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Abstract

Physiologically-based pharmacokinetic (PBPK) modeling analysis does not stand on its own for 

regulatory purposes but is a robust tool to support drug/chemical safety assessment. While the 

development of PBPK models have grown steadily since their emergence, only a handful of 

models have been accepted to support regulatory purposes due to obstacles such as the lack of a 

standardized template for reporting PBPK analysis. Here, we expand the existing guidances 

designed for pharmaceutical applications by recommending additional elements that are relevant 

to environmental chemicals. This harmonized reporting template can be adopted and customized 

by public health agencies receiving PBPK model submission, and it can also serve as general 

guidance for submitting PBPK-related studies for publication in journals or other modeling 

sharing purposes. The current effort represents one of several ongoing collaborations among the 

PBPK modeling and risk assessment communities to promote, when appropriate, incorporating 

PBPK modeling to characterize the influence of pharmacokinetics on safety decisions made by 

regulatory agencies.
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1. Introduction

Physiologically based pharmacokinetic (PBPK) modeling computes and predicts the 

concentrations of a chemical (and its metabolites) within the body over time from a given 

external exposure. PBPK models describe the processes of chemical absorption, distribution, 

metabolism, and excretion (ADME) based on physiological and biochemical mechanisms. 

PBPK models for pharmaceuticals and environmental chemicals have been used to predict 

internal chemical concentrations under conditions or in populations for which experimental 

data are unavailable. They can extrapolate results from preclinical to clinical trials, healthy 

adults to specific populations, and animals to humans (Malik et al., 2017). PBPK models can 

also be used to organize current knowledge on disposition mechanisms, leading to 

hypothesis generation and the development of follow-on studies (Abaci and Shuler, 2015; 

Claassen et al., 2015).

PBPK models separate physiology from drug/chemical-specific or scenario-specific (for 

example, dose metrics, time of exposure) characteristics, thus allowing for simulating 

scenarios for different subgroups within a population (Jamei, 2016). PBPK models for drugs 

have been used to determine doses for pediatric and adult patients, investigate drug-drug 

interactions, or evaluate exposure levels in patients with diseases that affect 

pharmacokinetics (Duan et al., 2017a, 2017b; Hsu et al., 2014; Wagner et al., 2015; 

Yamazaki et al., 2015). PBPK models for environmental chemicals have commonly been 
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used to extrapolate across species, routes, life stages, and exposure duration (Andersen et al., 

1987; Gentry et al., 2017; Shankaran et al., 2013; Weijs et al., 2012).

By incorporating appropriate ranges of physiological and biochemical parameter values, 

often through Bayesian approaches and Monte Carlo methods, PBPK models can assess 

implications of variability and uncertainty for a predicted outcome of interest in a population 

(Barton et al., 2007; Beaudouin et al., 2010; Bois et al., 2010; Fierens et al., 2016). This 

capability is particularly valuable when using a PBPK model to characterize genetic 

polymorphisms in a population (Marsousi et al., 2017; Wetmore et al., 2014). PBPK models 

can also assess aggregate exposure for environmental chemicals via multiple sources (for 

example, food, drinking water, use of consumer products) (Kenyon et al., 2016; Kim et al., 

2007) and to interpret biomarker data collected from epidemiological or biomonitoring 

studies (Brown et al., 2015; McNally et al., 2011; Moreau et al., 2017; Tan et al., 2006; 

Verner et al., 2015).

Despite the many advantages offered by these applications, public health agencies often 

hesitate to use PBPK models to support regulatory decision-making (Chiu et al., 2007; 

McLanahan et al., 2012; Tan et al., 2018). Some hesitation is related to an inconsistent or 

non-standardized submission format to facilitate model reviews (McLanahan et al., 2012). 

Others hesitate to submit PBPK models because of different acceptance criteria among 

agencies and countries (Paini et al., 2017). A harmonized template for reporting PBPK 

analyses to regulatory agencies does not currently exist. Most model developers adhere to 

the same established best practices for characterizing and applying PBPK analyses (USEPA, 

2006; WHO, 2010), but the format and content of reports on these analyses can vary 

significantly because individual investigators subjectively determine the most critical 

elements to report.

