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Abstract

Background: In Iran, co-infections of Plasmodium vivax and Plasmodium falciparum are common and
P. vivax infections are often exposed to sulphadoxine-pyrimethamine (SP). In the present study, the
frequency distribution of mutations associated to SP resistance was investigated in pvdhfr and
pvdhps genes from field isolates.

Methods: Clinical isolates of P. vivax were collected in two different malaria endemic regions in
northern and south-eastern Iran, between 2001 and 2006. All 189 collected isolates were analysed
for SNP/haplotypes at positions 13, 33, 57, 58, 61, 117 and 173 of the pvdhfr and 383 and 553 of
pvdhps genes using nested PCR-RFLP methods

Results: All 189 examined isolates were found to carry wild-type amino acids at positions 13, 33,
61 and 173, while 57L and 58R and | 17N mutations in pure form was detected among 1.1%, 17.5%
and 26% examined samples, respectively, with no polymorphisms in different loci of dhps genes.
Based on size polymorphism of pvdhfr genes at repeat region, among northern isolates, the
frequency distribution for type A and B were 2.2% and 97.8% respectively. However, in southern
samples the prevalence of type A, B and C were 7%, 89.5% and 7.7%, respectively. Mixed genotype
infections (type B and C) were detected in only 4.2% (6/143) of southern, but in none of the
northern isolates. The combination of pvdhfr and pvdhps haplotypes among all 189 samples
demonstrated six distinct haplotypes. The two most prevalent haplotypes among all examined
samples were |3P33F5;S55T¢(S 71173/As83 553 (65.6%) and ;3P33F5;S55T¢ N 71,73 (16.4%). Two
other alleles with one point mutation | 3P33F5;R55T¢;S; 71)73/A3g3A553 and two mutations
113P33F57Rsg T¢ N 171173/A353A553 accounted for 7.4% and 9.5% of the total isolates.

Conclusion: The present molecular data provide important information for making decisions on
population based drug use in Iran. In addition, since October 2005, with more availability of SP as
first-line treatment, P. vivax isolates are more exposed to SP and the selection or spread of resistant
pvdhfr and pvdhps alleles might increase in the near future in this region.
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Background

Plasmodium vivax remains the most widespread malaria
parasite in areas outside of Africa [1] and chloroquine
(CQ) remains the first-line treatment for vivax malaria in
most endemic regions. In recent years, chloroquine-resist-
ant P. vivax parasites have been reported in several loca-
tions, with high level resistance confirmed in parts of
Thailand, Indonesia and New Guinea and in Central
America [2-7]. In those countries, where sulfadoxine/
pyrimethamine (SP) has been used extensively, high
grade antifolate resistance has also emerged in P. vivax
populations [8-13].

Unfortunately, resistance develops relatively quickly,
when SP is widely used. Molecular and epidemiological
studies of both Plasmodium falciparum and P. vivax have
revealed that the dihyrofolate reductase (DHFR) and
dihydropteroate synthase (DHFR) enzymes are the thera-
peutic targets of SP [10-17]. As a result, resistance to SP is
determined by specific point mutations in the parasite
dhfr and dhps genes. These mutations cause alterations of
key amino acid residues in the active sites of these
enzymes, which reduce the affinity of the enzyme for the
drug [15,18-25]. Therefore, detection of these mutations
in wild isolates has proved valuable in the mapping and
monitoring of resistance for guiding malaria control
measures.

Vivax infections are not often treated with SP, but P. vivax
isolates are exposed to SP because mixed infections are
common in Asia and South America [26-29] and are often
mis-diagnosed. As continuous in vitro culture of P. vivax
remains unavailable, and it is difficult to monitor the sus-
ceptibility of P. vivax to anti-malarial drugs by in vitro tests
[30,31], the association between the various pvdhfr point
mutations and resistance to pyrimethamine relies on epi-
demiological and clinical investigations. Different studies
showed that in areas where there is a long history of exten-
sive SP use, mutant alleles of pvdhfr gene are prevalent;
however wild type pvdhfr has been found more commonly
in areas with limited use of SP [10,12,13,17]. So far, 20
non-synonymous mutations have been described in pvd-
hfr, [31] and different studies of P. vivax parasites in differ-
ent malaria endemic areas, such as Thailand and India,
showed that mutations at pvdhfr codons 57, 58, 61, 117
and 173, [13,32] were found to be involved in clinical
antifolate resistance [12,31]. Five mutations have already
been identified in pvdhps gene, at codons 382, 383, 512,
553, and 585.

Iran is located in the Middle East and, in this region, P.
vivax is the most prevalent malaria parasite species,
responsible for 80 to 90% of malaria cases. The disease is
endemic in the south-east bordering with Pakistan and
Afghanistan, but it re-emerged in the north of the country
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after a 20-year interruption of transmission [33]. In Iran,
CQ has been used as the first line anti-malarial treatment
and SP was used as second-line treatment [34] for uncom-
plicated P. falciparum infection. Furthermore, while in
vitro studies have reported SP resistance since 1993
[35,36], in vivo resistance of P. falciparum to SP is not yet
common in these areas. With the spread of chloroquine
resistance in P. falciparum, the Center for Diseases Man-
agement and Control (CDMC), decided in 2005 to revise
its treatment policy and SP in combination with CQ has
been recommended as the first-line anti-malarial treat-
ment, with artemether-lumefantrine (Co-Artem®), as sec-
ond-line [34]. Although SP may remain the treatment of
choice for uncomplicated malaria, the high rates of treat-
ment failures with CQ [34] and, therefore, inadequate
efficacy of treatment with the SP/CQ combination, the
CDMC decided in 2007 to revise its treatment policy
again and SP/CQ was replaced with SP/artemisinin as the
first-line recommendation for falciparum malaria. CQ
remains the first choice for treatment of P. vivax mono-
infections and resistance to either CQ or SP has not yet
been recorded in Iran. In addition, in this area P. vivax co-
exists with P. falciparum [26] but the correct diagnosis of
mixed infections is not easy based on microscopic exami-
nation of blood films, and the clinical symptoms caused
by the two species cannot be differentiated. As a result, P.
vivax may often be treated with SP because of mixed infec-
tions and inaccurate diagnosis.

