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SUMMARY

Bulk-tissue RNA-seq is widely used to dissect variation in gene expression levels
across tissues and under different experimental conditions. Here, we introduce a
protocol that leverages existing single-cell expression data to deconvolve pat-
terns of cell-type-specific gene expression in differentially expressed gene lists
from highly heterogeneous tissue. We apply this protocol to interrogate cell-
type-specific gene expression and variation in cell type composition between
the distinct sublayers of the hippocampal CA1 region of the brain in a rodent
model of epilepsy.
For complete details on the use and execution of this protocol, please refer to
Cid et al. (2021).

BEFORE YOU BEGIN

Bulk-tissue RNA-seq is a powerful approach to reveal signature patterns of gene expression

across different tissues or disease states. However, it yields an average of gene transcript abun-

dance that reflects the convoluted signal from several sources of variation, such as cell-type-spe-

cific gene expression levels. This is particularly relevant for tissues characterized by a highly het-

erogeneous cell type composition, such as the brain. Notably, many neurological disorders result

in profound disturbances in the relative ratio of the different cell types in the affected tissue. This

is the case of temporal lobe epilepsy (TLE) that is characterized by neuronal loss, reactive gliosis,

and glial scarring in the hippocampus (Blümcke et al., 2013; Rusina et al., 2021). A better under-

standing of the sources of variation present in bulk-tissue transcriptome profiles may help iden-

tifying new targets for novel and more effective therapies. Here, we present a simple and robust

protocol that leverages single cell expression data, to explore the contribution of distinct cell

types to complex gene signatures obtained by differential gene expression analysis of bulk

RNA-seq from brain tissue. We show that linear dimensionality reduction and hierarchical clus-

tering can reveal patterns of cell-type-specific gene expression in gene signatures from bulk

RNA-seq data.

This protocol below leverages publicly available datasets of single-cell transcriptomes (Yao et al.,

2021) to deconvolve gene signature patterns in our bulk-tissue RNA-seq from the dorsal hippocam-

pal CA1 region of healthy and epileptic rodents. We show that the interrogation of expression levels

for significantly differentially expressed genes from bulk RNA-seq in the comparison between super-

ficial and deep sublayers of CA1, unmasked different sets of tightly co-expressed genes that include

bona fide markers genes of the distinct cell types (Valero et al., 2015; Cembrowski et al., 2016; Cid

et al., 2021). Our analysis also revealed differences of cell type composition across the radial axis of
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CA1, includingmicroglia and astrocytes. Moreover, by extending our analysis to the rodent model of

temporal lobe epilepsy, we found different transcriptional responses between CA1 sublayers at the

single-cell level. This analysis unveiled a module of co-regulated genes in microglia cells that was

upregulated in superficial CA1 sublayer, suggesting that reactive gliosis was prominent in this brain

region in epilepsy (Cid et al., 2021). These results were reproduced using a different scRNA-seq

reference dataset (Cid et al., 2021; Zeisel et al., 2015).

We propose that this protocol can be applied to deconvolve signatures of gene expression from

bulk RNA-seq in other brain areas where it has the potential to inform on the contribution of

cellular heterogeneity to the extracted gene patterns. We predict this protocol may also

uncover valuable insights on the disturbances in cell-type composition that occur in other neuro-

logical conditions. For instance, our protocol can be applied to gene lists recovered from

differential expression analysis in bulk-tissue transcriptomes in neurodegenerative diseases

including Alzheimer’s disease, where neuronal death and proliferative reactive gliosis represent

key histopathological hallmarks. Finally, we believe this approach could also be extended to

other types of tissues or datasets, including single-cell proteomics (SCP), scATAC-seq, scChIP-

seq, etc.

Bulk gene expression signatures from highly heterogeneous tissue in cell-type composition

Differential expression analysis is frequently used to extract population-level gene expression

signature patterns from bulk-tissue RNA-seq. In our original study, we captured changes in

gene expression levels across the radial axis of the hippocampal CA1 area in healthy rats, and

in an experimental model of temporal lobe epilepsy (TLE) (Cid et al., 2021). To this aim, we

used laser capture microdissection to sample deep and superficial sublayers of the CA1 region

of the dorsal hippocampus from healthy and epileptic rats, and performed bulk RNA-seq (LCM-

RNA-seq). For a detailed description on sample processing and differential expression analysis

refer to Cid et al. (2021).

Note: The results of the differential expression analysis for the different contrasts relevant to

run this protocol are publicly available through Mendeley data repository. Create a directory

named ‘‘Differentially_expressed_gene_tables’’ and download into this folder, the data tables

of differentially expressed genes between deep and superficial sublayers of CA1 region in

healthy (Data Table 1, Filename: ‘‘Sup_deep_diff_in_controls_FullTable.tsv’’, https://doi.

org/10.17632/p77tj6d88y) and epileptic (Data Table 2, Filename: ‘‘Sup_deep_diff_in_epilep-

sy_FullTable.tsv’’, https://doi.org/10.17632/jxmg5mwd55) rats. These data are also publicly

available through the companion web application to our original publication (Cid et al.,

2021): http://lopezatalayalab.in.umh-csic.es/CA1_Sublayers_%26_Epilepsy.

Reference dataset of single-cell type-specific expression profiles

Our approach leverages single-cell type-specific expression data as a reference dataset. The anal-

ysis is therefore constrained by the cell populations present in the reference scRNA-seq dataset.

In our original study, we leverage scRNA-seq from mouse cortex and hippocampus (Yao et al.,

2021) as reference single-cell type-specific expression profiles (Cid et al., 2021). We also performed

the protocol using early data generated from mouse somatosensory cortex and the CA1 hippocam-

pal region as scRNA-seq reference (Zeisel et al., 2015).