Harmonizing a PBPK reporting template among global public health agencies should reduce 

the burden of preparing different reports for individual agencies when the modeling analysis 

is the same. Reviewers can also benefit, since interpreting modeling analyses in various 

contexts and formats is time-consuming especially when reviewers have limited expertise in 

PBPK modeling (Tan et al., 2018). Recognizing that a standardized reporting template can 

facilitate efficient assessment, consistent application, and timely decision-making during 

regulatory review, the U.S. Food and Drug Administration (FDA) recently published a 

guidance for reporting PBPK analyses in regulatory submissions (USFDA, 2018). The 

guidance does not recommend best practices for conducting PBPK analyses or evaluating 

PBPK approaches for regulatory applications; rather, it outlines standardized content and 

format for PBPK study reports submitted to the FDA (USFDA, 2018). The European 

Medicines Agency (EMA) published similar guidelines for reporting PBPK modeling and 

simulation as part of regulatory submissions (EMA, 2019). The EMA guidance clarifies 

their expectation on qualifying a PBPK platform for the intended use.

The purpose of the PBPK reporting template presented in this article is to expand on the 

existing guidance designed for pharmaceutical applications (EMA, 2019; Shebley et al., 

2018; USFDA, 2018). Table 1 provides an overview of how this new reporting template 

compares to these and other existing templates or guidance documents. We recommend 
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additional elements so that the reporting template can also be used by agencies assessing the 

safety of environmental chemicals. An example is presented in the Supplemental Data File 

to demonstrate the use of this template to report an PBPK analysis on estragole.

This template can be adopted and customized by regulatory agencies receiving submissions 

using PBPK modeling. It can facilitate communication between model developers and 

reviewers/users, since modeling processes and outputs are organized in a structure familiar 

to both parties. It can serve as general guidance for submitting PBPK-related studies for 

other purposes, for example, publishing study results in journals or sharing modeling results 

with collaborators. It can also be used as part of a training package for both reviews and new 

modelers, since the recommended content is based on key principles in other guidance 

documents (Caldwell et al., 2012; Clark et al., 2004; USEPA, 2006; WHO, 2010). Since 

these other guidance documents already address good practices in developing, applying and 

reviewing PBPK analysis (EFSA, 2014; USEPA, 2006; WHO, 2010) these topics will not be 

reiterated in the current article.

2. Template elements

2.1. Executive summary

In this section, clearly convey how the PBPK analysis addresses a specific scientific question 

in support of a regulatory decision. Including the following information:

• The rationale and intended regulatory purpose for conducting the PBPK analysis

• An overview of the model and its applications

• A summary of key conclusions

2.2. Background information

In this section, provide sufficient background about the chemical of interest to place the 

PBPK modeling analysis in the context of regulatory application, which can include the 

following information:

• A high-level synopsis of a chemical’s physicochemical, pharmacokinetic or 

toxicokinetic, and/or pharmacodynamic/or toxicodynamic properties relevant for 

the PBPK model and its application

• A brief summary of known exposure and toxicity for an environmental chemical, 

or known dose, toxicity, and efficacy of a drug

• A brief regulatory history to provide context for conducting the analysis

• A history of previous PBPK models and/or reports on the same chemical 

submitted for different applications or different agencies, or previously published 

in open literature; in some cases, models for isomers or homologs of chemicals 

can be used as surrogates

• A summary of relevant data used for model calibration, such as dose-response or 

exposure-response data, time-concentration data in plasma, target tissue/organs, 

or surrogates of target tissue/organs
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• A summary of available data for model evaluation, such as time-concentration 

data measured in test species or from clinical trials or biomonitoring studies

2.3. Model purpose

In this section, clearly articulate the regulatory question(s) the PBPK model approach 

addresses, such as through a problem formulation or fit-for-purpose statement.

