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Abstract

To form a percept of the environment, the brain needs to solve the binding problem—infer-

ring whether signals come from a common cause and are integrated or come from indepen-

dent causes and are segregated. Behaviourally, humans solve this problem near-optimally

as predicted by Bayesian causal inference; but the neural mechanisms remain unclear.

Combining Bayesian modelling, electroencephalography (EEG), and multivariate decoding

in an audiovisual spatial localisation task, we show that the brain accomplishes Bayesian

causal inference by dynamically encoding multiple spatial estimates. Initially, auditory and

visual signal locations are estimated independently; next, an estimate is formed that com-

bines information from vision and audition. Yet, it is only from 200 ms onwards that the brain

integrates audiovisual signals weighted by their bottom-up sensory reliabilities and top-

down task relevance into spatial priority maps that guide behavioural responses. As pre-

dicted by Bayesian causal inference, these spatial priority maps take into account the brain’s

uncertainty about the world’s causal structure and flexibly arbitrate between sensory inte-

gration and segregation. The dynamic evolution of perceptual estimates thus reflects the

hierarchical nature of Bayesian causal inference, a statistical computation, which is crucial

for effective interactions with the environment.

Author summary

The ability to tell whether various sensory signals come from the same or different sources

is essential for forming a coherent percept of the environment. For example, when cross-

ing a busy road at dusk, seeing and hearing an approaching car helps us estimate its loca-

tion better, but only if its visual image is associated—correctly—with its sound and not

with the sound of a different car far away. This is the so-called binding problem, and

numerous studies have demonstrated that humans solve this near-optimally as predicted

by Bayesian causal inference; however, the underlying neural mechanisms remain unclear.

We combined Bayesian modelling, electroencephalography (EEG), and multivariate

decoding in an audiovisual spatial localisation task to show that the brain dynamically

encodes multiple spatial estimates while accomplishing Bayesian causal inference. First,
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auditory and visual signal locations are estimated independently; next, information from

vision and audition is combined. Finally, from 200 ms onwards, the brain weights audio-

visual signals by their sensory reliabilities and task relevance to guide behavioural

responses as predicted by Bayesian causal inference.

Introduction

In our natural environment, our senses are exposed to a barrage of sensory signals: the sight of

a rapidly approaching truck, its looming motor noise, the smell of traffic fumes. How the brain

effortlessly merges these signals into a seamless percept of the environment remains unclear.

The brain faces two fundamental computational challenges: First, we need to solve the ‘bind-

ing’ or ‘causal inference’ problem—deciding whether signals come from a common cause and

thus should be integrated or instead be treated independently [1,2]. Second, when there is a

common cause, the brain should integrate signals taking into account their uncertainties [3,4].

Hierarchical Bayesian causal inference provides a rational strategy to arbitrate between sen-

sory integration and segregation in perception [2]. Bayesian causal inference explicitly models

the potential causal structures that could have generated the sensory signals—i.e., whether sig-

nals come from common or independent sources. In line with Helmholtz’s notion of ‘uncon-

scious inference’, the brain is then thought to invert this generative model during perception

[5]. In case of a common signal source, signals are integrated weighted in proportion to their

relative sensory reliabilities (i.e., forced fusion [3,4,6–10]). In case of independent sources, they

are processed independently (i.e., full segregation [11,12]). Iin a particular instance, the brain

does not know the world’s causal structure that gave rise to the sensory signals. To account for

this causal uncertainty, a final estimate (e.g., object’s location) is obtained by averaging the esti-

mates under the two causal structures (i.e., common versus independent source models)

weighted by each causal structure’s posterior probability—a strategy referred to as model aver-

aging (for other decisional strategies, see [13]).

A large body of psychophysics research has demonstrated that human observers combine

sensory signals near-optimally as predicted by Bayesian causal inference [2,13–16]. Most

prominently, when locating events in the environment, observers gracefully transition between

sensory integration and segregation as a function of audiovisual spatial disparity [12]. For

small spatial disparities, they integrate signals weighted by their reliabilities, leading to cross-

modal spatial biases [17]; for larger spatial disparities, audiovisual interactions are attenuated.

A recent functional MRI (fMRI) study showed how Bayesian causal inference is accomplished

within the cortical hierarchy [14,16]: While early auditory and visual areas represented the sig-

nals on the basis that they were generated by independent sources (i.e., full segregation), the

posterior parietal cortex integrated sensory signals into one unified percept (i.e., forced

fusion). Only at the top of the cortical hierarchy, in anterior parietal cortex, the uncertainty

about the world’s causal structure was taken into account and signals were integrated into a

spatial estimate consistent with Bayesian causal inference.

The organisation of Bayesian causal inference across the cortical hierarchy raises the critical

question of how these neural computations unfold dynamically over time within a trial. How

does the brain merge spatial information that is initially coded in different reference frames

and representational formats? Whereas the brain is likely to recurrently update all spatial esti-

mates by passing messages forwards and backwards across the cortical hierarchy [18–20], the

unisensory estimates may to some extent precede the computation of the Bayesian causal infer-

ence estimate.

Temporal dynamics of Bayesian causal inference
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To characterise the neural dynamics of Bayesian causal inference, we presented human

observers with auditory, visual, and audiovisual signals that varied in their spatial disparity in

an auditory and visual spatial localisation task while recording their neural activity with

electroencephalography (EEG). First, we employed cross-sensory decoding and temporal gen-

eralisation matrices [21] of the unisensory auditory and visual signal trials to characterise the

emergence and the temporal stability of spatial representations across the senses. Second, com-

bining psychophysics, EEG, and Bayesian modelling, we temporally resolved the evolution of

unisensory segregation, forced fusion, and Bayesian causal inference in multisensory

perception.

Results

To determine the computational principles that govern multisensory perception we presented

13 participants with synchronous audiovisual spatial signals (i.e., white noise burst and Gauss-

ian cloud of dots) that varied in their audiovisual spatial disparity and visual reliability (Fig 1A

and 1B). On each trial, participants reported their perceived location of either the auditory or

the visual signal. In addition, we included unisensory auditory and visual signal trials under

auditory or visual report, respectively.

Combining psychophysics, EEG, and computational modelling, we addressed two ques-

tions: First, we investigated when and how human observers form spatial representations from

unisensory visual or auditory inputs, which generalise across the two sensory modalities. Sec-

ond, we studied the computational principles and neural dynamics that mediate the integra-

tion of audiovisual signals into spatial representations that take into account the observer’s

uncertainty about the world’s causal structure consistent with Bayesian causal inference.

Shared and distinct neural representations of space across vision and

audition—Unisensory auditory and visual conditions

Behavioural results. Participants were able to locate unisensory auditory and visual sig-

nals reliably as indicated by a significant Pearson correlation between participants’ location

responses and the true signal source location for both unisensory auditory (across subjects

mean ± SEM: 0.88 ± 0.05), visual high reliability (VR+; across subjects mean ± SEM:

0.998 ± 0.19), and visual low reliability (VR−; across subjects mean ± SEM: 0.91 ± 0.05) condi-

tions. As expected, observers were significantly less accurate when locating the sound than

when locating the visual stimuli for both levels of visual reliability (VR+ versus A: t[12] 8.83,

p< 0.0001; VR− versus A: t[12] = 1.47, p = 0.005; see S1 Fig for response distributions across

all conditions).

EEG results. Multivariate decoding of EEG activity patterns revealed how the brain

dynamically encodes the location of unisensory auditory or visual signals. The decoding accu-

racy was expressed as the Pearson correlation coefficient between the true and the decoded

stimulus locations and entered into so-called temporal generalisation matrices that illustrate

the stability of EEG activity patterns encoding spatial location across time [21]. If a support

vector regression (SVR) model trained on EEG activity patterns at time t can correctly decode

the stimulus location not only at time t but also at other time points, then the stimulus location

is encoded in EEG activity patterns that are relatively stable across time (for further details

about this temporal generalisation approach, see [21]). If an SVR model cannot successfully

generalise to EEG activity patterns at other time points, spatial locations are encoded in tran-

sient EEG activity patterns that differ across time.

For visual stimuli, spatial locations were successfully (i.e., significantly better than chance)

decoded from EEG activity patterns from 60 ms onwards for visual stimuli (Fig 2, upper right

Temporal dynamics of Bayesian causal inference
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quadrant and S2A Fig). Moreover, the temporal generalisation matrices suggest that the visual

spatial representations were initially transient (i.e., 60–150 ms, significant decoding accuracy

only near the diagonal), reflecting the early visual evoked EEG responses (e.g., N1, see S2 Fig).

Later (i.e., from about 250 ms), the location of the visual stimulus was encoded in a more sus-

tained activity pattern (see S2 Fig), leading to successful cross-temporal generalisation from

300 ms to 700 ms post stimulus (i.e., significantly better than chance decoding accuracy is pres-

ent far off the diagonal).