The pvdhfr and pvdhps genotype might be associated with
treatment failure in individual vivax malaria patients, and
while data on the genotypes of these two genes are availa-
ble from Thailand, the Indian subcontinent and the Indo-
nesian archipelago, such data are lacking in many regions,
most notably Central and South America and the Middle
East, with only a few isolates from those regions having
been assessed for mutations in dhfr.

Methods

Study sites and P. vivax clinical isolates

In this study, 189 P. vivax clinical isolates were collected
between March 2001 and March 2006, from P. vivax-
infected patients, aged from one to > 60 years, living either
in the tropical south-eastern region (Chabahar district in
Sistan and Baluchistan) (n = 143), or in area of resurgent
malaria (Pars Abad in Ardebil province) in the temperate
northern endemic area (n = 46). The most prevalent para-
site species in the temperate northern region is P. vivax,
with Anopheles maculipennis and Anopheles sacharovi as the
main vectors, and Anopheles superpictus and Anopheles hyr-
canus as the secondary vectors. In the south-eastern
region, transmission is year-round with two peaks, the
first in May to August with P. vivax as the predominant
species and the second peak from October to November
when both P. falciparum and P. vivax infections are equally
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recorded. The main mosquito vectors in the south-eastern
region are Anopheles stephensi, Anopheles culicifacies, Anoph-
eles fluviatilis and Anopheles pulcherrimus.

All subjects had slide and PCR-proven infection by P.
vivax. None of the subjects received SP therapy and infec-
tions were treated with chloroquine. In both study areas
the patients have access to anti-malarial drugs through
local health centers.

Informed consent was obtained from patients or parents
of patients before inclusion in the study. The study was
reviewed by, and received Ethical Clearance from Institut
Pasteur of Iran. Blood samples were collected in tubes
containing EDTA, stored at 4°C and then transported to
the main laboratory in Tehran.

Parasite genomic DNA extraction

Parasite DNA was extracted from 250 pl infected whole
blood by phenol/phenol-chloroform extraction and etha-
nol precipitation as described previously [37]. The DNA
was dissolved in 30 pul TE buffer (10 mM Tris-HCL pH 8.0,
0.1 mM EDTA). For the detection of point mutations at
residues 13, 33, 57, 58, 61, 117 and 173, the previously
described PCR-RFLP protocols were used with some mod-
ifications [12,13,38].

Primary amplification of pvdhfr

In the first reaction, the entire P. vivax dhfr-ts gene was
amplified by the primers VDT-OF: ATGGAGGACCTTITCA-
GATGTATTTGACATT and VDT-OR: GGCGGCCATCTC-
CATGGTTATTTTATCGTG [13]. The cycling conditions for
the nest-1 reaction was as follows: 95°C for 5 min, 25
cycles of 64°C for 2 min, 72°C for 2 min, 94°C for 1 min
followed by 64°C for 2 min and 72°C for 15 min.

PCR amplification of positions 13, 33, 58, and 61

One pl product of the first reaction was then used in sec-
ond round of amplification using the following primers
for positions 13, 33, 58, and 61:

VDEN13F: GACCTTTCAGATGTATTITGACATITACGGC
VDEN13R: GGTACCTCTCCCTCITCCACTTTAGCTITCT

The cycling conditions for the nest-2 reaction was as fol-
lows: 95°C for 5 min, 25 cycles of 66°C for 2 min, 72°C
for 2 min, 94°C for 1 min followed by 66°C for 2 min
and 72°C for 15 min.

RFLP

To detect mutation at position 13L, 10 ul of the PCR prod-
ucts were digested with 10 U Haelll enzyme (Roche, Ger-
many) for 1 h at 37°C in a total volume of 20 ul (232 bp
= 32 bp + 200 bp). To detect mutations at residue P33L
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and S58R, 10 pl of the PCR products were digested with
10 U Cfr42I (Sacll) (Fermentase, Vilnius, Lithuania) and
Alul (Roche, Germany) for 4 h at 37°C in a total volume
of 20 pul (232 bp = 94 bp + 138 bp for P33 and 232 bp =
25 bp + 207 bp for 58R, 232 bp = 25 bp+40 bp+167 bp
for wild type S58), respectively. Mutation at residue 61 M
was detected by digestion of 10 ul of the PCR products
with 10 U Tsp45I (New England Biolab, Beverly, MA,
USA) for 4 h at 37°C in a total volume of 20 pl (232 bp =
32 bp + 200 bp).