CRITICAL: The reference scRNA-seq dataset must include all the populations present in

the tissue processed to extract bulk-tissue signatures of gene expression (see ‘‘limita-

tions’’ section).

Note: The protocol presented here leverages scRNA-seq data from the Allen Brain Map portal -

Mouse Whole Cortex and Hippocampus SMART-seq (2019) with 10x-SMART-seq

taxonomy (2020) as reference profiles (Yao et al., 2021). Create a directory named
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‘‘AllenBrainMap_MouseCortexAndHippo_SMART-seq’’ and download into this folder, the single-

cell gene expressionmatrix (‘‘matrix.csv’’) and cell metadata (‘‘metadata.csv’’). These files are pub-

licly available through the Allen Brain Map portal: http://portal.brain-map.org/atlases-and-data/

rnaseq/mouse-whole-cortex-and-hippocampus-smart-seq. The single-cell gene expressionmatrix

(‘‘matrix.csv’’) and cell metadata (‘‘metadata.csv’’) can be downloaded from the Allen Brain Map

portal, through the link ‘‘Table of cell metadata’’ (Table title: ‘‘General’’; Column name: ‘‘File’’)

and ‘‘Gene expressionmatrix (csv)’’ (Table title: ‘‘Gene Expression’’; Column name: ‘‘File’’), respec-

tively. Raw andprocesseddata in Yao et al. (2021) can alsobe accessed throughNeMOArchive for

the BRAIN Initiative Cell Census Network: https://assets.nemoarchive.org/dat-jb2f34y.

KEY RESOURCES TABLE

MATERIALS AND EQUIPMENT

� Data 1 (Differential gene expression analysis from bulk-tissue RNA-seq – see bulk gene expression

signatures from highly heterogeneous tissue in cell-type composition in ‘‘before you begin’’ sec-

tion).

� Data 2 (scRNA-seq gene expression matrix and metadata – see Reference dataset of single-cell

type-specific expression profiles in ‘‘before you begin’’ section).

� R software and required packages. While different versions of the R software and associated pack-

ages may work correctly, the authors used R v4.1.1 and the following packages at the indicated

versions when writing this protocol:

� Seurat (v4.0.4)

� cowplot (v1.1.1)

� data.table (v1.14.2)

� ggplot2 (v3.3.5)

� gplots (v3.1.1)

� patchwork (v1.1.1)

� Hardware:

� Memory for reading the single-cell gene expression matrix and building the single-cell object:

64 GB required, 128 GB recommended.

� Memory for loading single-cell objects once built: 24 GB required, 32 GB recommended.

� Processor: 1 required, 4 threads are recommended for parallel processing of large datasets.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

LCM-RNA-seq Gene Expression Omnibus (NCBI) GEO: GSE143555

scRNA-seq data - Mouse Whole
Cortex and Hippocampus SMART-
seq (2019) with 10x-SMART-seq taxonomy (2020)

Yao et al. (2021); Allen Institute for Brain Science https://portal.brain-map.org/
atlases-and-data/rnaseq/
mouse-whole-cortex-and-
hippocampus-smart-seq

Data Table 1 Mendeley Data https://doi.org/10.17632/p77tj6d88y

Data Table 2 Mendeley Data https://doi.org/10.17632/jxmg5mwd55

Protocol code Mendeley Data https://doi.org/10.17632/nkrfxtbrmc

Software and algorithms

R v4.1.1 R Foundation for Statistical Computing RRID: SCR_001905

RStudio v2021.09.0-351 RStudio, PBC RRID: SCR_000432

Seurat v4.0.4 Butler et al. (2018) and Stuart et al. (2019) RRID: SCR_016341

Other

Resource website for the LCM-RNA-seq data Cid et al. (2021) http://lopezatalayalab.in.umh-csic.es/
CA1_Sublayers_&_Epilepsy
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Pause point: The protocol can be paused at any time. To do so, the user can save an image

of the current workspace and R session using the following command within the R or R Studio

console:

To reload the workspace image in future R session, use the following command:

STEP-BY-STEP METHOD DETAILS

Step 1: Load differentially expressed genes (DEGs) between the different sample groups and

set a common filter based on Adjusted p value (padj)

Timing: 5 min

This step loads the DEGs between the different contrasts for downstream analysis. DEGs with an

padj < 0.1 based on sublayer differences for control and epileptic condition are retained. See

bulk gene expression signatures from highly heterogeneous tissue in cell-type composition in the

‘‘before you begin’’ section.

1. Load the DEGs tables into dataframes.

a. Set the working directory path to the RNA-seq data folder.

b. Read the RNA-seq data from disk.

Note: The DEGs between CA1 sublayers in control and epileptic condition are available as

Data Table 1 and Data Table 2 (see ‘‘before you begin’’ section and ‘‘key resources table’’).

These data are also available in the Resource web application for the LCM-RNA-seq data

from Cid et al. (2021): http://lopezatalayalab.in.umh-csic.es/CA1_Sublayers_&_Epilepsy.

2. Remove DEGs table rows with empty gene symbols.

3. Filter the DEGs tables by significance (padj < 0.1).

> save.image("Deconvolution_Experiment.Rdata")

> load("Deconvolution_Experiment.Rdata")

> path = "�/Differentially_expressed_gene_tables/"

> setwd(path)

> ctrl_DEGs <- read.delim("Sup_deep_diff_in_controls_FullTable.tsv", stringAsFactors =

FALSE)

> epil_DEGs <- read.delim("Sup_deep_diff_in_epilepsy_FullTable.tsv", stringAsFactors =

FALSE)

> ctrl_DEGs <- ctrl_DEGs[!is.na(ctrl_DEGs$Gene_symbol),]

> epil_DEGs <- epil_DEGs[!is.na(epil_DEGs$Gene_symbol),]

> ctrl_DEGs <- ctrl_DEGs[ctrl_DEGs$padj < 0.1,]

> epil_DEGs <- epil_DEGs[epil_DEGs$padj < 0.1,]
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4. Rank the DEGs tables by fold-change.