2.4. Materials and methods

In this section, provide a detailed description of the protocol and procedures to follow in 

developing the model and completing modeling analysis. Include enough information for 

reviewers to evaluate the quality and accuracy of the analysis, replicate the analysis, or 

conduct additional simulations using the model when necessary. The section can include the 

following seven components.

2.4.1. Modeling strategy—In this section, include a well-thought-out modeling 

procedure from data preparation to model development, model verification/evaluation, and 

model applications (Sager et al., 2015; WHO, 2010; Zhao et al., 2011). The procedure 

should follow the path of a workflow, decision tree, roadmap, or other representation. In this 

section, also demonstrate the relevance of the modeling strategy to the modeling purpose.

2.4.2. Summary of data for model development and evaluation—In this section, 

include the available data (with their sources) used to inform the model structure, calibrate 

model parameters, and evaluate the predictive capability of the model. Details of the key 

studies used to obtain these data need to be clearly described in this section or submitted as 

supplemental materials, such as cell type or subcellular fraction used, preparation 

procedures, substrate concentrations, incubation time, or other experimental conditions 

necessary to repeat the measurements. Some examples of information to be included are 

listed below:

• Relevant chemical(s) information, such as physicochemical properties and 

relevant exposure routes

• Toxicity studies that determine mode of action and toxic moiety (for example, 

parent and/or metabolites)

• Mass balance studies using a radiolabeled chemical

• Metabolism studies to determine metabolic pathways and rates of metabolism

• Time-concentration data measured in plasma, organs/tissues, or excreta

• Biochemical parameters measured using in vitro systems or predicted using in 
silico tools, such as intrinsic clearances of enzymes in an organ/tissue, kinetic 

constants for an enzyme, or binding constants

2.4.3. Model development and structure—In this section, include key assumptions 

(for example, population of interest, perfusion- or diffusion-limited compartments) used to 

determine the model structure. If a generic PBPK modeling platform is used, provide 
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relevant references or a users’ manual that clearly describes the model structure. We 

recommend a schematic diagram to present the PBPK model structure (Fig. 1). In addition, 

explain whether the PBPK model replicates a published model, is refined/modified from an 

existing model, or is a new model. Include clear descriptions and justifications for any 

customized changes made to any previous model.

2.4.4. Model equations—In addition to all electronic files containing model code, 

include mathematical equations for the PBPK model to allow for replication in other 

software packages or programming languages when needed.

• Ensure that parameter names used in the equations are consistent with those 

coded in the software program.

• If a commercial PBPK software program is used to build and run a PBPK model, 

providing model equations may not be necessary. The software, however, must 

be qualified to ensure that it does what it is intended to do from a computational 

perspective, and that guidance on software qualification can be found in other 

documents (EMA, 2019; Shebley et al., 2018).

2.4.5. Model parameters—Report parameters in both tabular and text format.

• At a minimum, include in the table parameter names/symbols, meanings, values, 

units, and sources of parameter values.

• If a parameter has more than one value from various sources, justify the chosen 

or estimated value (for example, average of values obtained from various 

sources).

• Clearly identify allometric scaling from the units reported in the parameter table 

(for example, L/h/kg0.75). Sources of parameter values include literature/reports, 

measurements using in vitro or in vivo methods, predictions using in silico 
methods (for example, quantitative structure-activity relationship), databases 

embedded in commercial PBPK software, and estimations from fitting model 

predictions to observed data (see section 4.6 below).

• For literature sources, include enough details for easy query to methods used to 

measure or predict a parameter value or to verify that a parameter value is the 

same as reported in the literature.

• For a published article, provide a full citation or unique identifier (for example, 

PubMed PMID, article DOI) along with page numbers and/or table/figure 

numbers, or cite well-known and well-respected articles, such as (Brown et al., 

1997; ICRP, 1975; ICRP, 2002). Cite the original source for a parameter value, 

rather than a secondary source that references other publications.

• If ancillary studies are conducted to measure or predict parameter values, submit 

unpublished reports describing these studies as supplemental materials.
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Commercial PBPK software programs usually include embedded databases for 

physiological parameter values. They also integrate built-in algorithms to estimate chemical-

specific parameter values.