PCR amplification of positions 57 and 173
The product of first reaction was also amplified with oli-
gonucleotide pair:

VDT-OF: ATGGAGGACCTTTCAGATGTATTTGACATT
VDENR: TCACACGGGTAGGCGCCGITGATCCTCGTG

to amplify positions 57 and 173. The cycling conditions
for the nest-2 reaction was as follows: 95°C for 5 min, 25
cycles of 66°C for 2 min, 72°C for 2 min, 94°C for 1 min
followed by 66°C for 2 min and 72°C for 15 min. It
should be noted that because of presence of repeat regions
that amplify the above-mentioned primers, there are size
variations among the amplified PCR products, which
affect the size of digested products. In the present study,
the size of the digested PCR products, which is reported in
the following RFLP section, is based on pvdhfr Accession
no: X98123.

RFLP

To detect mutation at residue F57, 10 ul of the PCR prod-
ucts were digested with 10 U Xmnl: (New England Biolab,
Beverly, MA, USA) for 4 h at 37°C in a total volume of 20
pl (608 bp = 166 bp + 442 bp). Mutation at residue 1173L
was detected by digestion of 10 pl of the PCR products
with 10 U Eco130I (Styl) (Fermentase, Vilnius, Lithuania)
for 4 h at 37°C in a total volume of 20 pl (wild type 1173:
608 bp = 136 bp + 472 bp and mutant type 173L: 608 bp
=73 bp + 97 bp + 438 bp).

PCR amplification of positions 57 and 117
One pl product of first reaction was also amplified with
primers:

VDNE57:CATGGAAATGCAACTCCGTCGATATGATGT
VDF-NR:TCACACGGGTAGGCGCCGITGATCCTCGTG

The cycling conditions for the this reaction was 95°C for
5 min, 25 cycles of 66°C for 2 min, 72°C for 2 min, 94°C
for 1 min followed by 66°C for 2 min and 72°C for 15
min.
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RFLP

To detect mutation at residue 571, 10 ul of the PCR prod-
ucts were digested with 10 U BsrGI (New England Biolab,
Beverly, MA, USA) for 4 h at 37°C in a total volume of 20
pl (472 bp = 28 bp + 444 bp). To detect mutation at resi-
due S117N/T, 10 pl of the PCR products (472 bp) were
digested with 10 U Pvull (New England Biolab, Beverly,
MA, USA) (S117, 214 bp + 258 bp), for 4 h at 37°C and
Bsrl (New England Biolab, Beverly, MA, USA (117N, 219
bp + 253 bp), BstNI (New England Biolab, Beverly, MA,
USA) (117T, 215 bp + 257 bp) for 1 h at 65°C in a total
volume of 20 pl. All amplifications were carried out in a
final volume of 25 ul, which included 1 pl of template
from either genomic DNA or the primary reaction. The
primers were used at a final concentration of 250 nM and
the reaction mixture contained 10 mM Tris-HCL (pH 8.3),
50 mM KCI, 2 mM MgCl,, each of the four deoxynucle-
otide triphosphates at a concentration of 125 uM, and 0.2
U of Taq polymerase (Invitrogen, Carlsbad, CA). The
DNA fragments obtained following PCR amplification or
RFLP analysis were electrophoresed on 2.5% (Invitrogen,
Carlsbad, CA) and 3% Metaphor (Invitrogen, Carlsbad,
CA) agarose gels, respectively. All digested products of
RFLP were subjected to electrophoresis on 3% MetaPhor
agarose gels.

Analysis of pvdhfr gene at repeat region
This region was amplified using 1 pl of primary reaction
with primers:

VDEN2F: CGGTGACGACCTACGTGGATGAGTCAAAGT

VDEN2R: TAGCGTCTTGGAAAGCACGACGTTGATTCT as
described previously [12]. The cycling conditions for the
this reaction was 95°C for 5 min, 25 cycles of 66°C for 2
min, 72°C for 2 min, 94°C for 1 min followed by 66°C
for 2 min and 72°C for 15 min. The DNA fragments
obtained following PCR amplification were analysed fol-
lowing electrophoresis on 3% Metaphor agarose gels.

Amplification of pvdhps

The pvdhps gene was amplified from genomic DNA by
nested PCR. The primers used in the first and second
round PCRs were described previously [38]. In the first
reaction pvdhps was amplified with primers:

VDHPS-OF: ATTCCAGAGTATAAGCACAGCACATTTGAG
VDHPS-OR: CTAAGGTTGATGTATCCTTGTGAGCACATC

The second amplification was performed with the primers
for detection of 383 mutation:

VDHPS-NF:
GATTGA

AATGGCAAGTGATGGGGCGAGCGT-
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VDHPS-NR:
GGCCGCGCCACC

CAGTCTGCACTCCCCGAT-

for detection of the 553 mutations the oligonuclotide
primers

VDHPS-5530F:
GGCCA

TTCTCTTTGATGTCGGCCTGGGGTT-

VDHPS-NR: CAGTCTGCACTCCCCGATGGCCGCGCCA
CC were used.

The cycling conditions for the nest-1 PCR reaction was as
follows: 95°C for 5 min, 25 cycles of 58°C for 2 min,
72°C for 2 min, 94°C for 1 min followed by 58°C for 2
min and 72°C for 15 min and for nest-2 PCR was: 95°C
for 5 min, 25 cycles of 50°C for 2 min, 72°C for 2 min,
94°C for 1 min followed by 50°C (for VDHPS-5530F
and VDHPS-NR 50°C) for 2 min and 72°C for 15 min.