5. Subset DEGs tables based on the layer they are enriched in controls and in epileptics.

6. Get DEGs lists, extracting gene symbols from DEGs tables.

Step 2: Load the single-cell expression dataset and build the single-cell dataset object

Timing: 20 min

This step loads the original scRNA-seq dataset and builds the single-cell dataset object. See refer-

ence dataset of single-cell type-specific expression profiles in the ‘‘before you begin’’ section.

7. Load the single-cell gene expression matrix and cell metadata.

a. Set the working directory path to a single-cell RNA-seq data folder.

b. Read the single-cell RNA-seq metadata from disk.

c. Load the data.table library, to access the fread() function, a very efficient tool to read regular

delimited files from disk.

d. Read the single-cell RNA-seq counts from disk.

e. Set the cell barcodes as rownames.

> ctrl_DEGs <- ctrl_DEGs[order(-ctrl_DEGs$log2FoldChange),]

> epil_DEGs <- epil_DEGs[order(-epil_DEGs$log2FoldChange),]

> ctrl_DEGs_sup <- ctrl_DEGs[ctrl_DEGs$log2FoldChange > 0,]

> ctrl_DEGs_deep <- ctrl_DEGs[ctrl_DEGs$log2FoldChange < 0,]

> epil_DEGs_sup <- epil_DEGs[epil_DEGs$log2FoldChange > 0,]

> epil_DEGs_deep <- epil_DEGs[epil_DEGs$log2FoldChange < 0,]

> ctrl_DEGs_sup <- ctrl_DEGs_sup$Gene_symbol

> ctrl_DEGs_deep <- ctrl_DEGs_deep$Gene_symbol

> epil_DEGs_sup <- epil_DEGs_sup$Gene_symbol

> epil_DEGs_deep <- epil_DEGs_deep$Gene_symbol

> path = "�/AllenBrainMap_MouseCortexAndHippo_SMART-seq/"

> setwd(path)

> metadata <- read.csv(file = "metadata.csv", row.names = 1)

> library(data.table)

> counts <- fread("matrix.csv", data.table = FALSE)
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f. Remove the column sample_name to have a count matrix.

g. Set the count matrix as a matrix.

h. Transpose the counts matrix to get the correct format to be used as input in Seurat.

i. Remove old count objects to free space.

j. Free memory through garbage collection.

CRITICAL: The gene-barcode matrix from the scRNA-seq dataset must be arranged so

that each of the columns represents a barcode and each of the rows represents a gene

(related to point 7.h.).

8. Build the Seurat single-cell dataset object.

a. Load the Seurat library.

b. Create the Seurat object with the transposed raw counts and cell metadata without filtering

any cell or genes.

9. Clean unneeded data.

a. Remove transposed_counts and metadata objects to free space.

b. Free memory through garbage collection.

Step 3: Subset scRNA-seq reference dataset to match cell-type populations in the bulk-tissue

RNA-seq

Timing: 10 min

> rownames(counts) <- counts$sample_name

> counts <- counts[,-!names(counts) %in% c("sample_name")]

> counts <- as.matrix(counts)

> transposed_counts <- t(counts)

> rm(counts)

> gc()

> library(Seurat)

> sc_data <- CreateSeuratObject(counts = transposed_counts,

meta.data = metadata, min.cells = 0, min.features = 0,

project ="AllenBrainMap_MouseCortexHippo_SMART-seq-

2019_with_10x_SMART-seq-2020-taxonomy")

> rm(transposed_counts)

> rm(metadata)

> gc()
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This step sets a subset of the scRNA-seq dataset to match the cell types present in the tissue pro-

cessed for bulk RNA-seq.

10. Explore the different cell metadata categories in the scRNA-seq object to select the categories

more related to bulk-tissue RNA-seq data. The categories selected to perform the subset are

‘‘region_label’’ and ‘‘subclass_label’’. See cell numbers in Tables 1 and 2.

Note: The number of cells can be consulted at any moment using the function table() with the

associated category/metadata as argument.

Note: Consider removing potential confounding factors (e.g. conditions or treatments) that

are unrelated to the bulk-tissue RNA-seq from the initial scRNA-seq dataset.

11. Filter out any cell population from tissue areas, treatments or other groups that are unrelated to

the bulk-tissue RNA-seq data. Troubleshooting 1.

a. We first generate a scRNA-seq reference of the cells-types in the hippocampal CA1 region of

the brain. The 74,973 cells in the initial scRNA-seq dataset are filtered to subset cells from

hippocampal region and non-neuronal subclasses (Astro, Micro-PVM, Endo, Oligo or

VLMC). Then, excitatory cells from CA2, CA3, DG and also a group of cells in a subclass

without label ([No label]) are removed. This initial filtering extracts a subset of 5,506 cells.