• Export parameter values to files (for example, text file or spreadsheet) when 

possible. Include these files as supplemental materials and provide the rationale 

for choosing the default values in the report.

• For parameter values that cannot be exported, either provide references 

describing the sources of default values or create a table summarizing model 

parameters as described above.

• To justify modifications and describe sources of new values, include references 

for any modification to the default values in the main report.

In many instances, literature values are not available for all model parameters. Describe the 

details of approaches and tools used to determine values of parameters in this section or 

submitted as supplemental materials. One example is the mathematical or table functions for 

describing age-dependent changes in physiology. If such mathematical functions are 

obtained by fitting to a series of data points, include references from which raw data are 

obtained, along with a description of curve fitting analysis, regression procedures, or other 

methods used to construct these functions.

Document optimization of model parameters.

• When tissue or plasma/blood concentration data are used to optimize model 

parameters, document both the optimized parameters and optimized aspects of 

model performance (for example, peak concentration in plasma, root mean 

square error for time-concentration data in the target tissue).

• When visual inspection is used for model optimization, state and justify the 

optimization threshold (for example, parameters are manually adjusted to yield 

predictions within a specific fold of observations).

• When formal statistical methods are used for model optimization, provide and 

reference any data sources and details (for example, descriptions of priors for 

Bayesian analysis).

• When sequential or iterative processes are involved in model optimization, 

provide details on those processes (for example, fitting one parameter with one 

dataset before fitting another parameter with another dataset).

Document evaluation of model performance by comparing model predictions to datasets not 

involved in the optimization process, as well as sensitivity analysis that is helpful in 

assessing the identifiability of optimized parameters, in section 5 (“Modeling results”).

When submitting a probabilistic PBPK model that accounts for variability and uncertainty of 

parameter values, a separate parameter table may be needed in addition to the parameter 

table prepared for the deterministic model.
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• List parameter names/symbols, meanings, types of probability distributions (for 

example, normal, log-normal, triangular), parameters for describing probability 

distributions (for example, mean, variance, truncated range), units, and sources 

of parameter values.

• Describe any modifications made to the deterministic model to maintain mass 

balance and physiological plausibility.

• Clarify whether parameter uncertainty and variability are considered together or 

separately. Although separation of parameter uncertainty and variability is 

theoretically possible using hierarchical, population-based models, data are 

typically inadequate to achieve such a level or granularity.

2.4.6. Model simulations—In this section, provide the following details of the 

simulation conditions for model development, evaluation, and applications.

• Exposure/administration characteristics, such as routes (for example, inhalation, 

oral intake, ocular administration, skin contact), time at which each exposure/

administration occurs and duration/length of exposure/administration (for 

example, 4 h per day starting at 7 a.m. for 2 weeks), formulation (for example, 

powder, solution, suspension, vehicle/solvent) or other physical properties (for 

example, particle size, surface area), and feeding or fasting condition

• Doses/concentrations of chemical administered/exposed, and any information 

required to determine the apparent doses such as ventilation rates

• Types of samples (for example, radiolabeled compound, parent chemical in 

plasma, metabolites in urine) and time of sample collection

• Characteristics of the test subjects and the simulated virtual population, such as 

species, number of subjects, gender, ethnicity, life stage, healthy vs. disease state, 

relaxed vs. active state

• For pharmaceuticals, number of simulations for a specific administration 

scenario and number of virtual subjects in each simulation trial

• For probabilistic simulations, methods for analysis (for example, Monte Carlo, 

Markov Chain Monte Carlo), number of iterations for a specific dosing/exposure 

scenario, and associated data involved in the analysis (for example, observational 

data used to update the priors in Markov Chain Monte Carlo analysis)

2.4.7. Software—In this section, include the following elements:

• Name and version of the software

• Link to the software product website and, if necessary, the user’s manual

• Specification of the ordinary differential equation solvers, optimization, and 

statistical algorithms

• Step-by-step instructions on how to run the model simulations for all scenarios 

presented in the report
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2.5. Modeling results

In this section, demonstrate and discuss the predictive capability and robustness of the PBPK 

model for the intended purposes. The section may include the following three components:

• Comparison of model predictions with available data

• Analysis of parameter sensitivity and variability, and model uncertainty for any 

scenarios in which the model is used

• Model applicability

2.5.1. Model evaluation—In this section, present results that demonstrate the capability 

of the model to simulate available in vivo time-concentration data in figures or tables and 

summarize results in the text.