RFLP

To detect mutation at residue A383G, 10 pl of the PCR
products were digested with 10 U Mspl (Hpall) (Fermen-
tase, Vilnius, Lithuania) (mutant 383G, 703 bp =48 bp +
655 bp) and Mscl (New England Biolab, Beverly, MA,
USA) (wild A553, 170 bp = 27 bp + 143 bp) for 4 h at
37°C in a total volume of 20 ul.

Results

Distribution of mutations in pvdhfr and pvdhps

All 189 isolates from north and south were analysed for
SNP/haplotypes at positions 13, 33, 57, 58, 61, 117 and
173 of the pvdhfr and 383 and 553 of pvdhps genes using
PCR-RFLP methods [12,13,38]. In pvdhfr, polymorphisms
at positions 57L, 58R and 117N have been found in 1.4%,
21.7% and 30% of southern isolates, respectively (Table
1). Among northern isolates mutations at 58R and 117N
were found in 4.4% and 13% of the studied isolates,
respectively (Table 1).

In total, all 189 examined isolates were found to carry
wild-type amino acids at positions 13, 33, 61 and 173,
while 571 and 58R and 117N mutations in pure form was
detected among 1.1%, 17.5% and 26% examined sam-
ples, respectively (Table 1). In the case of pvdhps gene, pol-
ymorphisms in different loci of dhps (A383G and A553G)
were investigated and no mutations were detected at all in
the examined samples.

Size polymorphism of pvdhfr at repeat region

In this investigation all three types A, B and C [12] were
found among southern isolates, but only types A and B
were detected among northern isolates. The frequency dis-
tribution for type A and B were 2.2% (1/46) and 97.8%
(45/46) among northern isolates, respectively. However,
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Table I: The frequency distribution of SNPs combinations of pvdhfr and pvdhps alleles associated with sulphadoxine/pyrimethamine in

Plasmodium vivax isolates from north and southeastern, Iran

Pvdhps pvdhfr
A383G A553G II3L P33L F57I/L S58R T6IM SII7T/N 1173L  South (%) North (%) Total (%)
n=143 n=46 n=189
A A I P F S S I 85 (59.4%) 39 (84.8%) 124 (65.6%)
A A I P F S N I 26 (18.2%) 5 (10.8%) 31 (16.4%)
A A I P F R S I 13 (9.1%) | (2.2%) 14 (7.4%)
A A I P F R N | 17 (11.9%) I (2.2%) 18 (9.6%)
A A I P L S S I 1 (0.7%) - 1 (0.5%)
A A I P L R S I 1 (0.7%) - 1 (0.5%)
- - - - L=1.1% R=175% N =26% -

for southern samples the prevalence of the type A, B and
C were 7%, 89.5% and 7.7%, respectively. Mixed geno-
type infections (type B and C) were detected in only 4.2%
(6/143) of southern, but not in northern isolates.

Distribution of pvdhfr and pvdhps haplotypes in Iran

The combination of pvdhfr and pvdhps haplotypes among
all 189 samples in this study demonstrated six distinct
haplotypes (Figure 1). The two most prevalent haplotypes
among all examined samples were I;5P53F<S<sT¢1S1171173/
Agg3ss3 (65.6%) and  113P33Fs;855T6 Ny 171173/ Aggasss
(16.4%). Two other alleles with one point mutation at
position I;5P33F5 RseT61S;1,1175/As53A5553 and two muta-
tions at position 58R and 117N (I;3P35F5,RsgT4;N;;.1,55/
Asg3A553) accounted for 7.4% and 9.5% of the total iso-
lates. This double mutant haplotype was the most fre-
quently mutated haplotype observed among Iranian
samples. Regarding these nine SNPs in pvdhfr and pvdhps
genes, significant increasing in the prevalence of double
mutated haplotypes  (I;3P33Fs;R55T61Ny171173/A353A553)
was observed in collected samples in year 2006 compare
t0 2001 (P > 0.005) (Table 2). In addition, the majority of
isolates from north and also south were wild haplotype
and I,3P33L57R5¢T1S,171173/As3A553 (0.7%) mutant hap-
lotype was only detected among southern but northern
isolates (Table 1).

Discussion

In regions where P. falciparum and P. vivax co-exist, it is
crucial to identify effective treatment regimens that work
against both parasite species. In malaria-endemic areas
co-infection of P. vivax and P. falciparum is common and
the long history of SP use has exposed P. vivax to this drug

for decades. In the present study, the SP resistance-associ-
ated genes, pudhfr and pvdhps, were analysed in samples
collected (prior to introduction of SP as first-line anti-
malarial), from re-emerged area in north and endemic
region in south where both CQ and SP (in combination
with primaquine) were used for treatment. In the south,
although CQ still remains effective against P. vivax infec-
tion, the in vivo work in 2005 [39] showed that parasite
clearance time increased compared to 2001 in Sistan and
Baluchistan province, indicating that this could be an
early sign of reduced susceptibility of the parasites to CQ.
Therefore, effective alternative drug against P. vivax resist-
ance to CQ might be needed. In this investigation, four
and six distinct haplotypes of pvdhfr and only wildtype of
pvdhps were detected among northern and southern iso-
lates, respectively. The double mutant
I,3P55F5,R5¢T5 1Ny 171173/ As53A555 was the second frequent
haplotype in our examined isolates. This is the first time
that mutations at associated genes to SP resistance have
been described in a large number of P. vivax isolates from
the Middle East.