Table 1. Cell numbers by ‘‘region_label’’ before filtering step

ACA AI AUD CLA ENTl ENTm GU HIP MOp MOs-FRP ORB

5122 1536 1486 828 1618 1570 1481 6598 6516 9656 1461

PAR-POST-PRE PL-ILA PTLp RSP SSp SSs SUB-ProS TEa-PERI-ECT VIS VISp

1636 1452 1539 2007 5577 1864 1608 1602 3395 16421

Table 2. Cell numbers by ‘‘subclass_label’’ before filtering step

[No label] Astro CA1-ProS CA2 CA3 Car3 CR CT SUB DG Endo L2 IT ENTl

268 976 1701 21 315 1980 32 173 2469 213 179

L2 IT RHP L2/3 IT
CTX-1

L2/3 IT
CTX-2

L2/3 IT
ENTl

L2/3 IT
PPP

L3 IT
ENT

L3 RSP-
ACA

L4/5 IT
CTX

L5 IT
CTX

L5 IT TPE-
ENT

L5 NP
CTX

375 5959 106 253 1395 577 200 11522 2934 338 2363

L5 PPP L5 PT CTX L6 CT CTX L6 IT CTX L6 IT ENTl L6b CTX L6b/CT ENT Lamp5 Meis2 Micro-PVM NP PPP

47 1974 6210 5015 83 2213 693 4755 172 176 150

NP SUB Oligo Pvalb SMC-Peri Sncg Sst Sst Chodl SUB-ProS V3d Vip VLMC

257 236 4365 198 1491 5258 268 467 1 6436 159

> table(sc_data$region_label)

> table(sc_data$subclass_label)

> sc_data <- subset(x = sc_data,

subset=region_label=="HIP" j subclass_label%in%c("Astro","Micro-PVM","Endo","Oligo","VLMC"))

> sc_data <- subset(x = sc_data,

cells = colnames(sc_data)[!sc_data$subclass_label %in% c("","CA2","CA3","DG")])

> str(sc_data@meta.data)
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b. Of these, cells labeled by subclass as CA1-ProS, Astro, Lamp5, Vip, Sncg, Sst, Oligo, Endo,

Micro-PVM, VLMC, or Pvalb are retained for further analysis, remaining a total of 5,429 cells.

See cell numbers in Tables 3 and 4. Troubleshooting 2.

12. Rename and group the cells in their corresponding major cell populations.

a. Remove unused levels (labels without associated cells). See cell numbers in Table 5.

b. Set the ‘‘subclass_label’’ metadata as the ‘‘active.ident’’ (default identity class) for easy

customization.

c. Rename identity classes to the corresponding major cell population. The remaining

5,429 cells are grouped in their corresponding major cell populations as follows: Astro-

cytes (Astro) (976 cells), Endothelial (Endo) (213 cells), Interneurons (Lamp5, Pvalb,

Sncg, Sst, Vip) (2,077 cells), Microglia (Micro-PVM) (176 cells), Mural (VLMC) (159 cells),

Oligodendrocytes (Oligo) (236 cells) and Pyramidal (CA1-ProS) (1,592 cells). See Tables

5 and 6.

> Idents(sc_data) <- "subclass_label"

> sc_data$subclass_label <- droplevels(x = sc_data$subclass_label)

Table 3. Cell numbers by ‘‘region_label’’ after filtering step

ACA AI AUD CLA ENTl ENTm GU HIP MOp MOs-FRP ORB

13 4 56 11 56 0 87 3707 18 557 48

PAR-POST-PRE PL-ILA PTLp RSP SSp SSs SUB-ProS TEa-PERI-ECT VIS VISp

7 20 37 15 23 69 0 0 2 699

Table 4. Cell numbers by ‘‘subclass_label’’ after filtering step

[No label] Astro CA1-ProS CA2 CA3 Car3 CR CT SUB DG Endo L2 IT ENTl

0 976 1592 0 0 0 0 0 0 213 0

L2 IT RHP L2/3 IT
CTX-1

L2/3 IT
CTX-2

L2/3 IT
ENTl

L2/3 IT
PPP

L3 IT
ENT

L3 RSP-
ACA

L4/5 IT
CTX

L5 IT
CTX

L5 IT
TPE-ENT

L5 NP
CTX

0 0 0 0 0 0 0 0 0 0 0

L5 PPP L5 PT CTX L6 CT CTX L6 IT CTX L6 IT ENTl L6b CTX L6b/CT ENT Lamp5 Meis2 Micro-PVM NP PPP

0 0 0 0 0 0 0 864 0 176 0

NP SUB Oligo Pvalb SMC-Peri Sncg Sst Sst Chodl SUB-ProS V3d Vip VLMC

0 236 69 0 416 266 0 0 0 462 159

Table 5. Cell numbers by ‘‘subclass_label’’ after removing labels without associated cells

Astro CA1-ProS Endo Lamp5 Micro-PVM Oligo Pvalb Sncg Sst Vip VLMC

976 1592 213 864 176 236 69 416 266 462 159

> sc_data <- subset(x = sc_data,

cells = colnames(sc_data)[!sc_data$subclass_label %in%

c("L2 IT RHP","L2/3 IT CTX-1","L2/3 IT CTX-2",

"L2/3 IT ENTl","L2/3 IT PPP","L5 IT TPE-ENT",

"L6 CT CTX","L6b CTX","Meis2","NP SUB","Sst Chodl",

"SUB-ProS")])
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d. Reorder alphabetically the identity classes. See cell numbers in Table 6.

13. Normalize gene counts.

14. Identify genes that are outliers on a ’mean variability plot’.

15. Scale and center variable genes.

16. Perform dimensionality reduction to summarize and visualize the cells in the low-dimensional

space.

a. Perform linear dimensionality reduction by PCA over the variable genes (default option).

b. Estimate the number of principal components (PCs) that are biologically informative by

plotting the standard deviations of the PCs for easy identification of an elbow in the

graph (Elbow plot). This elbow often corresponds well with the significant dimensions

that capture the majority of the variation in the data. Here, the elbow was identified

at the 20th PC.