Fig 1. Experimental design, example trial, and behavioural and predicted AV weights (wAV). (A) Experimental

design. In a 4 × 4 × 2 × 2 factorial design, the experiment manipulated (1) the location of the visual (‘V’) signal (−10˚,

−3.3˚, 3.3˚, and 10˚), (2) the location of the auditory (‘A’) signal (−10˚, −3.3˚, 3.3˚, and 10˚), (3) the reliability of the

visual signal (VR+ versus low VR−, as defined by the spread of the visual cloud), and (4) task relevance (auditory

versus visual report). In addition, we included unisensory auditory and visual VR+ and VR− trials. The greyscale codes

the spatial disparity between the auditory and visual locations for each AV condition (i.e., darker greyscale = larger

spatial disparity). (B) Time course of an example trial. (C) Behavioural AV weight index wAV computed from

behavioural responses (left) and from the predictions of the Bayesian causal inference model (right; across-participants

circular mean ± 68% CI and individual wAV represented by filled/empty circles, n = 13). The AV weight index wAV is

shown as a function of (1) visual reliability: high [VR+] versus low [VR−]; (2) task relevance: auditory versus visual

report; and (3) AV spatial disparity: small (≦6.6; D−) versus large (>6.6; D+). The data used to make this figure are

available in file S1 Data. AV, audiovisual; D+, high disparity; D−, low disparity; VR+, high visual reliability; VR−, low

visual reliability.

https://doi.org/10.1371/journal.pbio.3000210.g001
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By contrast, auditory spatial representations could be decoded significantly better than

chance from about 95 ms onwards (see Fig 2, lower left quadrant), which corresponds to the

auditory N1 component (S3 Fig). Particularly from 200 ms onwards, the SVR decoder trained

Fig 2. Temporal generalisation matrices within and across auditory and visual senses. Each temporal generalisation matrix shows the decoding

accuracy for each training (y-axis) and testing (x-axis) time point. We factorially manipulated the training data (auditory versus visual stimulation) and

testing data (auditory versus visual stimulation). Decoding accuracy is quantified by the Pearson correlation between the true and the decoded

locations of the auditory (or visual) stimulus. The grey line along the diagonal indicates where the training time is equal to the testing time (i.e., the

time-resolved decoding accuracies). Horizontal and vertical grey lines indicate the stimulus onset. The thin grey lines encircle clusters with decoding

accuracies that were significantly better than chance at p< 0.05 corrected for multiple comparisons. The thick grey lines encircle the clusters with

decoding accuracies that were significantly better than chance jointly for both (1) auditory-to-visual and (2) visual-to-auditory cross-temporal

generalisation at p< 0.05 corrected for multiple comparisons. The data used to make this figure are available in file S1 Data.

https://doi.org/10.1371/journal.pbio.3000210.g002
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on EEG activity patterns can decode auditory spatial location significantly better than chance

also from EEG activity patterns across other time points, even as late as 700 ms post stimulus

(significant cluster encircled by thin grey lines in Fig 2). This temporal generalisation profile

indicates that auditory spatial locations were encoded in EEG activity patterns that were

relatively stable across time later from 200 ms onwards. Visual inspection of the EEG topogra-

phies shows that auditory spatial location is encoded at these later processing stages in sus-

tained activity patterns that correspond to the long latency auditory P2 component (see S3

Fig) [22–24].

In addition to temporal generalisation within each sensory modality, we also investigated

the extent to which the SVR decoding model generalised across sensory modalities throughout

poststimulus time. Whereas earlier neural representations were more specific to each particu-

lar sensory modality, the SVR model was able to generalise significantly better than chance

from audition to vision and vice versa from 160 to 360 ms (Fig 2, upper left and lower right

quadrant, areas encircled by thick grey line indicate significant generalisation across sensory

modalities). This cross-sensory generalisation across visual- and auditory-evoked EEG activity

patterns suggests that at those stages (i.e., 160 ms to 360 ms), the brain forms spatial represen-

tations that are relatively stable and rely on neural generators that may be partly shared across

sensory modalities. By contrast, the spatial representations encoded in very early (<160 ms)

EEG activity patterns did not enable successful cross-sensory generalisation, suggesting that

they are modality-specific. These statistically significant cross-sensory generalisation results

are also illustrated by the EEG topographies evoked by unisensory auditory and visual signals

(see S2B and S3B Figs). From 200 ms to 400 ms, poststimulus auditory and visual stimuli elicit

centro-posterior dominant topographies that depend on the stimulus location to some extent

similarly in vision and audition. Although these results may point towards partly overlapping

neural generators and representations potentially in parietal cortices that encode location both

in audition and vision, it is important to emphasise that different configurations of neural gen-

erators can in principle elicit similar EEG scalp topographies.

Computational principles of audiovisual integration: GLM-based wAV and

Bayesian modelling analysis—Audiovisual conditions

Combining psychophysics, multivariate EEG pattern decoding, and computational modelling,

we next investigated the computational principles and neural dynamics underlying audiovisual

integration of spatial representations using a general linear model (GLM)-based wAV and a

Bayesian modelling analysis. As shown in Fig 3, both analyses were applied to the spatial esti-

mates that were either reported by participants (i.e., behaviour, Fig 3B left) or decoded from

EEG activity patterns independently for each poststimulus time point (i.e., neural, Fig 3B right,

for further details, see the Methods section and the Fig 3 legend).

The GLM-based wAV analysis quantifies the influence of the true auditory and true visual

location on (1) the reported or (2) EEG decoded auditory and visual spatial estimates in terms

of an audiovisual weight index wAV.

The Bayesian modelling analysis formally assessed the extent to which (2) the full-segrega-

tion model(s) (Fig 3C, encircled in light blue, red or green), (2) the forced-fusion model (Fig

3C, yellow), and (3) the Bayesian causal inference model (i.e., using model averaging as deci-

sion function, encircled in dark blue; see supporting material S1 Table for other decision func-

tions) can account for the spatial estimates reported by observers (i.e., behaviour) or decoded

from EEG activity pattern (i.e., neural).

Behavioural results. In a GLM-based wAV analysis, the behavioural audiovisual weight

index wAV shows that observers integrated audiovisual signals weighted by their sensory

Temporal dynamics of Bayesian causal inference
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reliabilities and task relevance (see Fig 1C and S1 Fig for histograms of reported signal loca-

tions across all conditions).

The audiovisual weight index wAV was close to 90˚ (i.e., pure visual influence) when the

visual signal needed to be reported (Fig 1C, dark lines). But it shifted towards 0˚ when the

auditory signal was task relevant (Fig 1C, grey lines). In other words, we observed a significant

main effect of task relevance on behavioural wAV (p = 0.0002). Observers flexibly adjusted the

weights they assigned to auditory and visual signals in the integration process as a function of

task relevance, giving more emphasis to the sensory modality that needed to be reported. The

main effect of task relevance on wAV is inconsistent with classical forced-fusion models, in

which audiovisual signals are integrated into one single unified percept irrespective of task rel-

evance of the sensory modalities. In other words, even in the case of audiovisual spatial dispar-

ity, the observer would perceive the auditory and visual signals at the same location. Instead, it

indicates that observers maintain separate auditory and visual spatial estimates for an audiovi-

sual spatially disparate stimulus.

Consistent with Bayesian causal inference, the difference in wAV between auditory and

visual report significantly increased for large (>6.6˚) relative to small (�6.6˚) spatial disparities

(i.e., significant interaction between task relevance and spatial disparity: p = 0.0002). In other

words, audiovisual integration and cross-modal spatial biasing broke down when auditory and

visual signals were far apart and likely to be caused by independent sources. This attenuation

of audiovisual interactions for large relative to small spatial disparities (i.e., interaction

between task relevance and disparity) is the characteristic profile of Bayesian causal inference

(see model predictions for wAV in Fig 1C right).

Moreover, we observed significant two-way interactions between visual reliability and spa-

tial disparity (p = 0.0014) and between visual reliability and task relevance (p = 0.0002). The

effect of high versus low visual reliability was stronger when the two signals were close in space

and the auditory (i.e., less reliable) signal needed to be reported. For auditory report condi-

tions, the influence of the visual signal on the audiovisual spatial representation is stronger for

high visual reliability and small disparity trials (Fig 1C, difference between dashed and solid

grey line for the small spatial disparity condition). Again, this interaction is expected for Bayes-

ian causal inference, because the spatial estimate furnished by the forced-fusion model receives

a stronger weight in Bayesian causal inference for low-spatial-disparity trials, when it is likely

that the two signals come from a common source.