Mutations in pvdhfr, including 58R and 117N, have been
implicated in in vivo pyrimethamine resistance and seem
to arise first under drug pressure. The 58R was found in
17.5% of all examined isolates alone and in combination
with 117N in 9.5%, despite the fact that SP had never
been used as a first-line treatment for falciparum malaria
before October 2005. The work carried out by Tahar and
colleagues [40] showed that the 58R/117N mutant had a
lower affinity for pyrimethamine and cycloguanil than
did the wild type enzyme. In addition, Leartsakulpanich et
al screened pyrimethamine resistance-associated genes
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Figure 1.
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Frequency distribution of the combination pvdhfr/pvdhps haplotypes obtained from 189 isolates collected in
Avrdebil province in north and Sistan and Baluchistan province in southeastern of Iran. The haplotype
113P33F57S58 T4 1S 171173/ A383A553 Was the most prevalent among northern (84.8%) and southern (59.4%) P. vivax isolates. All six
haplotypes are indicated as A to F in the figure. Mutated amino acids are boldfaced. A) |,3P33F5;S55T¢ S, 71 73/A383A553. B)
113P33Fs7S5g T6 1N 171173/ Asg3Ass3. C) 113P33Fs7Rsg T4 1S 171173/ Ase3A553. D) 113P33Fs7Rs T N 171173/ AsgaAsss. E)

II3PB3L.'57S.'58-|—6ISI I7|I73/A383A553‘ F) II3P33L57R58T6ISI I7|I73/A

383A553‘

and found that the 117N, 58R/117N, 58R and 173L
mutant enzymes were more resistance to this drug than
the wild type [41]. The similar work by Hastings and col-
leagues confirmed these results [11]. Regarding the clini-
cal efficacy of SP against P. vivax, several workers
concluded that the clinical response to SP depends on pvd-
hfr and pvdhps genotype [11,12,17]. They also showed that
those patients who harboured triple and quadruple
mutant parasites (57L/58R/61M/117T) compared with
those who harboured wild type parasites were signifi-
cantly associated more likely to SP treatment failure
[11,12,17]. In addition, treatment failure was more fre-
quently associated with multiple mutations in dhfr and

dhps [38]. This correlation between two genes also
reported for P. falciparum, as parasite carried wild type
alleles of dhfr and dhps, the patient is likely to have an ade-
quate clinical response to SP, but when the parasite carries
mutant alleles of both genes, clinical effectiveness is com-
promised [42-48]. Although none of the P. vivax isolates
have been tested in this study for their clinical response to
SP, triple and quadruple mutant types, found in Thailand,
India, and in Indonesia have previously been shown to be
associated with a high risk of SP treatment failure
[11,12,17].

Page 6 of 9

(page number not for citation purposes)



Malaria Journal 2009, 8:20

http://www.malariajournal.com/content/8/1/20

Table 2: Distribution of dhfr and dhps polymorphisms of P. vivax in 143 samples collected in 2001 to 2006 from south-eastern of Iran

pvdhpsipvdhfr Haplotype 2001 2003 2004 2005 2006
n=143 n=36 n=16 n=33 n=29 n=29

AAIPFSTSI 30 (83.33) 9 (56.25%) 19 (57.58%) 14 (48.28%) 13 (44.83%)
AAIPFSTNI 2 (5.56%) 5 (31.25%) 6 (18.18%) 8 (27.59%) 5 (17.24%)
AAIPFRTSI 3 (8.33%) 1 (6.25%) 3 (9.09%) 4 (13.79%) 2 (6.89%)
AAIPFRTNI | (2.78%) | (6.25%) 4 (12.12%) 3 (10.34%) 8 (27.59%)
AAIPLSTSI - | (3.03%) - -
AAIPLRTSI - - - 1 (3.45%)

The frequency distribution of pvdhfr mutant haplotypes
was significantly higher in the endemic southern regions
than re-emerged northern region (Pars-Abad, Ardebile).
This might be caused by the level of disease endemicity in
the south and longer usage of SP for treatment of P. falci-
parum infections. In other words, SP never used in north
for treatment of malaria disease as any P. falciparum infec-
tions was not detected by microscopy method; therefore
no SP pressure might be responsible for prevalence of
mutant alleles of dhfr in this region. In fact, the limited
diversity of pvdhfr mutant, particularly double mutants in
northern compare to southern isolates may also be an
indication for a founder effect linked to the introduction
of malaria from Azerbaijan and Armenia to northern part
of Iran. The presence of I;3P55Ls,RsgT¢;S;171173/As53A555
haplotype only among southern isolates may be related to
human migration between Iran and Pakistan, resulting to
introduction of such haplotypes from the Indian subcon-
tinent, where it is prevalent [31].

In the present study, the most common haplotypes of pvd-
hfr were wild type and double mutant (58R and 117N);
but triple and quadruple mutants were not detected
among examined isolates. In contrast, molecular analysis
of pudhfr among Indian field isolates showed 14 haplo-
types from wild type to quadruple mutant genotype, and
wild type and double mutant were still the most common
[31]. Since 2005, based on the national drug policy, the
anti-malarial treatment in Iran has changed and the SP
became the first choice drug for treatment. With more
availability of SP, there is a risk of a changing pattern of
resistance of both P. falciparum and P. vivax to SP, as this
closely follows the intensity with which SP has been used
[31]. In addition, other antifolates such as co-trimoxazole
that are routinely used against urinary tract infections and
chronic bronchitis in the region could add to the overall
antifolate pressure in Iran.