> ElbowPlot(sc_data, ndims = 50)

> sc_data <- NormalizeData(sc_data, normalization.method = "LogNormalize", scale.factor =

10000)

> sc_data <- FindVariableFeatures(sc_data, selection.method = "vst", nfeatures = 2000)

> sc_data <- ScaleData(sc_data)

> sc_data <- RunPCA(sc_data)

Table 6. Cell numbers by ‘‘active.ident’’ after grouping to their major cell-type populations

Astrocytes Endothelial Interneurons Microglia Mural Oligodendrocytes Pyramidal

976 213 2077 176 159 236 1592

> sc_data <- RenameIdents(sc_data,

"Astro" = "Astrocytes",

"CA1-ProS" = "Pyramidal",

"Endo" = "Endothelial",

"Lamp5" = "Interneurons",

"Micro-PVM" = "Microglia",

"Oligo" = "Oligodendrocytes",

"Pvalb" = "Interneurons",

"Sncg" = "Interneurons",

"Sst" = "Interneurons",

"Vip" = "Interneurons",

"VLMC" = "Mural")

> Idents(sc_data) <- factor(Idents(sc_data), levels = sort(levels(sc_data)))
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c. Perform non-linear dimensionality reduction over biologically informative dimensions from

linear dimensionality reduction using stochastic nearest neighbors (tSNE) (van der Maaten

and Hinton, 2009) and uniform manifold approximation and projection (UMAP) (McInnes

et al., 2018) state-of-the-art techniques.

Pause point: Save the scRNA-seq object and resume the analysis in future R sessions without

repeating the previous steps:

To reload the scRNA-seq object saved in a previous R session, use the following command:

17. Create a figure showing dimensionality reduction of major cell types (Figure 1). Use custom la-

bels from the scRNA-seq and the dimensionality reduction techniques applied to the data.

a. Load the cowplot library, to access the get_legend() function.

b. Load the patchwork library, to access the area() function.

c. Load the ggplot2 library, to access the ggsave() function.

d. Generate the dimensionality reduction plots.

e. Define the figure layout.

> sc_data <- RunTSNE(sc_data, dims = 1:20)

> sc_data <- RunUMAP(sc_data, dims = 1:20)

> saveRDS(sc_data, "Single-cell_custom_subset.rds")

> sc_data <- readRDS("Single-cell_custom_subset.rds")

> library(cowplot)

> library(patchwork)

> library(ggplot2)

> cols <- c("limegreen", #Astrocytes

"steelblue", #Endothelial

"mediumorchid4", #Interneurons

"firebricks2", #Microglia

"magenta", #Mural

"gray52", #Oligodendrocytes

"tan1") #Pyramidal

> pca_plot <- DimPlot(sc_data, reduction = "pca", pt.size = 0.1, label = T, cols = cols)

> tsne_plot <- DimPlot(sc_data, reduction = "tsne", pt.size = 0.1, label = T, cols = cols)

> umap_plot <- DimPlot(sc_data, reduction = "umap", pt.size = 0.1, label = T, cols = cols)

> legend <- get_legend(umap_plot)

> layout <- c (area(1, 1, 1, 2), #PCA

area(1, 3, 1, 4), #tSNE
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f. Build the figure.

g. Save the figure to disk.

Step 4: Perform the deconvolution of cell-type-specific signal in bulk-tissue RNA-seq top

DEGs using single-cell RNA-seq reference

Timing: 10 min

This step subsets top DEGs lists of equal size for the groups of interest and imputes bulk signal to

cell-type leveraging on the scRNA-seq subset from step 3.

18. Get the list of genes names from the single-cell object.

19. Intersect the DEGs lists with the list of genes names from the single-cell reference object, pre-

serving the fold change order from point 4.

Optional: In the case that the bulk-tissue RNA-seq and reference scRNA-seq dataset are from

different species (e.g. rat vs. mouse), ortholog conversion should be performed. Trouble-

shooting 3.

area(1, 5, 1, 6), #UMAP

area(1, 7)) #Legend

Figure 1. Major cell types present in the reference scRNA-seq dataset

Cell populations in scRNA-seq data from the Allen Brain Map portal (Mouse Whole Cortex and Hippocampus SMART-seq (2019) with 10x-SMART-seq

taxonomy (2020) (Yao et al., 2021)) identified as non-neuronal or from CA1 (from ‘‘hippocampus’’ but not NA, ‘‘CA2’’, ‘‘CA3’’ or ‘‘DG’’) were subset and

grouped in their corresponding major cell populations as follows: Astrocytes (Astro) (976 cells), Endothelial (Endo) (213 cells), Interneurons (Lamp5,

Pvalb, Sncg, Sst, Vip) (2077 cells), Microglia (Micro-PVM) (176 cells), Mural (VLMC) (159 cells), Oligodendrocytes (Oligo) (236 cells) and Pyramidal (CA1-

ProS) (1,592 cells). Left, Principal component analysis (PCA); Center, t-distributed stochastic neighbor embedding (tSNE); Right, uniform manifold

approximation and projection (UMAP).

> fig1 <- pca_plot + tsne_plot + umap_plot + legend + plot_layout(design = layout) & NoLegend()

> ggsave(filename = "Fig_1.png", plot = fig1, width = 13, height = 3.75, dpi = 300)

> gene_names <- rownames(sc_data)

> ctrl_DEGs_sup <- ctrl_DEGs_sup[ctrl_DEGs_sup %in% gene_names]

> ctrl_DEGs_deep <- ctrl_DEGs_deep[ctrl_DEGs_deep %in% gene_names]

> epil_DEGs_sup <- epil_DEGs_sup[epil_DEGs_sup %in% gene_names]

> epil_DEGs_deep <- epil_DEGs_deep[epil_DEGs_deep %in% gene_names]
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20. Capture comparable convoluted gene signatures by using gene sets of equal size that are differ-

entially regulated between the experimental conditions. Subset top 250 differentially regulated

genes for each sublayer and condition for further analysis, with the genes sorted in descending

order by magnitude of change. Troubleshooting 4.

Note: In our case, we have 4 topDEGs lists that should be iteratively renamed to ‘‘topDEGs_list’’ in

point 21 togenerate theplots inFigure2.Our topDEGs lists are comparable in size, as they contain

top 250 DEG genes, with the exception of ‘‘epil_DEGs_sup’’ that contains 230 genes.