Fig 3. GLM-based wAV and Bayesian modelling analysis overview. (A) The GLM-based wAV and Bayesian modelling analysis were performed on auditory (‘A’) and

visual (‘V’) spatial estimates that were indicated by participants as behavioural localisation responses (left, ‘Behaviour’) or decoded from participants’ EEG activity

patterns (right, ‘Neural’). The neural spatial estimates were obtained by training an SVR model on ERP activity patterns at each time point of the AV congruent trials

to learn the mapping from EEG pattern to external spatial locations (black diagonal line). This learnt mapping was then used to decode the spatial location from the

ERP activity patterns of the spatially congruent and incongruent AV conditions (coloured arrows). (B) Distributions of spatial localisation responses (left, Behaviour:

SResp) and decoded spatial estimates (right, Neural: SDec) were computed for each of the 64 conditions of the 4 (visual stimulus location) × 4 (auditory stimulus

location) × 2 (visual reliability) × 2 (task relevance) factorial design. (C) Left: In the GLM-based wAV analysis, the perceived (or decoded at each time point) spatial

estimates were predicted by the true visual and auditory spatial locations (SV1..8, SA1..8) for each of the eight conditions in the 2 (visual reliability: high versus low) × 2

(task relevance: auditory versus visual report) × 2 (spatial disparity:�6.6˚ versus>6.6˚) factorial design. As a summary index, we defined the relative audiovisual

weight (wAV) as the four-quadrant inverse tangent of the visual (ßV1..8) and auditory (ßA1..8) parameter estimates for each of the eight conditions in each regression

model. Right: In the Bayesian modelling analysis, we fitted the following models to observers’ behavioural and neural spatial estimates: SegA (green, for EEG only),

SegV (red, for EEG only), SegV,A (light blue), ‘forced fusion’ (‘Fusion’, yellow), and BCI model (with model averaging, dark blue). We performed Bayesian model

selection at the group level and computed the protected exceedance probability that one model is better than any of the other candidate models above and beyond

chance [25]. (D) Left: Based on previous studies [14,16], we hypothesised that the wAV profile with an interaction between task relevance (i.e., visual versus auditory

report) and spatial disparity that is characteristic for BCI would emerge relatively late. Right: Likewise, we expected the different models to dominate the EEG activity

patterns to some extent sequentially: first the unisensory segregation model (SegV, SegA), followed by the forced-fusion model (‘Fusion’), and finally the BCI

estimate. The fading of colours indicates that we did not have specific hypotheses for those times. AV, audiovisual; BCI, Bayesian causal inference; D+, high disparity;

D−, low disparity; EEG, electroencephalography; ERP, event-related potential; GLM, general linear model; SDec, Spatial estimate decoded; SegA, unisensory auditory

segregation; SegV, unisensory visual segregation; SegV,A, audiovisual full-segregation; SResp, spatial estimate responded; stim, stimulus; SVR, support vector

regression; VR+, high visual reliability; VR−, low visual reliability.

https://doi.org/10.1371/journal.pbio.3000210.g003
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Consistent with the profile of the audiovisual weight index wAV, formal Bayesian model

comparison showed that the Bayesian causal inference model outperformed the full-segrega-

tion and forced-fusion models (85.6% ± 0.3% variance explained, protected exceedance

probability > 0.99; Table 1). Fig 1C (right) shows the profile of the audiovisual weight index

wAV that is predicted by the Bayesian causal inference model fitted to the observer’s beha-

vioural localisation responses. It illustrates that Bayesian causal inference inherently accounts

for effects of task relevance (or reported modality) and the interaction between task relevance

and spatial disparity by combining the forced-fusion estimate with the task-relevant full-segre-

gation estimate weighted by the posterior probability of common and independent sources.

Conversely, the interaction between reliability and spatial disparity arises because the forced-

fusion model component, which integrates signals weighted by their reliabilities, is more dom-

inant for small spatial disparities.

In summary, our audiovisual weight index wAV and Bayesian modelling analysis of observ-

ers’ perceived/reported locations provided convergent evidence that human observers inte-

grate audiovisual spatial signals weighted by their relative reliabilities at small spatial

disparities. Yet, they mostly segregate audiovisual signals at large spatial disparities, when it is

unlikely that signals come from a common source.

EEG results—Temporal dynamics of audiovisual integration. To characterise the neural

dynamics underlying integration of audiovisual signals into spatial representations, we applied

the GLM-based wAV and the Bayesian modelling analysis to the ‘spatial estimates’ that were

decoded from EEG activity patterns at each time point (see Fig 3B right). Because both the

GLM-based wAV and the Bayesian modelling analysis require reliable spatial estimates, we

report and interpret results limited to the time window from 55 ms to 700 ms post stimulus

(Fig 4, S4 Fig), during which the location of congruent audiovisual stimuli could be decoded

better than chance from EEG activity patterns (p< 0.001).

The GLM-based analysis of audiovisual weight index wAV investigated the effects of visual

reliability, task relevance, and spatial disparity on the audiovisual neural weight index wAV that

quantifies the influence of auditory and visual signals on the spatial representations decoded

from EEG activity patterns. Our results show that sensory reliability significantly influenced

the neural wAV from 65 to 510 ms. As expected, the spatial representations were more strongly

influenced by the true visual signal location when the visual signal was more reliable (i.e., sig-

nificant main effect of visual reliability, Fig 4A, Table 2). Moreover, consistent with our beha-

vioural findings, we also observed a significant main effect of task relevance between 190 and

700 ms (Fig 4B, Table 2). As expected, the decoded location was more strongly influenced by

the visual signal when the visual modality was task relevant. We also observed a significant

interaction between task relevance and spatial disparity from 310 to 440 ms and 510 to 590 ms.

As discussed in the context of the behavioural results, this interaction is the profile that is char-

acteristic for Bayesian causal inference: the brain integrates sensory signals at low spatial dis-

parity (i.e., small difference for auditory versus visual report) but computes different spatial

estimates for auditory and visual signals at large spatial disparities (see Fig 4D, Table 2).

Table 1. Model parameters (across-subjects’ mean ± SEM) of the computational models fit to observers’ behavioural localisation reports.

Model pc σp σA σV1 σV2 R2 relBICgroup PEP

BCI 0.15 ± 0.04 36.4 ± 11.0 4.4 ± 0.2 0.3 ± 0.15 3.5 ± 0.24 0.86 ± 0.003 0 0.9992

Fus - 71.5 ± 7.4 9.7 ± 0.3 7.9 ± 0.3 9.8 ± 0.35 0.46 ± 5 × 10−4 −3.73 × 10−4 2.9 × 10−4

SegV,A - 42.7 ± 15.2 4.5 ± 0.3 0.4 ± 0.16 3.5 ± 0.23 0.85 ± 0.004 −865.1 5.3 × 10−4

Abbreviations: BCI, Bayesian causal inference model; Fus, fusion model; PEP, protected exceedance probability [25]; R2, coefficient of determination; relBICgroup,

group-level relative Bayesian information criterion; SegV,A, audiovisual full-segregation.

https://doi.org/10.1371/journal.pbio.3000210.t001
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In addition to these key findings, we also observed a brief but pronounced significant main

effect of spatial disparity on wAV at about 55–130 ms. Whereas a sound attracted the decoded

spatial location at small spatial disparity (i.e., wAV is shifted below 90˚, Fig 4C solid line), the

decoded location is shifted away from the sound location (i.e., a repulsive effect) at large spatial

disparity (i.e., wAV values above 90˚, Fig 4C, dashed line). Moreover, in this early time window,

which coincides with the visual-evoked N100 response, the decoded spatial estimate was over-

all dominated by the visual stimulus location (i.e, wAV was close to 90˚ for both small and large

disparity). The effect of disparity may indicate that early multisensory processing is already

influenced by a spatial window of integration (Fig 4C, Table 2). Auditory stimuli affected the

decoded spatial representations mainly when they were close in space with the visual signal.