• Clearly distinguish the results showing the model fit to training dataset, and the 

results showing the model’s ability to simulate other datasets.

• Describe statistical tests or other approaches (for example, visual observation) 

used to investigate the goodness-of-fit for deterministic and probabilistic 

simulations (as applicable) in conjunction with the interpretation of test results.

• Discuss model performance in the context of the intended applications.

Graphical comparisons between the observed data and model predictions are presented in 

two common ways.

• A concentration vs. time plot provides a qualitative evaluation of model 

predictions (for example, Fig. 2).

• An observed vs. predicted outputs plot can provide a quantitative evaluation of 

model predictions, typically with the results of a linear regression of the 

observed vs. predicted values (for example, Fig. 3) along with summary statistics 

such as coefficient of determination (R2). The dotted line in Fig. 3 indicates the 

“identity” line along which perfect predictions will lie. This type of plot can be 

used to detect model biases and the overall predictive ability of the model.

2.5.2. Sensitivity, uncertainty, and variability analyses—Model reliability is 

critical for regulatory acceptance; key components are parameter sensitivity, uncertainty, and 

variability analyses. Sensitivity analysis that is conducted with respect to parameter 

identifiability may be structural or statistical (Cobelli and DiStefano, 1980) and can be local 

(considering one parameter at a time) or global (considering all parameters jointly) 

(McNally et al., 2011). Structural identifiability refers to the level of influence that a 

parameter exerts on the model output. Statistical identifiability refers to the ability of the 

available data to inform the value of a parameter (Bernillon and Bois, 2000). It may involve 

Bayesian analysis (Garcia et al., 2015). Clearly note model parameters that are not 

identifiable from fitting model predictions to available data; they may affect the model’s 

ability to extrapolate to new conditions (Chiu et al., 2007). Report the following 

information:
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• Model outputs for which sensitivity analysis is conducted and rationale for the 

choice of model outputs in the context of the intended applications

• The type of sensitivity analysis (for example, local vs. global)

• The sampling approach (for example, one at a time vs. all at a time, various time 

points vs. at steady state)

• The sampling methods, such as eFAST (Marino et al., 2008), Morris method 

(Morris, 1991), sensitivity coefficient calculation (e.g., absolute change ratio or 

percentage change ratio)

• An overview of key parameters identified as sensitivity parameters

• A statement of overall impact on model outputs and overall reliability.

In addition to sensitivity analysis, document approaches and results from uncertainty and 

variability analyses in this section. Uncertainty refers to lack of knowledge about the true 

value of model parameters and can be reduced through additional observation. Variability 
describes how a parameter value changes across a population of individuals, arising from 

differences in life stages, genetics, behavior, or activity. It cannot be reduced through further 

observations, although it can be more precisely characterized. In addition to model 

robustness, analysis of these model properties can inform model applicability, limitations, 

and potential refinement.

Since uncertainty, variability, and global sensitivity analyses are commonly conducted for a 

subset of the model parameters, identify the parameters in the analyses and provide criteria 

for inclusion/exclusion. Concepts and interpretations of these analyses are intertwined; 

hence, simultaneously consider the degree of sensitivity with uncertainty/variability of 

model parameters for meaningful assessment of model reliability.

• Parameters that are uncertain and have substantial impact on model output 

reduce model robustness and reliability.

• Uncertainty and variability of parameters to which the model has little sensitivity 

may be of negligible concern.

• For parameters with precisely known values (that is, low uncertainty), sensitivity 

may still be of interest where population variability is high.