Conclusion

The present molecular data provide important informa-
tion for making decisions on population based drug use
in Iran. In addition, previous study showed that in regions
where the wild type or single mutated pvdhfr alleles are
prevalent, SP could be a useful therapy [31] for the asexual
erythrocytic stages of vivax in areas where CQ treatment
failure has been reported.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

SZ designed and supervised the study, analysed the data
and wrote the manuscript. SRM contributed in the labora-
tory work and MA contributed in the laboratory work and
helped with analysis of the data. NDD helped with the
preliminary analysis of the data and also critical reading of
the manuscript.

Acknowledgements

We acknowledge with deep respect to Prof. H. Malek Afzali. (the former
Deputy for Research, Ministry of Health, L.R. Iran) for his invaluable sup-
port; and also co-operation of the Center for Diseases Management and
Control (CDMC), particularly Dr. M.M. Gouya and Dr. A. Raeisi. We are
grateful for the hospitality and generous collaboration of Zahedan Univer-
sity of Medical Sciences, staff in Public Health Department, Sistan and Balu-
chistan province, Chabahar district, and also Pars-Abad, Ardebil for their
assistance in collecting blood samples from the field. We are indebted to
the patients and their families in Sistan and Baluchistan and Ardebil prov-
inces for their willingness to parcipitate in this study. This study was par-
tially supported by grants from Deputy for Research, Ministry of Health,
and Institut Pasteur of Iran.

References

l. Mendis K, Sina BJ, Marchesini P, Carter R: The neglected burden
of Plasmodium vivax malaria. Am | Trop Med Hyg 2001, 64(1-2
Suppl):97-106. 1, 3

2. Baird JK, Basri H, Subianto B, Patchen LC, Hoffman SL: Resistance
to chloroquine by Plasmodium vivax in Irian Jaya, Indonesia.
Am | Trop Med Hyg 1991, 4:547-552.

Page 7 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11425182

Malaria Journal 2009, 8:20

20.

21.

Baird JK, Leksana B, Masbar S, Fryauff D), Sutanihardja MA, Suradi,
Wignall FS, Hoffman SL: Diagnosis of resistance to chloroquine
by Plasmodium vivax: timing of recurrence and whole blood
chloroquine levels. Am | Trop Med Hyg 1997, 56:621-26.

Garg M, Gopinathan N, Bodhe P, Khirsagar NA: Vivax malaria
resistant to chloroquine: case reports from Bombay. Trans R
Soc Med Hyg 1995, 89:656-657.

Kyaw MP, Kyaw MP, Myint O, Myint L, Thaw Z, Aye KH, Yin NN:
Emergence of chloroquine-resistant Plasmodium vivax in
Myanmar (Burma). Trans R Soc Trop Med Hyg 1993, 87:687.
Murphy GS, Basri H, Purnomo , Andersen EM, Bangs MJ, Mount DL,
Gorden |, Lal AA, Purwokusumo A, Harjosuwarno S, Sorensen K,
Hoffman SL: Vivax malaria resistant to treatment and proph-
ylaxis with chloroquine. Lancet 1993, 341:96-100.

Rieckmann KH, Davis DR, Hutton DC: Plasmodium vivax resist-
ance to chloroquine. Lancet 1989, ii:1183-1184.

Pukrittayakamee S, Chantra A, Simpson |, Vanijanonta S, Clemens R,
Looareesuwan S, White NJ: Therapeutic responses to different
antimalarial drugs in vivax malaria. Antimicrob Agents Chemother
2000, 44:1680-1685.

Alam MT, Bora H, Bharti PK, Saifi MA, Das MK, Dev V, Kumar A,
Singh N, Dash AP, Das B, et al.: Similar trends of pyrimethamine
resistance-associated mutations in Plasmodium vivax and P.
falciparum. Antimicrob Agents Chemother 2007, 51:857-863.

de Pecoulas PE, Tahar R, Ouatas T, Mazabraud A, Basco LK:
Sequence variations in the Plasmodium vivax dihydrofolate
reductasethymidylate synthase gene and their relationship
with pyrimethamine resistance. Mol Biochem Parasitol 1998,
92:265-273.

Hastings MD, Porter KM, Maguire D, Susanti |, Kania W, Bangs M),
Sibley CH, Baird JK: Dihydrofolate reductase mutations in Plas-
modium vivax from Indonesia and therapeutic response to
sulphadoxinee plus pyrimethamine. | Infect Dis 2004,
189:744-750.

Imwong M, Pukrittakayamee S, Looareesuwan S, Pasvol G, Poirreiz J,
White NJ, Snounou G: Association of genetic mutations in Plas-
modium vivax dhfr with resistance to sulphadoxinee-
pyrimethamine: geographical and clinical correlates. Antimi-
crob Agents Chemother 2001, 45:3122-3127.

Imwong M, Pukrittayakamee S, Renia L, Letourneur F, Charlieu JP,
Leartsakulpanich U, Looareesuwan S, White NJ, Snounou G: Novel
point mutations in the dihydrofolate reductase gene of Plas-
modium vivax: evidence for sequential selection by drug pres-
sure. Antimicrob Agents Chemother 2003, 47:1514-1521.

Foote §J, Galatis D, Cowman AF: Amino acids in the dihydro-
folate reductase-thymidylate synthase gene of Plasmodium fal-
ciparum involved in cycloguanil resistance differ from those
involved in pyrimethamine resistance. Proc Natl Acad Sci USA
1990, 87:3014-3017.