However, because spatial disparity was inherently correlated with the eccentricity of the

Fig 4. EEG results for GLM-based wAV and Bayesian modelling analysis. The neural audiovisual weight index wAV

(across-participants’ circular mean ± 68% CI; n = 13). Neural wAV as a function of time is shown for (A) visual

reliability: VR+ versus VR−; (B) task relevance: auditory (‘A’) versus visual (‘V’) report; (C) audiovisual spatial

disparity: small (≦6.6; D−) versus large (>6.6; D+); (D) the interaction between task relevance and disparity. Shaded

grey areas indicate the time windows during which the main effect of (A) visual reliability, (B) task relevance, (C)

audiovisual spatial disparity, or (D) the interaction between task relevance and disparity on wAV was statistically

significant at p< 0.05 corrected for multiple comparisons across time. (E) Time course of the circular–circular

correlation (across-participants’ mean after Fisher z-transformation ± 68% CI; n = 13) between the neural and the

behavioural audiovisual weight index wAV. Shaded grey areas indicate significant correlation at p< 0.05 corrected for

multiple comparisons across time. (F) Time course of the protected exceedance probabilities [25] of the five models of

the Bayesian modelling analysis: SegA (green), SegV (red), SegV,A (light blue), ‘forced fusion’ (‘Fusion’, yellow), and

BCI model (with model averaging, dark blue). The early time window until 55 ms (delimited by black vertical line on

all plots) is shaded in white, because the decoding accuracy was not greater than chance for audiovisual congruent

trials; hence, the neural weight index wAV and Bayesian model fits are not interpretable in this window. The data used

to make this figure are available in file S1 Data. BCI, Bayesian causal inference; D+, high disparity; D−, low disparity;

EEG, electroencephalography; GLM, general linear model; SegA, unisensory auditory segregation; SegV, unisensory

visual segregation; SegV,A, audiovisual full-segregation; VR+, high visual reliability; VR−, low visual reliability.

https://doi.org/10.1371/journal.pbio.3000210.g004

Table 2. Statistical significance of main, interaction, and simple main effects for the behavioural and neural

audiovisual weight indices (wAV) (‘model-free’ approach).

Effect Behavioural Neural

VR p = 0.61 65–510 ms: p = 0.0002�

TR p = 0.0002� 190–700 ms: p = 0.0002�

D p = 0.77 55–130 ms: p = 0.0062�

VR × TR p = 0.0002� n.s.

VR × D p = 0.0014� 55–135 ms: p = 0.0002�

170–235 ms: p = 0.016�

TR × D p = 0.0002� 310–440 ms: p = 0.004�

510–590 ms: p = 0.021�

VR × TR × D p = 0.79 n.s.

VR in A p = 0.0002� not tested

VR in V p = 0.43 not tested

VR in D− p = 0.47 105–165 ms: p = 0.008�

230–515 ms: p = 0.0002�

VR in D+ p = 0.92 55–380 ms: p = 0.0002�

TR in D− p = 0.0002� 230–535 ms: p = 0.0002�

570–630 ms: p = 0.024�

TR in D+ p = 0.0002� 235–670 ms: p = 0.0002�

�Significant results (p< 0.05, corrected at the cluster level for multiple comparisons).

Abbreviations: A, auditory report; D+, large disparity; D−, small disparity; n.s., not significant (p ≧ 0.05); TR, task

relevance (visual, V, or auditory, A, report), V, visual report; VR, visual reliability (high or low).

https://doi.org/10.1371/journal.pbio.3000210.t002
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audiovisual signals by virtue of our factorial and spatially balanced design, these two effects

cannot be fully dissociated. While signals were presented parafoveally or peripherally for

small-disparity trials, they were presented always in the periphery for large-disparity trials.

For completeness, we also observed a significant interaction between spatial disparity and

visual reliability between 55 and 135 ms and between 170 and 235 ms (Table 2). This interac-

tion results from a larger spatial window of integration for stimuli with low versus high visual

reliability. In other words, it is easier to determine whether two signals come from different

sources when the visual input is reliable, leading to a smaller window of integration.

Finally, we asked whether the neural audiovisual weights were related to the audiovisual

weights that observers applied at the behavioural level. Hence, we computed the correlation

between the values of the behavioural and neural weight indices wAV separately for each time

point. The Fisher z-transformed correlation coefficient fluctuated around chance level until

about 100 ms. From 100 ms onwards, it progressively increased over time until it peaked and

reached a plateau at about 350 ms (R = 0.72). As expected, this coincides with the time window

during which we observed a significant interaction between task relevance and spatial dispar-

ity—i.e., the profile characteristic for Bayesian causal inference. After 500 ms, it then slowly

decreased towards the end of the trial. Cluster permutation test confirmed that the correlation

between neural and behavioural weight indices wAV was significantly better than chance,

revealing two significant clusters between 175 and 550 ms (p = 0.0012) and 575 and 665 ms

(p = 0.013). These results indicate that the neural representations expressed in EEG activity

patterns are critical for guiding observers’ responses.

In the EEG Bayesian modelling analysis, we fitted five models to the spatial estimates

decoded from EEG activity patterns separately for each time point: (1) ‘full-segregation audio-

visual’, (2) ‘forced-fusion’, (3) the ‘Bayesian causal inference’, (4) the ‘segregation auditory’,

and (5) the ‘segregation visual’ models (Fig 3C). The segregation visual and segregation audi-

tory models incorporate the hypothesis that neural generators may represent only the visual

(or only the auditory) location irrespective of whether the visual (or auditory) location needs

to be reported. In other words, they model a purely unisensory visual (or auditory) source. By

contrast, the full-segregation audiovisual model embodies the hypothesis that a neural source

represents the task-relevant location—i.e., the auditory location for auditory report and the

visual location for visual report.

At the random-effects group level, Bayesian model comparison revealed a sequential pat-

tern of protected exceedance probabilities across time (Fig 4F): initially, the ‘segregation visual’

model dominated until about 100 ms post stimulus. This converges with our wAV analysis

showing that spatial representations decoded from early EEG activity patterns are dominated

by the location of the visual signal (i.e., wAV is close to 90˚). From 100 to about 200 ms, the

forced-fusion model outperformed the other models, indicating that spatial estimates are now

influenced jointly by the locations of auditory and visual signals irrespective of their spatial dis-

parity or task relevance. Again, this mirrors our wAV results in which we observed a significant

effect of reliability on wAV early (i.e., as expected for forced fusion), whereas the effect of task

relevance arose later and became prominent from 250 ms onwards.

Hence, both wAV and Bayesian modelling analyses suggest that in this early time window,

audiovisual signals are predominantly integrated weighted by their reliability into a unified

spatial representation irrespective of task relevance, as predicted by forced-fusion models.

From about 200 ms onwards, the protected exceedance probability of the Bayesian causal

inference model progressively increased, peaking with an exceedance probability of>0.85 at

about 350 ms followed by a plateau until 500 ms. Thus, consistent with the wAV results, audio-

visual interactions consistent with Bayesian causal inference emerge relatively late at about 350

ms post stimulus.
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Discussion

Integrating information from vision and audition into a coherent representation of the space

around us is critical for effective interactions with the environment. This EEG study tempo-

rally resolved the neural dynamics that enable the brain to flexibly integrate auditory and visual

signals into spatial representations in line with the predictions of Bayesian causal inference.

Auditory and visual senses code spatial location in different reference frames and represen-

tational formats [26]. Vision provides spatial information in eye-centred and audition in head-

centred reference frames [27,28]. Furthermore, spatial location is directly coded in the retino-

topic organisation in primary visual cortex [29], whereas spatial location in audition is com-

puted from sound latency and amplitude differences between the ears, starting in the

brainstem [27]. In auditory cortices of primates, spatial location is thought to be represented

by neuronal populations with broad tuning functions [30,31]. In order to merge spatial infor-

mation from vision and audition, the brain thus needs to establish coordinate mappings and/

or transform spatial information into partially shared ‘hybrid’ reference frames, as previously

suggested by neurophysiological recordings in nonhuman primates [30,32]. In the first step,

we therefore investigated the neural dynamics of spatial representations encoded in EEG activ-

ity patterns separately for unisensory auditory and visual signals using the method of temporal

generalisation matrices [21]. In vision, spatial location was encoded initially at 60 ms in tran-

sient neural activity associated with the early P1 and N1 components and then turned into

temporally more stable representations from 200 ms and particularly from 350 ms (Fig 2,

upper right quadrant, S2 Fig). In audition, spatial location was encoded by relatively stable

EEG activity from 95 ms and particularly from 250 ms, which is associated with the auditory

long latency P2 component [22–24] (S3 Fig).

Activity patterns encoding spatial location generalised not only across time but also across

sensory modalities between 160 and 360 ms. As indicated in Fig 2, SVR models trained on

visual-evoked responses generalised to auditory-evoked responses and vice versa (upper left

and lower right quadrant, significant cross-sensory generalisation encircled by thick grey line).

These results suggest that unisensory auditory and visual spatial locations are initially repre-

sented by transient and modality-specific activity patterns. Later, at about 200 ms, they are

transformed into temporally more stable representations that may rely on neural sources in

frontoparietal cortices that are at least to some extent shared between auditory and visual

modalities [22,33,34].

