 0.005 0.002 0.008 21.455

PCC area 0.005** 0.009 0.003 0.015 20.901

ACC thickness 0.280 �3.874 �10.912 3.164 4.87

PCC thickness 0.503 �3.003 �11.804 5.796 3.421

Flanker ACC area <0.001*** 0.004 0.002 0.006 12.915

PCC area <0.001*** 0.008 0.003 0.012 16.639

ACC thickness 0.289 3.966 �3.372 11.304 5.216

PCC thickness 0.483 2.904 �5.227 11.036 3.427

List Sort ACC area 0.958 0.000 �0.006 0.006 1.347

PCC area 0.805 0.001 �0.009 0.011 2.107

ACC thickness 0.340 �4.301 �13.139 4.537 4.999

PCC thickness 0.286 5.827 �4.884 16.539 6.385

Note: First columns show p-values, followed by average treatment effect (ATE), 95% upper and lower

bounds, and E-value for sensitivity analysis. ***p = 0; **p = 0.001; *p = 0.01

Abbreviations: ACC, anterior cingulate cortex; ATE, average treatment effect; CC, cingulate cortex; CI,

confidence interval; PCC, posterior cingulate cortex.
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In addition, even though we found an association between ante-

rior cingulate thickness and List Sort (working memory), no CE was

found, suggesting that their relationship is not causal. The association

might be due to some common underlying cause (Altman &

Krzywinski, 2015). One of the explanations could be the age range of

the samples, as the HCP data set is restricted to young adults. Several

studies where thickness measures were linked to intelligence (Karama

et al., 2011; Luders et al., 2011; Schnack et al., 2015) and other cogni-

tive performances are focused on children and adolescents

populations, where neurodevelopmental factors are present in the

critical age range for brain maturation and plasticity.

Furthermore, no studies compare causal relationships among all

three cortical measures in the same sample, and also, most of them rely

upon global measures of intelligence. Our findings provide a new per-

spective for examining EFs and their relationship with cingulate anatomy.

5 | LIMITATIONS

Even though the sensitivity analysis protects against measured con-

founding, a more elaborated causal DAG can be tested to understand

the chain of causality better. For example, the individual differences in

the cognitive performance of tasks implying EFs such as working mem-

ory, flexibility, and inhibitory control, are not solely related to the brain

gray matter measures studied here. We have implemented a simple sen-

sitivity analysis; a more robust alternative can be administered. More-

over, a more heterogeneous sample in terms of age and race for healthy

subjects can allow us to understand better the contribution of covariates

in the relationship between anatomy and EFs. Here, we are focused only

on the CC, but we will address all the circuits involved in EFs, especially

the pre-frontal cortex, in future studies. Moreover, we restricted our

analysis to mean corrected thickness. A complete vertex-wide study

using whole-brain structural information, connectivity, and genetic infor-

mation can also be done in the future.

6 | CONCLUSION

Many associational studies exist that describe the role of the CC in

EFs. However, to the best of our knowledge, this is the first study

using counterfactual-based causal analysis to map the relationship

between morphology (surface area, curvature-corrected mean thick-

ness, and volume) of the CC and EF-based tasks (Flanker, List Sort,

Card Sort). We identified that volume and surface area are highly

associated with the test scores. Cortical volume is the product of sur-

face area and cortical thickness and is positively correlated with sur-

face area (Pearson correlation >0.90). We also found no causal

relationship even though mean ACC thickness was associated with

EF-based tasks. These findings suggest that the CC surface area is the

primary morphological metric that has any causal relationship with

EF-based tasks. The causal analysis between CC area and tasks

resulted in a positive CE of anterior and posterior cingulate on inhibi-

tion (Flanker task) and cognitive flexibility (Card Sort). A unit increase

(+1mm2) in the posterior cingulate surface area will cause a 0.008%

and 0.009% increase from the NIH normative mean in Flankers (p-

value <0.001) and Card Sort (p-value 0.005), respectively. Moreover, a

unit increase (+1mm2) in the anterior cingulate surface area will cause

a 0.004% and 0.005% increase in Flankers and Card Sort.
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