Peterson DS, Milhous WK, Wellems TE: Molecular basis of differ-
ential resistance to cycloguanil and pyrimethamine in Plas-
modium falciparum malaria. Proc Natl Acad Sci USA 1990,
87:3018-3022.

Peterson DS, Walliker D, Wellems TE: Evidence that a point
mutation in dihydrofolate reductase-thymidylate synthase con-
fers resistance to pyrimethamine in falciparum malaria. Proc
Natl Acad Sci USA 1988, 85:9114-9118.

Tjitra E, Baker J, Suprianto S, Cheng Q, Anstey NM: Therapeutic
efficacies of artesunate-sulphadoxinee-pyrimethamine and
chloroquinesulphadoxinee-pyrimethamine in vivax malaria
pilot studies: relationship to Plasmodium vivax dhfr muta-
tions. Antimicrob Agents Chemother 2002, 46:3947-3953.

Foote §J, Cowman AF: The mode of action and the mechanism
of resistance to antimalarial drugs. Acta Trop 1994, 56:157-171.
Matthews DA, Alden RA, Bolin JT, Freer ST, Hamlin R, Xuong N,
Kraut J, Poe M, Williams M, Hoogsteen K: Dihydrofolate reduct-
ase: X-ray structure of the binary complex with methotrex-
ate. Science 1977, 197:452-455.

Peterson DS, Milhous WK, Wellems TE: Evidence that a point
mutation in dihydrofolate reductase-thymidylate synthase con-
fers resistance to pyrimethamine in falciparum malaria. Proc
Natl Acad Sci USA 1988, 85:9114-9118.

Sirawaraporn W, Prapunwattana P, Sirawaraporn R, Yuthavong Y,
Santi DV: The dihydrofolate reductase domain of Plasmodium
falciparum thymidylate synthase-dihydrofolate reductase: gene

22.

23.

24.

25.
26.

27.

28.

29.

30.
31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

http://www.malariajournal.com/content/8/1/20

synthesis, expression, and anti-folate resistance mutants. |
Biol Chem 1993, 268:21637-21644.

Snewin VA, England SM, Sims PFG, Hyde JE: Characterisation of
the dihydrofolate reductase-thymidylate synthase gene from
human malaria parasites highly resistant to pyrimethamine.
Gene 1989, 76:41-52.

Thaithong S, Chan SW, Songsomboon S, Wilairat P, Seesod N, Sue-
blinwong T, Goman M, Ridley R, Beale G: Pyrimethamine resist-
ant mutations in Plasmodium falciparum. Mol Biochem Parasitol
1992, 52:149-158.

Volz KW, Matthews DA, Alden RA, Freer ST, Hansch C, Kaufman BT,
Kraut J: Crystal structure of avian dihydrofolate reductase con-
taining phenyltriazine and NADPH. | Biol Chem 1982,
257:2528-2536.

Foote §J, Cowman AF: The mode of action and the mechanism
of resistance to antimalarial drugs. Acta Trop 1994, 56:157-171.
Zakeri S, Najajabadi S, Zare A, Djadid N: Detection of malaria
parasites by nested PCR in south-eastern, Iran: Evidence of
highly mixed infections in Chabahar district. Malar 2002, 1:2.
Mayxay M, Pukrittayakamee S, Newton PN, White NJ: Mixed-spe-
cies malaria infections in humans. Trends Parasitol 2004,
20:233-240.

Mehlotra RK, Lorry K, Kastens W, Miller SM, Alpers MP, Bockarie M,
Kazura JW, Zimmerman PA: Random distribution of mixed spe-
cies malaria infections in Papua New Guinea. Am | Trop Med
Hyg 2000, 62:225-231.

Snounou G, White NJ: The co-existence of Plasmodium: side-
lights from falciparum and vivax malaria in Thailand. Trends
Parasitol 2004, 20:333-339.

Udomsangpetch R, Kaneko O, Chotivanich K, Sattabongkot J: Culti-
vation of Plasmodium vivax. Trends Parasitol 2008, 24:85-88.
Hawkins VN, Joshi H, Rungsihirunrat K, Na-Bangchang K, Sibley CH:
Antifolates can have a role in the treatment of Plasmodium
vivax. Trends Parasitol 2007, 23(5):213-222.

Barnadas C, Tichit M, Bouchier C, Ratsimbasoa A, Randrianasolo L,
Raherinjafy R, Jahevitra M, Picot S, Menard D: Plasmodium vivax
dhfr and dhps mutations in isolates from Madagascar and
therapeutic response to sulphadoxine-pyrimethamine. Malar
/2008, 7:35.

Zakeri S, Mehrizi AA, Mamaghani S, Noorizadeh S, Snounou G, Djadid
ND: Population structure analysis of Plasmodium vivax in
areas of Iran with different malaria endemicity. Am J Trop Med
Hyg 2006, 74(3):394-400.

Zakeri S, Afsharpad M, Kazemzadeh T, Mehdizadeh K, Shabani A,
Djadid ND: Association of pfert but not pfmdrl alleles with
chloroquine resistance in Iranian isolates of Plasmodium fal-
ciparum. Am | Trop Med Hyg 2008, 78:633-640.

Edrissian GH, Afshar A, Sayedzadeh A, Mohsseni GH, Satvat MT:
Assessment of the response in vivo and in vitro of Plasmodium
falciparum to sulphadoxine-pyrimethamine in the malarious
areas of Iran. | Trop Med Hyge 1993, 96:237-240.