Next, we asked when and how the human brain combines spatial information from vision

and audition into a coherent representation of space. The brain should integrate sensory sig-

nals only when they come from a common event but should segregate signals from indepen-

dent events [1,2,12]. To investigate how the brain arbitrates between sensory integration and

segregation, we presented observers with synchronous audiovisual signals that varied in their

spatial disparity across trials. On each trial, observers reported either the auditory or the visual

location. Our results show that a concurrent yet spatially disparate visual signal biased observ-

ers’ perceived sound location towards the visual location—a phenomenon coined spatial ven-

triloquist illusion [17,35]. Consistent with reliability-weighted integration, this audiovisual

spatial bias was significantly stronger when the visual signal was more reliable (Fig 1C left,

grey solid versus dashed lines). Furthermore, observers reported different locations for audi-

tory and visual signals, and this difference was even greater for large- relative to small-spatial-

disparity trials. This significant interaction between spatial disparity and task relevance indi-

cates that human observers arbitrate between sensory integration and segregation depending

on the probabilities of different causal structures of the world that can be inferred from audio-

visual spatial disparity.
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Using EEG, we then investigated how the brain forms neural spatial representations

dynamically post stimulus. Our analysis of the neural audiovisual weight index wAV shows that

the spatial estimates decoded from EEG activity patterns are initially dominated by visual

inputs (i.e., wAV close to 90˚). This visual dominance is most likely explained by the retinotopic

representation of visual space that facilitates EEG decoding of space leading to visual predomi-

nance (for further discussion, see the Methods section). From about 65 ms onwards, visual

reliability significantly influenced wAV (Fig 4A): as expected, the location of the visual signal

exerted a stronger influence on the spatial estimate decoded from EEG activity patterns when

the visual signal was more reliable than unreliable. By contrast, the signal’s task relevance influ-

enced the audiovisual weight index only later, from about 190 ms (Fig 4B). Thus, visual reli-

ability as a bottom-up stimulus-bound factor impacted the sensory weighting in audiovisual

integration prior to top-down effects of task relevance. We observed a significant interaction

between task relevance and spatial disparity as the characteristic profile for Bayesian causal

inference from about 310 ms: the difference in wAV between auditory and visual report was

significantly greater for large- than for small-disparity trials (Fig 4D, Table 2). Thus, spatial dis-

parity determined the influence of task-irrelevant signals on the spatial representations

encoded in EEG activity from about 310 ms onwards. A task-irrelevant signal influenced the

spatial representations mainly when auditory and visual signals were close in space and hence

likely to come from a common event, but it had minimal influence when they were far apart in

space. Collectively, our statistical analysis of the audiovisual weight index revealed a sequential

emergence of visual dominance, reliability weighting (from about 100 ms), effects of task rele-

vance (from about 200 ms), and finally the interaction between task relevance and spatial dis-

parity (from about 310 ms, Fig 4A–4D).

This multistage process was also mirrored in the time course of exceedance probabilities fur-

nished by our formal Bayesian model comparison: The unisensory visual segregation (SegV)

model was the winning model for the first 100 ms, thereby modelling the early visual domi-

nance. The audiovisual forced-fusion model embodying reliability-weighted integration domi-

nated the time interval of 100–250 ms. Finally, the Bayesian causal inference model that enables

the arbitration between sensory integration and segregation depending on spatial disparity out-

performed all other models from 350 ms onwards. Hence, both our Bayesian modelling analysis

and our wAV analysis showed that the hierarchical structure of Bayesian causal inference is

reflected in the neural dynamics of spatial representations decoded from EEG. The Bayesian

causal inference model also outperformed the audiovisual full-segregation (SegV,A) model that

enables the representation of the location of the task-relevant stimulus unaffected by the location

of the task-irrelevant stimulus. Instead, our Bayesian modelling analysis confirmed that from

350 ms onwards, the brain integrates audiovisual signals weighted by their bottom-up reliability

and top-down task relevance into spatial priority maps [36,37] that take into account the proba-

bilities of the different causal structures consistent with Bayesian causal inference. The spatial

priority maps were behaviourally relevant for guiding spatial orienting and actions, as indicated

by the correlation between the neural and behavioural audiovisual weight indices, which pro-

gressively increased from 100 ms and culminated at about 300–400 ms. Two recent studies have

also demonstrated such a temporal evolution of Bayesian causal inference in an audiovisual tem-

poral numerosity judgement task [38] and an audiovisual rate categorisation task [39].

The timing and the parietal-dominant topographies of the AV potentials (see S2 and S3

Figs) that form the basis for our spatial decoding (and hence for wAV and Bayesian modelling

analyses) closely match the P3b component (i.e., a subcomponent of the classical P300).

Although it is thought that the P3b relies on neural generators located mainly in parietal corti-

ces [40,41], its specific functional role remains controversial [42]. Given its sensitivity to stimu-

lus probability [43–45] and discriminability [46] as well as task context [42,47,48], it was
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proposed to reflect neural processes involved in transforming sensory evidence into decisions

and actions [49]. Most recent research has suggested that the P3b may sustain processes of evi-

dence accumulation [50] that are influenced by observers’ prior [51], incoming evidence (i.e.,

likelihood [52]), and observers’ belief updating [53]. Likewise, our supplementary time-fre-

quency analyses revealed that alpha/beta power, which has previously been associated with the

generation of the P3b component [54], depended on bottom-up visual reliability between 200

and 400 ms and top-down task relevance between 350 and 550 ms post stimulus (see S5 Fig, S2

Table and S1 Text), thereby mimicking the temporal evolution of bottom-up and top-down

influences observed in our main wAV and Bayesian modelling analysis.

Yet, our main analysis took a different approach. Rather than focusing on the effects of

visual reliability, task relevance/attention, and spatial disparity directly on event-related poten-

tials (ERPs) or time-frequency power, the wAV analysis investigated how these manipulations

affect the spatial representations encoded in EEG activity patterns, and the Bayesian modelling

analysis accommodated those effects directly in the computations of Bayesian causal inference.

Along similar lines, two recent fMRI studies characterised the computations involved in inte-

grating audiovisual spatial inputs across the cortical hierarchy [14,16]: whereas low level audi-

tory and visual areas predominantly encoded the unisensory auditory or visual locations (i.e.,

full-segregation model) [55–64], higher-order visual areas and posterior parietal cortices com-

bined audiovisual signals weighted by their sensory reliabilities (i.e., forced-fusion model) [65–

68]. Only at the top of the hierarchy, in anterior parietal cortices, did the brain integrate sen-

sory signals consistent with Bayesian causal inference. Thus, the temporal evolution of Bayes-

ian causal inference observed in our current EEG study mirrored its organisation across the

cortical hierarchy observed in fMRI.

Fusing the results from EEG and fMRI studies (see caveats in the Methods section) thus

suggests that Bayesian causal inference in multisensory perception relies on dynamic encoding

of multiple spatial estimates across the cortical hierarchy. During early processing, multisen-

sory perception is dominated by full-segregation models associated with activity in low-level

sensory areas. Later audiovisual interactions that are governed by forced-fusion principles rely

on posterior parietal areas. Finally, Bayesian causal inference estimates are formed in anterior

parietal areas. Yet, although our results suggest that full segregation, forced fusion, and Bayes-

ian causal inference dominate EEG activity patterns at different latencies, they do not imply a

strictly feed-forward architecture. Instead, we propose that the brain concurrently accumulates

evidence about the different spatial estimates and the underlying causal structure (i.e., com-

mon versus independent sources) most likely via multiple feedback loops across the cortical

hierarchy [18,19]. Only after 350 ms is a final perceptual estimate formed in anterior parietal

cortices that takes into account the uncertainty about the world’s causal structure and com-

bines audiovisual signals into spatial priority maps as predicted by Bayesian causal inference.

Methods

Participants

Sixteen right-handed participants participated in the experiment; three of those participants

did not complete the entire experiment: two participants were excluded based on eye tracking

results from the first day (the inclusion criterion was less than 10% of trials rejected because of

eye blinks or saccades; see the Eye movement recording and analysis section for details), and

one participant withdrew from the experiment. The remaining 13 participants (7 females,

mean age = 22.1 years; SD = 3.0) completed the 3-day experiment and are thus included in the

analysis. All participants had no history of neurological or psychiatric illnesses, had normal or

corrected-to-normal vision, and had normal hearing.
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Ethics statement

All participants gave informed written consent to participate in the experiment. The study was

approved by the research ethics committee of the University of Birmingham (approval num-

ber: ERN_11_0470AP4) and was conducted in accordance with the principles outlined in the

Declaration of Helsinki.

Stimuli

The visual (‘V’) stimulus was a cloud of 20 white dots (diameter = 0.43˚ visual angle, stimulus

duration: 50 ms) sampled from a bivariate Gaussian distribution with vertical standard devia-

tion of 2˚ and horizontal standard deviation of 2˚ or 12˚ visual angle presented on a dark grey

background (67% contrast). Participants were told that the 20 dots were generated by one

underlying source in the centre of the cloud. The visual cloud of dots was presented at one of

four possible locations along the azimuth (i.e., −10˚, −3.3˚, 3.3˚, or 10˚).