21. Set ‘‘topDEGs_list’’ as any of the previous 4 DEGs lists and repeat the following steps (21–25) for

all the other lists, renaming the plot output names in points 24 and 25 to avoid overwriting the

plots in the different iterations.

22. Scale the normalized scRNA-seq data for the top DEGs list.

23. Perform dimensionality reduction of the gene list to summarize and visualize the cells in the low-

dimensional space. Troubleshooting 5.

a. Perform linear dimensionality reduction by PCA over the top DEGs.

b. Retain genes with variance. This gene list will be used to perform pairwise Pearson correla-

tion coefficients (related to point 25.e.).

24. Generate the dimensionality reduction plots and save them to disk. For Figure 2 we use the PCA

plots with labels set to false, to maximize visualization.

25. Perform pairwise correlations and hierarchical clustering for these gene sets (top DEGs) across

all cells in the scRNA-seq subset, to capture cell-type-specific gene signatures that were as-

signed to major cell types in CA1 by using previously identified cell markers.

a. Define the correlation plot palette.

i. Create a matrix of 50x10 random values within the range [�1, +1].

> sc_data <- ScaleData(sc_data, features = topDEGs_list)

> sc_data <- RunPCA(sc_data, features = topDEGs_list)

> topDEGs_list <- rownames(sc_data@reductions[["pca"]]@feature.loadings)

> topDEGs_list <- ctrl_DEGs_sup #Repeat steps 21-25 for each DEG list.

> ctrl_DEGs_sup <- head(ctrl_DEGs_sup,250)

> ctrl_DEGs_deep <- rev(tail(ctrl_DEGs_deep,250))

> epil_DEGs_sup <- head(epil_DEGs_sup,250)

> epil_DEGs_deep <- rev(tail(epil_DEGs_deep,250))

> pca_plot <- Dimplot(sc_data, reduction = "pca", pt.size = 0.1, label = F, cols = cols)

> legend <- get_legend(pca_plot)

> pca_plot <- pca_plot & NoLegend()

> ggsave(filename = "Fig_2_pca_plot.png", plot = pca_plot, width = 3.75, height = 3.75, dpi =

300)

> ggsave(filename = "Fig_2_legend.png", plot = legend, width = 2, height = 3.75, dpi = 300)
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ii. Produce the sample quantiles corresponding to the given probabilities.

iii. Define the quantiles where the minimum and maximum correlation values were set to the

lowest and highest color. In our case, it was set empirically to 35% and 83% respectively,

as these values maximized the contrast for the distribution of values.

iv. Create a color ramp that maps the previous interval.

b. Import the library gplots to access the enhanced heatmap function heatmap.2().

c. Define the hierarchical cluster analysis function, with Pearson correlation coefficient as dis-

tance matrix and average as agglomeration method.

d. Define the heatmap correlation function, with Pearson correlation coefficient as numeric ma-

trix and the color palette, breaks and clustering function set above.

e. Compute the Pearson correlation coefficient on the logarithm of normalized expression of

genes from ‘‘topDEGs_list’’ in all cells from scRNA-seq subset.

f. Generate the gene-gene correlation plot and save it to disk.

26. Figure 2 shows PCA plots and heatmaps of pairwise correlations generated from the 4 lists of

top DEGs in our study.

> random.matrix <- matrix(runif(500, min = -1, max = 1), nrow = 50)

> quantile.range <- quantile(random.matrix, probs = seq(0, 1, 0.01))

> palette.breaks <- seq(quantile.range["35%"], quantile.range["83%"], 0.06)

> color.palette <- colorRampPalette(c("#0571b0","#f7f7f7","#ca0020"))(length(palette.

breaks)-1)

> library(gplots)

> clustFunction <- function(x)

hclust(as.dist(1-cor(t(as.matrix(x)), method = "pearson")), method = "average")

> heatmapPearson <- function(correlations)

heatmap.2(x = correlations,

col = color.palette,

breaks = palette.breaks,

trace = "none", symm = T,

hclustfun = clustFunction)

> correlations_DEGs_log <- cor(method = "pearson",

log2(t(as.matrix(sc_data@assays[["RNA"]]@data[topDEGs_list,]))+1))

> pdf(file = "Fig_2_corr_plot.pdf", width = 25, height = 25)

> heatmapPearson(correlations_DEGs_log)

> dev.off()
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Note: Points 24 and 25 generate the plots shown in Figure 2. Rename the output files in points

24 and 25 to avoid overwriting of the plots when different iterations of Step 4 are performed.

Note: A R script with the code of this protocol is publicly available at Mendeley Data repos-

itory: https://doi.org/10.17632/nkrfxtbrmc.

EXPECTED OUTCOMES

We show here a reference profile-based deconvolution protocol designed to explore sources of var-

iations such as cell-type-specific gene expression and cell-type composition that are present in sig-

natures of gene expression obtained frombulk-tissue RNA-seq data. We show that linear dimension-

ality reduction and hierarchical clustering of pairwise correlations of single-cell data for gene lists

obtained from differential expression analysis using bulk-tissue RNA-seq, can inform on the contri-

bution of cell types and cellular states to these gene signatures. Anticipated outcomes of this pro-

tocol include deconvolution of gene signatures from bulk-tissue RNA-seq in highly heterogeneous

tissues, such as brain tissue, for qualitative inference of changes in constituent cell-types (Figure 2).

The protocol can also inform on changes in cellular state caused by the disease condition, as in the

Figure 2. Deconvolution of gene signatures from bulk-tissue RNA-seq reveals strong presence of reactive microglia in superficial CA1 sublayer of the

hippocampus in epilepsy

Patterns of cell-type-specific gene expression were identified by deconvolution of bulk-tissue transcriptome profiling of deep and superficial

hippocampal CA1 sublayers of control and epileptic animals. This analysis reveals strong presence of reactive microglia in superficial CA1 sublayer in

epilepsy. Gene sets were the top 250 DEGs between superficial and deep CA1 sublayers in epileptic and control rats identified in bulk-tissue RNA-seq.