Therefore, to facilitate model evaluation, present the results of these analyses together. For 

example, use a graphical representation to illustrate uncertainty versus sensitivity in low, 

medium, and high categories (Fig. 4, adopted from (Meek et al., 2013). Clearly state the 

definition of low, medium, and high uncertainty and sensitivity, since these levels can be 

necessarily subjective.

2.5.3. Model applicability—In this section, present how the PBPK model is used, 

including modeling results for its intended applications (for example, to derive an 

interspecies extrapolation factor). Summarize the levels of confidence or uncertainty 

associated with the intended application. For example, these levels may be based on the 

robustness of the model in simulating the underlying biological mechanisms, or knowledge 
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and data used to support major assumptions in modeling analysis. Clarify model limitations 

and domains of applicability.

2.6. Discussion and conclusions

In this section, briefly reiterate the following information:

• The question to be answered or hypothesis to be tested

• An explanation of why a PBPK model is required or preferred

• A summary of how the PBPK model helps address the question

• A summary of modeling analysis (for example, a rat and human model for the 

chemical with oral and inhalation routes of exposure)

• A highlight of key results and interpretation of these results (for example, 

magnitude of difference between rat and human dose metrics, or linear or 

saturable kinetics at doses up to some level)

• A discussion of the uncertainties and limitations of the model (for example, 

sensitive parameters that are assumed to be the same across species but without 

data to confirm)

If PBPK modeling analysis is one piece of evidence addressing the questions, include other 

pieces of evidence in the discussion.

2.7. Electronic files and supporting documents

Provide electronic files and supporting documents with the main report. Examples of 

electronic files include model code, metadata, parameter tables, and simulation inputs/

outputs. Examples of supporting documents include reports summarizing in vivo studies that 

provide the time-concentration data for model calibration or evaluation, or in vitro studies 

that measure chemical absorption or metabolism.

• Include all materials related to the modeling history, and justification of 

modeling strategies, model parameterization, and model evaluation/verification/

qualification, as well as model equations, if they are too long to be included in 

the main report.

• Provide references that contain model equations or approaches for obtaining 

default parameter values, as well as user manuals for commercial PBPK software 

programs.

• Provide a document with step-by-step instructions for running the model and 

generating tables/figures found in the main report.

• When possible, documentation quality practices followed by the model 

developer’s organization, and/or third-party review of the modeling analysis.
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2.8. Appendices

In this section, include a table of acronyms and abbreviations, a list of tables, a list of 

figures, and references. When possible, use hyperlinks in the main report to cross-reference 

tables, figures, and references.

Discussion & conclusions

This harmonized PBPK reporting template can be used in various ways, including providing 

clear guidance on critical elements evaluated during regulatory review processes. The 

template will also reduce the burden on investigators who may otherwise prepare separate 

reports for various regulatory jurisdictions or agencies, using the identical modeling 

analysis. Adapted from existing guidance templates (for example, USFDA, 2018; EMA, 

2019), this template recommends additional elements when using PBPK models to evaluate 

the safety of environmental chemicals. Therefore, this general template can be applied to 

submitting models for both environmental chemicals and pharmaceuticals. This template is 

also a good starting point for the development of a new OECD Harmonized Template (OHT) 

(http://www.oecd.org/ehs/templates) to report PBPK models for chemical risk assessment 

and regulatory uses.

This template has additional contexts of use beyond the regulatory sphere, including 

submitting and sharing PBPK-related studies (for example, for peer-reviewed publication or 

scientific collaborations), ensuring transparent communication between reviewers and model 

developers, and training for new modelers and decision makers. Using this template will 

help standardize PBPK model reporting and communication and thereby enhance their 

application and regulatory acceptance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
General schematic diagram of a physiologically based pharmacokinetic (PBPK) model.

Tan et al. Page 16

Regul Toxicol Pharmacol. Author manuscript; available in PMC 2021 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Comparison between predicted vs. observed concentrations over time.
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Fig. 3. 
Observation vs. prediction plot for quantitative analysis of predictive ability.
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Fig. 4. 
Adapted from (Meek et al., 2013; WHO, 2010).
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