The auditory (‘A’) stimulus was a 50-ms-long burst of white noise with a 5-ms on/off ramp.

Each auditory stimulus was delivered at a 75-dB sound pressure level through one of four pairs

of two vertically aligned loudspeakers placed above and below the monitor at four positions

along the azimuth (i.e., −10˚, −3.3˚, 3.3˚, or 10˚). The volumes of the 2 × 4 speakers were care-

fully calibrated across and within each pair to ensure that participants perceived the sounds as

emanating from the horizontal midline of the monitor.

Experimental design and procedure

In a spatial ventriloquist paradigm, participants were presented with synchronous, spatially

congruent or disparate visual and auditory signals (Fig 1A and 1B). On each trial, visual and

auditory locations were independently sampled from four possible locations along the azimuth

(i.e., −10˚, −3.3˚, 3.3˚, or 10˚), leading to four levels of spatial disparity (i.e., 0˚, 6.6˚, 13.3˚, or

20˚; i.e., as indicated by the greyscale in Fig 1A). In addition, we manipulated the reliability of

the visual signal by setting the horizontal standard deviation of the Gaussian cloud to a 2˚

(high reliability) or 14˚ (low reliability) visual angle. In an intersensory selective-attention par-

adigm, participants reported either their auditory or visual perceived signal location and

ignored signals in the other modality. For the visual modality, they were asked to determine

the location of the centre of the visual cloud of dots. Hence, the 4 × 4 × 2 × 2 factorial design

manipulated (1) the location of the visual stimulus (−10˚, −3.3˚, 3.3˚, 10˚; i.e., the mean of the

Gaussian), (2) the location of the auditory stimulus (−10˚, −3.3˚, 3.3˚, 10˚), (3) the reliability of

the visual signal (2˚, 14˚; SD of the Gaussian), and (4) task relevance (auditory-/visual-selective

report), resulting in 64 conditions (Fig 1A). To characterise the computational principles of

multisensory integration, we reorganised these conditions into a 2 (visual reliability: high ver-

sus low) × 2 (task relevance: auditory versus visual report) × 2 (spatial disparity:�6.6˚ versus

>6.6˚) factorial design for the statistical analysis of the behavioural and EEG data. In addition,

we included 4 (locations: −10˚, −3.3˚, 3.3˚, or 10˚) × 2 (visual reliability: high, low) unisensory

visual conditions and 4 (locations: −10˚, −3.3˚, 3.3˚, or 10˚) unisensory auditory conditions.

We did not manipulate auditory reliability, because the reliability of auditory spatial informa-

tion is anyhow limited. Furthermore, the manipulation of visual reliability is sufficient to

determine reliability-weighted integration as a computational principle and arbitrate between

the different multisensory integration models (see Bayesian modelling analysis section).

On each trial, synchronous audiovisual, unisensory visual, or unisensory auditory signals

were presented for 50 ms, followed by a response cue 1,000 ms after stimulus onset (Fig 1B).

The response was cued by a central pure tone (1,000 Hz) and a blue colour change of the fixa-

tion cross presented in synchrony for 100 ms. Participants were instructed to withhold their
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response and avoid blinking until the presentation of the cue. They fixated on a central cross

throughout the entire experiment. The next stimulus was presented after a variable response

interval of 2.6–3.1 s.

Stimuli and conditions were presented in a pseudo-randomised fashion. The stimulus type

(bisensory versus unisensory) and task relevance (auditory versus visual) was held constant

within a run of 128 trials. This yielded four run types: audiovisual with auditory report, audio-

visual with visual report, auditory with auditory report, and visual with visual report. The task

relevance of the sensory modality in a given run was displayed to the participant at the begin-

ning of the run. Furthermore, across runs we counterbalanced the response hand (i.e., left ver-

sus right hand) to partly dissociate spatial processing from motor responses. The order of the

runs was counterbalanced across participants. All conditions within a run were presented an

equal number of times. Each participant completed 60 runs, leading to 7,680 trials in total

(3,840 auditory and 3,840 visual localisation tasks—i.e., 96 trials for each of the 76 conditions

were included in total; apart from the four unisensory auditory conditions that included 192

trials). The runs were performed across 3 days with 20 runs per day. Each day was started with

a brief practice run.

Experimental setup

Stimuli were presented using Psychtoolbox version 3.0.11 [69] (http://psychtoolbox.org/)

under MATLAB R2014a (MathWorks) on a desktop PC running Windows 7. Visual stimuli

were presented via a gamma-corrected 30” LCD monitor with a resolution of 2,560 × 1,600

pixels at a frame rate of 60 Hz. Auditory stimuli were presented at a sampling rate of 44.1 kHz

via eight external speakers (Multimedia) and an ASUS Xonar DSX sound card. Exact audiovi-

sual onset timing was confirmed by recording visual and auditory signals concurrently with a

photodiode and a microphone. Participants rested their head on a chin rest at a distance of 475

mm from the monitor and at a height that matched participants’ ears to the horizontal midline

of the monitor. Participants responded by pressing one of four response buttons on a USB key-

pad with their index, middle, ring, and little finger, respectively.

Eye movement recording and analysis

To address potential concerns that results were confounded by eye movements, we recorded

participants’ eye movements. Eye recordings were calibrated in the recommended field of view

(32˚ horizontally and 24˚ vertically) for the EyeLink 1000 Plus system with the desktop mount

at a sampling rate of 2,000 Hz. Eye position data were on-line parsed into events (saccade, fixa-

tion, eye blink) using the EyeLink 1000 Plus software. The ‘cognitive configuration’ was used

for saccade detection (velocity threshold = 30˚/sec, acceleration threshold = 8,000˚/sec2, motion

threshold = 0.15˚) with an additional criterion of radial amplitude larger than 1˚. Individual tri-

als were rejected if saccades or eye blinks were detected from −100 to 700 ms post stimulus.

Behavioural data analysis

Participants’ stimulus localisation accuracy was assessed as the Pearson correlation between

their location responses and the true signal source location separately for unisensory auditory,

visual high reliability, and visual low reliability conditions. To confirm whether localisation

accuracy in vision exceeded performance in audition in both visual reliabilities, we performed

Monte-Carlo permutation tests. Specifically, we entered the subject-specific Fisher z-trans-

formed Pearson correlation differences between vision and audition (i.e., visual–auditory) sep-

arately for the two visual reliability levels into a Monte-Carlo permutation test at the group

level based on the one-sample t statistic with 5,000 permutations [70].
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EEG data acquisition

Continuous EEG signals were recorded from 64 channels using Ag/AgCl active electrodes

arranged in a 10–20 layout (ActiCap, Brain Products GmbH, Gilching, Germany) at a sam-

pling rate of 1,000 Hz, referenced at FCz. Channel impedances were kept below 10 kO.

EEG preprocessing

Preprocessing was performed with the FieldTrip toolbox [71] (http://www.fieldtriptoolbox.

org/). For the decoding analysis, raw data were high-pass filtered at 0.1 Hz, re-referenced to

average reference, and low-pass filtered at 120 Hz. Trials were extracted with a 100-ms presti-

mulus and 700-ms poststimulus period and baseline corrected by subtracting the average value

of the interval between −100 and 0 ms from the time course. Trials were then temporally

smoothed with a 20-ms moving window and downsampled to 200 Hz (note that a 20-ms mov-

ing average is comparable to a finite impulse response [FIR] filter with a cutoff frequency of 50

Hz). Trials containing artefacts were rejected based on visual inspection. Furthermore, trials

were rejected if (1) they included eye blinks, (2) they included saccades, (3) the distance

between eye fixation and the central fixation cross exceeded 2˚, (4) participants responded

prior to the response cue, or (5) there was no response. For ERPs (S2 and S3 Figs), the prepro-

cessing was identical to the decoding analysis, except that a 45-Hz low-pass filter was applied

without additional temporal smoothing with a temporal moving window. Grand average ERPs

were computed by averaging all trials for each condition first within each participant and then

across participants.

EEG multivariate pattern analysis

For the multivariate pattern analyses, we computed ERPs by averaging over sets of eight ran-

domly assigned individual trials from the same condition. To characterise the temporal

dynamics of the spatial representations, we trained linear SVR models (LIBSVM [72], https://

www.csie.ntu.edu.tw/~cjlin/libsvm/) to learn the mapping from ERP activity patterns of the

(1) unisensory auditory (for auditory decoding), (2) unisensory visual (for visual decoding), or

(3) audiovisual congruent conditions (for audiovisual decoding) to external spatial locations

separately for each time point (every 5 ms) over the course of the trial (S2, S3 and S4 Figs). All

SVR models were trained and evaluated in a 12-fold-stratified cross-validation (12 ERPs/fold)

procedure with default hyperparameters (C = 1, ε = 0.001). The specific training and generali-

sation procedures were adjusted to the scientific questions (see the Shared and distinct neural

representations of space across vision and audition section and the GLM analysis of audiovi-

sual weight index wAV section for details).