For the selected genes, normalized expression in single cells was retrieved from publicly available scRNA-seq data from the Allen Brain Map portal

(Mouse Whole Cortex and Hippocampus SMART-seq (2019) with 10x-SMART-seq taxonomy (2020)) (Yao et al., 2021) and single-cells were summarized

by linear dimensionality reduction using PCA (top panels). Cells are colored by population membership (step 2). Hierarchical clustering heatmaps of

pairwise correlations for all individual cells using scRNA-seq expression data for selected gene sets identified in differential expression analysis with

bulk-tissue RNA-seq (top 250 DEGs) (bottom panels). Bona fide markers of distinct cell types are present in clusters of highly correlated genes

representing cell-type gene signatures convoluted in the bulk-tissue RNA-seq. Patterns of cell-type-specific gene expression present in the bulk-tissue

RNA-seq gene signatures of deep and superficial CA1 sublayers of control and epileptic animals lead to segregation of the individual cells in the

corresponding PCAs and in the heatmap of the pairwise correlation matrices. Note the different distribution of distinct cell types in the deep and

superficial (Sup) sublayers of the CA1 region in control and epileptic rats. Also note the presence of a strong gene signature of Micro in the Sup CA1

sublayer of epileptic rats (arrowhead). Names of highly correlated genes enriched in Micro are shown (Zeisel et al., 2018). Pyr, pyramidal cells; Inter,

interneurons; ODC, oligodendrocytes; Astro, astrocytes; Endo, endothelial cells; Micro, microglia; Mural, mural cells.

Reprinted from Cid et al. (2021), with permission from Elsevier.
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case of the presence of reactive microglia in samples of the superficial CA1 sublayer of

animals subjected to an experimental model of temporal lobe epilepsy (Figure 2). The

gene clusters and correlation values are publicly available through the web application we

developed in our original publication (Cid et al., 2021): http://lopezatalayalab.in.umh-csic.es/

CA1_Sublayers_&_Epilepsy. Deconvolved signatures in bulk-tissue RNA-seq can be further vali-

dated using single-nuclei RNA-seq data from CA1 hippocampal area, available at http://

lopezatalayalab.in.umh-csic.es/CA1_SingleNuclei_&_Epilepsy (Cid et al., 2021).

QUANTIFICATION AND STATISTICAL ANALYSIS

We perform principal component analysis (PCA) to interrogate for the presence of strong patterns of

cell-type-specific gene expression in the bulk RNA-seq signatures (top DEGs). We also perform pair-

wise Pearson correlation and hierarchical clustering for the selected gene sets (top DEGs from RNA-

seq analysis) across all cells in the reference scRNA-seq dataset. The analysis captures co-regulated

gene modules that are assigned to major cell types in CA1 by using previously identified marker

genes. First, pairwise Pearson correlation coefficients are calculated for all cells in the reference

scRNA-seq dataset using the logarithm of normalized expression for the gene subset of top DEGs

from bulk-tissue RNA-seq analysis. Second, hierarchical cluster analysis is performed with the previ-

ous gene correlation coefficient as distance matrix and average as agglomeration method. A data

visualization tool has been developed to allow users for interactive data exploration and the access

to gene correlation values: http://lopezatalayalab.in.umh-csic.es/CA1_Sublayers_&_Epilepsy (go to

the tab menu Data visualization/Signature correlation).

LIMITATIONS

Bulk-tissue RNA-seq has been extensively used to extract molecular signatures of complex tissues

and disease states. However, one of the major limitations of this technique is that it measures the

average of gene expression levels (i.e., transcript and gene abundance estimates) that is the result

of cell-type-specific gene expression weighted by cell-type proportions. Efforts aimed to deepen

our understanding on the contribution of changes in cell-type composition and variation in cellular

states to gene signature patterns in disease may help improving the identification of novel therapeu-

tic targets.

In bulk RNA-seq, changes in gene expression levels between sample groups can result from varia-

tions in transcript abundance in the whole tissue. However, in highly heterogeneous tissues, such

as the brain, changes in transcripts levels are expected to vary across the different cell types within

the tissue, or even, be cell-type-specific, in the most extreme case. Moreover, variation in gene

expression levels between experimental conditions can be driven by gene regulatory mechanisms,

as well as from changes in the proportions of cell-types. A combination of both sources of variations,

cell-type-specific responses and changes in cell-type composition, is present in most prevalent

neurological conditions such as epilepsy, Alzheimer’s disease, and Parkinson’s disease (Cid et al.,

2021; Gjoneska et al., 2015; Nido et al., 2020). Here, we present a simple and fast approach that

leverage scRNA-seq cell-type-specific gene expression profiles from publicly available datasets,

to explore changes in cell proportions and cellular states from bulk-tissue RNA-seq data. To do

so, we rely on signature patterns of gene expression extracted from bulk RNA-seq data by perform-

ing gene-level differential expression analysis between conditions.

We show that projecting differentially expressed gene lists frombulk RNA-seq in single-cell-type-specific

gene profiles from scRNA-seq can inform on changes in cell-type proportions and cellular states. Linear

dimensionality reduction by PCA is performed to interrogate for the presence of sources of variation

associated to specific cell types. This analysis may reveal strong patterns in the dataset that can be infor-

mative of the contribution of distinct cell types to complex signatures of gene expression. We also

probed for mutual linearity of all pairs of genes in the bulk-RNA-seq gene signature, across all cells in

the scRNA-seq reference. Next, hierarchical clustering on a correlation-based similarity metric is
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performed to capture well-defined clusters of genes that are mutually linearly correlated to each other.