Heidari A, Dittrich S, Jelink T, Kheirandish A, Banihashemi K, Kesha-
varz H: Genotypes and in vivo resistance of Plasmodium falci-
parum isolates in an endemic region of Iran. Parasitol Res 2007,
100:589-592.

Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario
VE, Thaithong S, Brown KN: High sensitivity of detection of
human malaria parasites by the use of nested polymerase
chain reaction. Mol Biochem Parasitol 1993, 61:315-320.

Imwong M, Pukrittayakamee S, Cheng Q, Moore C, Looareesuwan S,
Snounou G, White NJ, Day NPJ: Limited Polymorphism in the
Dihydropteroate Synthetase Gene (dhps) of Plasmodium vivax
Isolates from Thailand. Antimicrob Agents Chemother 2005,
49:4393-4395.

Nateghpour M, Sayedzadeh SA, Edrissian GhH, Raeisi A, Jahantigh A,
Motevalli-Haghi A, Mohseni Gh, Rahimi A: Evaluation of sensitivity
of Plasmodium vivax to chloroquine. Iranian | Publ Health 2007,
36:60-63.

Tahar R, de Pécoulas PE, Basco LK, Chiadmi M, Mazabraud A: Kinetic
properties of dihydrofolate reductase from wild-type and
mutant Plasmodium vivax expressed in Escherichia coli. Mol
Biochem Parasitol 2001, 113:241-249.

Leartsakulpanich U, Imwong M, Pukrittayakamee S, White NJ, Snou-
nou G, Sirawaraporn W, Yuthavong Y: Molecular characteriza-
tion of dihydrofolate reductase in relation to antifolate

Page 8 of 9

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9230792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9230792
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8296378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8296378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8093414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8093414
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10817728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10817728
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17194833
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9657331
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14767830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14767830
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11600366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11600366
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12709316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12709316
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2183221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2183221
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2183222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2904149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2904149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12435700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12435700
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8203302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8203302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17920
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2904149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2904149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8408015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8408015
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2663650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2663650
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1620155
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7061437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7061437
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8203302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8203302
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12057020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12057020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12057020
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15105024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15105024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10813477
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15193565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18180202
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17368986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18302746
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16525096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16525096
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18385361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17024359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8264734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8264734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8264734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16189131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16189131
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11295178

Malaria Journal 2009, 8:20

42.

43.

44,

45.

46.

47.

48.

resistance in Plasmodium vivax. Mol Biochem Parasitol 2002,
119:63-73.

Plowe CV, Cortese JF, Djimde A, Nwanyanwu OC, Watkins WM,
Winstanley PA, Estrada-Franco JG, Doumbo OK: Mutations in Plas-
modium falciparum dihydrofolate reductase and dihydropter-
oate synthase and epidemiologic patterns of pyrimethamine-
sulphadoxinee use and vresistance. | Infect Dis 1997,
176:1590-1596.

Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF,
Martino LM, Mukadam RAG, Rogerson §), Lescano AG, Molyneux
ME, Winstanley PA, Chimpeni P, Taylor TE, Plowe CV: Molecular
markers for failure of sulphadoxinee-pyrimethamine and
chlorproguanil-dapsone treatment of Plasmodium falciparum
malaria. | Infect Dis 2002, 185:380-388.

Nzila AM, Mberu EK, Sulo ], Dayo H, Winstanley PA, Sibley CH, Wat-
kins WM: Towards an understanding of the mechanism of
pyrimethamine-sulphadoxinee resistance in Plasmodium fal-
ciparum: genotyping of dihydrofolate reductase and dihydrop-
teroate synthase of Kenyan parasites. Antimicrob Agents
Chemother 2000, 44:991-996.

Mutabingwa T, Nzila A, Mberu E, Nduati E, Winstanley P, Hills E, Wat-
kins W: Chlorproguanil-dapsone for treatment of drug-resist-
ant falciparum malaria in Tanzania. Lancet 2001,
358:1218-1223.

Kyabayinze D, Cattamanchi A, Kamya MR, Rosenthal P, Dorsey G:
Validation of a simplified method for using molecular mark-
ers to predict sulphadoxinee-pyrimethamine treatment fail-
ure in African children with falciparum malaria. Am J Trop Med
Hyg 2003, 69:247-252.

Staedke SG, Sendagire H, Lamola S, Kamya MR, Dorsey G, Rosenthal
P): Relationship between age, molecular markers, and
response to sulphadoxine-pyrimethamine treatment in
Kampala, Uganda. Trop Med Int Health 2004, 9:624-629.

Nzila A: The past, present and future of antifolates in the
treatment of Plasmodium falciparum infection. | Antimicrob
Chemother 2006, 57:1043-1054.

http://www.malariajournal.com/content/8/1/20

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 9 of 9

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11755187
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9395372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9395372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11807721
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10722502
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11675058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11675058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14628939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15117308
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16617066
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Study sites and P. vivax clinical isolates
	Parasite genomic DNA extraction
	Primary amplification of pvdhfr
	PCR amplification of positions 13, 33, 58, and 61
	RFLP
	PCR amplification of positions 57 and 173
	RFLP
	PCR amplification of positions 57 and 117
	RFLP
	Analysis of pvdhfr gene at repeat region

	Amplification of pvdhps
	RFLP


	Results
	Distribution of mutations in pvdhfr and pvdhps
	Size polymorphism of pvdhfr at repeat region
	Distribution of pvdhfr and pvdhps haplotypes in Iran

	Discussion
	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