Overview of behavioural and EEG analysis

Combining psychophysics, computational modelling, and EEG, we addressed two questions:

First, focusing selectively on the unisensory auditory and unisensory visual conditions, we

investigated when spatial representations are formed that generalise across auditory and visual

modalities. Second, focusing on the audiovisual conditions, we investigated when and how

human observers integrate audiovisual signals into spatial representations that take into

account the observer’s uncertainty about the world’s causal structure consistent with Bayesian

causal inference. In the following sections, we will describe the analysis approaches to address

these two questions in turn.
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Shared and distinct neural representations of space across vision and audition

First, we investigated how the brain forms spatial representations in either audition or vision

using the so-called temporal generalisation method [21]. Here, the SVR model is trained at time

point t to learn the mapping from, e.g., unisensory visual (or auditory) ERP pattern to external

stimulus location. This learnt mapping is then used to predict spatial locations from unisensory

visual (or auditory) ERP activity patterns across all other time points. Training and generalisa-

tion were applied separately to unisensory auditory and visual ERPs. To match the number of

trials for auditory and visual conditions, we applied this analysis to the visual ERPs pooled over

the two levels of visual reliability. The decoding accuracy as quantified by the Pearson correla-

tion coefficient between the true and decoded stimulus locations is entered into a training

time × generalisation time matrix. The generalisation ability across time illustrates the similarity

of EEG activity patterns relevant for encoding features (i.e., here: spatial location) and has been

proposed to assess the stability of neural representations [21]. In other words, if stimulus loca-

tion is encoded in EEG activity patterns that are stable (or shared) across time, then an SVR

model trained at time point t will be able to correctly decode stimulus location from EEG activ-

ity patterns at other time points. By contrast, if stimulus location is represented by transient or

distinct EEG activity patterns across time, then an SVR model trained at time point t will not be

able to decode stimulus location from EEG activity patterns at other time points. Hence, enter-

ing Pearson correlation coefficients as a measure for decoding accuracy for all combinations of

training and test time into a temporal generalisation matrix has been argued to provide insights

into the stability of neural representations whereby the spread of significant decoding accuracy

to off-diagonal elements of the matrix indicates temporal generalisability or stability [21].

Second, to examine whether and when neural representations are formed that are shared

across vision and audition, we generalised to ERP activity patterns across time not only from

the same sensory modality but also from the other sensory modality (i.e., from vision to audi-

tion and vice versa). This cross-sensory generalisation reveals neural representations that are

shared across sensory modalities.

To assess whether decoding accuracies were better than chance, we entered the subject-spe-

cific matrices of the Fisher z-transformed Pearson correlation coefficients into a between-sub-

jects Monte-Carlo permutation test using the one-sample t statistic with 5,000 permutations

([70], as implemented in the FieldTrip toolbox). To correct for multiple comparisons within

the two-dimensional (i.e., time × time) data, cluster-level inference was used based on the

maximum of the summed t values within each cluster (‘maxsum’) with a cluster-defining

threshold of p< 0.05, and a two-tailed p-value was computed.

Computational principles of audiovisual integration: GLM-based analysis

of audiovisual weight index wAV and Bayesian modelling analysis

To characterise how human observers integrate auditory and visual signals into spatial repre-

sentations at the behavioural and neural levels, we developed a GLM-based analysis of an

audiovisual weight index wAV and a Bayesian modelling analysis that we applied to both (1)

the reported auditory and visual spatial estimates (i.e., participants’ behavioural localisation

responses) and (2) the neural spatial estimates decoded from EEG activity pattern evoked by

audiovisual stimuli (see Fig 3 and [14,16]).

GLM analysis of audiovisual weight index wAV

SVR to decode spatial estimates from audiovisual EEG activity pattern. The neural spa-

tial estimates were obtained by training a SVR model on the audiovisual congruent trials to
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learn the mapping from audiovisual ERP activity pattern at time t to external stimulus loca-

tions. This learnt mapping at time t was then used to decode the stimulus location from the

ERP activity patterns of the spatially congruent and incongruent audiovisual conditions at

time t (see Fig 3A and 3B right). These training and generalisation steps were repeated across

all times t to obtain distributions of neural (i.e., decoded) spatial estimates for all 64 conditions

for every time point t.

Regression model and computation of behavioural and neural audiovisual weight index

wAV. In the ‘GLM-based’ analysis approach, we quantified the influence of the location of the

auditory and visual stimuli on the reported (behavioural) or decoded (neural) spatial estimates

using a linear regression model (see Fig 3C left). In this regression model, the reported (or

decoded) spatial locations were predicted by the true auditory and visual stimulus locations for

each of the eight conditions in the 2 (visual reliability: high versus low) × 2 (task relevance:

auditory versus visual report) × 2 (spatial disparity:�6.6˚ versus>6.6˚) factorial design (Fig

1A).

Sreported or decoded ¼ bV1SV1 þ bA1SA1 þ bV2SV2 þ bA2SA2 þ � � � þ bV8SV8 þ bA8SA8 þ b0 þ ε ð1Þ

Hence, the regression model included 16 regressors in total—i.e., 8 (conditions) × 2 (true

auditory or visual spatial locations). We computed one behavioural regression model for par-

ticipants’ reported locations. Further, we computed 161 neural regression models for the spa-

tial locations decoded from EEG activity pattern across time—i.e., one neural regression

model for every 5-ms interval, leading to time courses of auditory (ßA) and visual (ßV) parame-

ter estimates.

In each regression model, the auditory (ßA) and visual (ßV) parameter estimates quantified

the influence of auditory and visual stimulus locations on the reported (or decoded) stimulus

location for a particular condition. A positive ßV (or ßA) indicates that the true visual (or audi-

tory) location has a positive weight and hence an attractive effect on the reported or decoded

location (e.g., it is shifted towards the true visual location; see Fig 3C left for an example). A

negative ßV (or ßA) indicates that the true visual (or auditory) location has a negative weight

and hence a repulsive effect on the reported or decoded location (e.g., it is shifted away from

the true visual location). The auditory and visual parameter estimates need to be interpreted

together. To obtain a summary index, we computed the relative audiovisual weight (wAV) as

the four-quadrant inverse tangent of the visual (ßV) and auditory (ßA) parameter estimates for

each of the eight conditions in each regression model (see Fig 3C left). The angles in radians

are then converted to degrees:

wAV ¼ atan2 bV ; bAð Þ 180 deg ree
.

p
ð2Þ

The four-quadrant inverse tangent was used to map each combination of (positive or nega-

tive) visual (ßV) and auditory (ßA) parameters uniquely to a value in the closed interval [−π,

π], which was then transformed into degrees. If the reported/decoded estimate is dominated

purely and positively by the visual signal (i.e., ßA = 0, ßV > 0), then wAV is 90˚. For pure (and

positive) auditory dominance, it is 0˚ (i.e., ßA > 0, ßV = 0). Furthermore, if the visual signal

has an attractive influence (i.e., it attracts the perceived location towards the visual location)

but the auditory signal has a repulsive influence (i.e., it shifts the perceived location away from

the auditory location) on perceived/decoded location (i.e., ßA < 0, ßV > 0), then wAV is >90˚

(e.g., Fig 4C, high-disparity condition).

We obtained one wAV for each of the eight conditions at the behavioural level and one wAV

for each of the eight conditions and time point (every 5 ms) at the neural level. The neural wAV

time courses were temporally smoothed using a 20-ms moving average filter.
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Statistical analysis of circular indices wAV for behavioural and neural data. We per-

formed the statistics on the behavioural and neural audiovisual weight indices using a 2 (audi-

tory versus visual report) × 2 (high versus low visual reliability) × 2 (large versus small spatial

disparity) factorial design based on the likelihood ratio statistics for circular measures (LRTS)

[73]. Similar to an analysis of variance for linear data, LRTS computes the difference in log-

likelihood functions for the full model that allows differences in the mean locations of circular

measures between conditions (i.e., main and interaction effects) and the reduced null model

that does not model any mean differences between conditions. LRTS were computed sepa-

rately for the main effects (i.e., reliability, task relevance, spatial disparity) and interactions.

To refrain from making any parametric assumptions, we evaluated the main effects of visual

reliability, task relevance, spatial disparity, and their interactions in the factorial design using

randomisation tests (5,000 randomisations). To account for the within-subject repeated-mea-

sures design at the second random-effects level, randomisations were performed within each

participant. For the main effects of visual reliability, task relevance, and spatial disparity, wAV

values were permuted within the levels of the nontested factors. For tests of the two-way inter-

actions (e.g., spatial disparity × task relevance), we permuted the simple main effects of the two

factors of interest within the levels of the third factor [74]. For tests of the three-way interac-

tion, values were freely permuted across all conditions [75]. These statistical tests were per-

formed once for behavioural wAV and independently for each time point between 55 and 700

ms (i.e., 130 tests) for neural wAV (see below for multiple comparison correction across time

points).