Finally, the clusters showing strong covariation and intrinsic redundancy are imputed to specific cell

types based on the presence of bona fidemarker genes. We demonstrate our coarse-grained approach

constitutes a fast and simple method to explore the contribution of cell-type composition and cellular

states to gene signatures obtained from bulk-tissue RNA-seq. In our original study, this approach re-

vealed that many differentially expressed genes between deep and superficial sublayers of the CA1

area are associated with changes in cell-type composition across the radial axis of this hippocampal re-

gion. Notably, we also observed disease-associated gene signatures that could be imputed to a specific

cell state, such as reactive microglia (Cid et al., 2021).

A variety of computational methods have been developed to deconvolve bulk RNA-seq data from

complex tissues to estimate cell-type composition (Avila Cobos et al., 2018). More recent ap-

proaches such as deconvSeq (Du et al., 2019), MuSIC (Wang et al., 2019), DWLS (Tsoucas et al.,

2019), Bisque (Jew et al., 2020), and SCDC (Dong et al., 2021) leverage external scRNA-seq data

to perform reference profile-based deconvolution of bulk-tissue RNA-seq (Avila Cobos et al.,

2020). These methods use gene expression data (count matrices) to obtain a quantitative estimate

of the proportions of cell types in bulk RNA-seq samples from complex tissues and disease states.

While this aim is clearly beyond the scope of our work, there are limitations that are common to both

approaches. These limitations, that can be due to biological processes underlying complex diseases

or arise from technical bias, are related with the fact that deconvolution approaches based on

scRNA-seq data are inherently constrained by cell-types present in the single-cell reference. First,

diseased tissue can be populated by cell-types that are not normally present under healthy condi-

tions but can infiltrate from external sources such as the bloodstream, during inflammation. Second,

scRNA-seq methods often deviate from stereological data on cell-type composition and abundance

in tissues of origin. The prevailing view is that sample dissociation methods introduce protocol-spe-

cific biases affecting cell proportion estimates in scRNA-seq data (Bakken et al., 2018; Denisenko

et al., 2020). Third, a note of caution must be added when using single-nucleus transcriptome

(snRNA-seq) profiling as external reference. Single-cell and single-nucleus transcriptome profiles

show good general correlation (Bakken et al., 2018; Habib et al., 2017; Lake et al., 2017). However,

single-nuclei data have shown to perform poorly in deconvolution of bulk gene expression to esti-

mate cell proportions (Patrick et al., 2020). Moreover, recent data from human microglia have re-

vealed that a significant proportion of genes are depleted in nuclei compared to whole cells (Thrupp

et al., 2020). Together, these limitations warn us about the potential impact that the lack of consis-

tency between bulk-tissue RNA-seq data and scRNA-seq reference dataset may have on the results

of deconvolutional methods using cell-type-specific gene expression references.

The protocol described here is intended to offer a first glimpse into the sources of intrinsic variations

associated with gene expression signatures from bulk-tissue RNA-seq data. It provides a starting point

to generate new hypotheses that can be further explored using complementary techniques aimed at vali-

dating high-throughput findings at the single-cell level with spatial information in tissue, such as immu-

nofluorescence and single-molecule RNA fluorescence in situ hybridization (Cid et al., 2021).

TROUBLESHOOTING

Problem 1

Unbalanced cell-type representation in the reference single-cell dataset (step 3, point 11).

Potential solution

Add to the subset the underrepresented populations that are ubiquitous to the organ of interest

from other areas of the organ in the same dataset, such as non-neuronal populations of CA1 that

are more represented in other areas.
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Problem 2

Subpopulations with a reduced number of cells can make it difficult to interpret the signature pat-

terns to study (step 3, point 11).

Potential solution

Merge these subpopulations into a parent population or simply remove them from the dataset.

Problem 3

There is no good single-cell reference for the species used in the bulk-tissue RNA-seq experiment, as

is the case for rats (step 4, point 19).

Potential solution

Perform deconvolution between different species. To do this, convert the gene names into their or-

thologues for the species of the scRNA-seq experiment. This can be easily done using R and the

functions from biomaRt package or using the Ensembl BioMart web tool: https://www.ensembl.

org/biomart/martview/.

Problem 4

Size of DEGs lists can be variable between comparisons, biasing the deconvolution approach based

on dimensional reduction by imputing more heterogeneity in longer DEGs lists (step 4, point 20).

Potential solution

Keep the same number of top DEGs between the different contrasts to avoid a list size effect; this

implies a reduction of all lists to the smallest one.

Problem 5

Non-linear dimensional reductions on lists of a few genes or dimensional reductions on lists of

several hundred or thousands of genes may be useless if they segregate all populations in the

different contrasts (step 4, point 23).

Potential solution

Perform deconvolution by gene correlation analysis and hierarchical clustering. It can overcome that

limitation, as this technique is less affected by list size than dimensional reductions. Alternatively,

you can fix a more stringent threshold of padj, to get a smaller gene list with a more restrictive

cell-type signature.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead

contact, Jose P. Lopez-Atalaya. (jose.lopezatalaya@csic.es).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The data tables of differentially expressed genes from LCM-RNA-seq and R code used in this study

are publicly available at Mendeley Data repository: R code: https://doi.org/10.17632/nkrfxtbrmc;

Data Table 1: https://doi.org/10.17632/p77tj6d88y, data table presented in tab delimited format,

of differential gene expression analysis of LCM-RNA-seq between the hippocampal deep and super-

ficial CA1 sublayers in healthy adult rats); Data Table 2: https://doi.org/10.17632/jxmg5mwd55,

data table presented in tab delimited format, of differential gene expression analysis of LCM-

RNA-seq between the hippocampal deep and superficial CA1 sublayers in epileptic adult rats.
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