To assess the similarity between behavioural and neural audiovisual weight (wAV) indices,

we computed the circular correlation coefficient (as implemented in the CircStat toolbox [76])

between the eight behavioural (i.e., constant across time) and eight neural (i.e., variable across

time) wAV from our 2 (high versus low visual reliability) × 2 (auditory versus visual report) × 2

(large versus small spatial disparity) factorial design separately for each time point.

Unless otherwise stated, results are reported at p< 0.05. To correct for multiple compari-

sons across time, cluster-level inference was used based on the maximum of the summed

LRTS values within each cluster (‘maxsum’) with an uncorrected cluster-defining threshold of

p< 0.05 (as implemented in the FieldTrip toolbox).

For plotting circular means of wAV (Fig 1C for behavioural wAV, Fig 4A–4D for neural

wAV), we computed the means’ confidence intervals (as implemented in the CircStat

toolbox [76]).

Bayesian modelling analysis

Description of Bayesian models and decision strategies. Next, we fitted the full-segrega-

tion model(s), the forced-fusion model, and the Bayesian causal inference model to the spatial

estimates that were reported by observers (i.e., behavioural response distribution, Fig 3B left)

or decoded from ERP activity patterns at time t (i.e., neural spatial estimate distribution, Fig

3B right). Using Bayesian model comparison, we then assessed which of these models is the

best explanation for the behavioural or neural spatial estimates.

In the following, we will first describe the Bayesian causal inference model from which we

will then derive the forced-fusion and full-segregation models as special cases (details can be

found in [2,13–15]).

Briefly, the generative model of Bayesian causal inference (see Fig 3C right) assumes that

common (C = 1) or independent (C = 2) causes are sampled from a binomial distribution

defined by the common cause prior Pcommon. For a common source, the ‘true’ location SAV is

drawn from the spatial prior distribution N(μAV, σP). For two independent causes, the ‘true’
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auditory (SA) and visual (SV) locations are drawn independently from this spatial prior distri-

bution. For the spatial prior distribution, we assumed a central bias (i.e., μ = 0). We introduced

sensory noise by drawing xA and xV independently from normal distributions centred on the

true auditory (or visual) locations with parameters σA
2 (or σV

2). Thus, the generative model

included the following free parameters: the common source prior pcommon, the spatial prior

variance σP
2, the auditory variance σA

2, and the two visual variances σV
2 corresponding to the

two visual reliability levels.

The posterior probability of the underlying causal structure can be inferred by combining

the common-source prior with the sensory evidence according to Bayes rule:

p C ¼ 1jxA; xVð Þ ¼
pðxA; xVjC ¼ 1Þpcommon

pðxA; xVÞ
ð3Þ

In the case of a common source (C = 1), the optimal estimate of the audiovisual location is a

reliability-weighted average of the auditory and visual percepts and the spatial prior (i.e.,

referred to as forced-fusion spatial estimate).

ŜAV;C¼1 ¼

xA
sA

2 þ
xV
sV

2 þ
mP
sP

2

1

sA
2 þ

1

sV
2 þ

1

sP
2

ð4Þ

In the case of independent sources (C = 2), the auditory and visual stimulus locations (for

the auditory and visual location report, respectively) are estimated independently (i.e., referred

to as unisensory auditory or visual segregation estimates):

ŜA;C¼2 ¼

xA
sA

2 þ
mP
sP

2

1

sA
2 þ

1

sP
2

; ŜV;C¼2 ¼

xV
sV

2 þ
mP
sP

2

1

sV
2 þ

1

sP
2

ð5Þ

To provide a final estimate of the auditory and visual locations, the brain can combine the

estimates from the two causal structures using various decision functions such as ‘model aver-

aging’, ‘model selection’, and ‘probability matching’ [13].

According to the ‘model averaging’ strategy, the brain combines the integrated forced-

fusion spatial estimate with the segregated, task-relevant unisensory (i.e., either auditory or

visual) spatial estimates weighted in proportion to the posterior probability of the underlying

causal structures.

ŜA ¼ pðC ¼ 1jxA; xVÞŜAV;C¼1 þ ð1 � pðC ¼ 1jxA; xVÞÞŜA;C¼2 ð6Þ

ŜV ¼ pðC ¼ 1jxA; xVÞŜAV;C¼1 þ ð1 � pðC ¼ 1jxA; xVÞÞŜV;C¼2 ð7Þ

According to the ‘model selection’ strategy, the brain reports the spatial estimate selectively

from the more likely causal structure (Eq 8 only shown for ŜA):

ŜA ¼
ŜAV;C¼1 if pðC ¼ 1jxA; xVÞ > 0:5

ŜA;C¼2 if pðC ¼ 1jxA; xVÞ � 0:5
ð8Þ

(

According to ‘probability matching’, the brain reports the spatial estimate of one causal

structure stochastically selected in proportion to the posterior probability of this causal
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structure (Eq 9 only shown for ŜA):

ŜA ¼
ŜAV;C¼1 if pðC ¼ 1jxA; xVÞ > a; a � Uð0; 1Þ

ŜA;C¼2 if pðC ¼ 1jxA; xVÞ � a; a � Uð0; 1Þ
ð9Þ

(

Thus, Bayesian causal inference formally requires three spatial estimates (ŜAV;C¼1; ŜA;C¼2;

ŜV;C¼2), which are combined into a final Bayesian causal inference estimate (ŜA or ŜV, depend-

ing on which sensory modality is task relevant) according to one of the three decision

functions.

In the main paper, we present behavioural results using ‘model averaging’ as the decision

function, which was associated with the highest model evidence and exceedance probability at

the group level. S1 Table shows the model evidence, exceedance probabilities, and parameters

for Bayesian causal inference across the three decision strategies for the behavioural data.

At the behavioural level, we evaluated whether and how participants integrate auditory and

visual stimuli by comparing (1) the Bayesian causal inference model (i.e., with model averag-

ing; Table 1), (2) the forced-fusion model that integrates auditory and visual signals in a man-

datory fashion (i.e., formally, the BCI model with a fixed pcommon = 1, Fig 3C, encircled in

yellow), and (3) the full-segregation model that estimates stimulus location independently for

vision and audition (i.e., formally, the BCI model with a fixed pcommon = 0; i.e., Fig 3C, SegV,A

encircled in light blue). This SegV,A model assumes that observers report ŜA;C¼2 when they are

asked to report the auditory location and ŜV;C¼2 when they are asked to report the visual loca-

tion. In short, the SegV,A model reads out the spatial estimate from the task-relevant unisen-

sory segregation model.

At the neural level, we may also conceive a neural source (or brain region) that represents

ŜV;C¼2, irrespective of which sensory modality needs to be reported (i.e., Fig 3C, SegV model,

encircled in red). For instance, primary visual cortices may be considered predominantly uni-

sensory with selective representations of the visual location even if the observer needs to report

the auditory stimulus location. Likewise, we included a model that selectively represents the

auditory location (i.e., Fig 3C, unisensory auditory segregation [SegA] model, encircled in

green). By contrast, the full-segregation audiovisual model (i.e., SegV,A, encircled in light

blue) can be thought of as a neural source (or brain area) that encodes the task-relevant esti-

mate computed in a full-segregation model. It differs from the Bayesian causal inference

model by not allowing for any audiovisual interactions or biases irrespective of the probabili-

ties of the world’s causal structure (i.e., operationally manipulated by spatial disparity in the

current experiment).

At the behavioural level, the unisensory SegV and SegA models are not useful, because we

would expect observers to follow instructions and report their auditory estimate for the audi-

tory report conditions and their visual estimate for the visual report conditions. In other

words, it does not seem reasonable to fit the unisensory SegV and SegA models jointly to visual

and auditory localisation responses at the behavioural level. By contrast, at the neural level,

spatial estimates decoded from EEG activity patterns may potentially reflect neural representa-

tions that are formed by ‘predominantly unisensory’ neural generators (e.g., primary visual

cortex), particularly in early processing phases. Hence, we estimated and compared three mod-

els for the behavioural localisation reports and five models for the spatial estimates decoded

from EEG activity patterns.

Model fitting to behavioural and neural spatial estimates and Bayesian model compari-

son. We fitted each model individually to participants’ behavioural localisation responses (or
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spatial estimates decoded from EEG activity pattern at time t) based on the predicted distribu-

tions of the spatial estimates (i.e., pðŜjSA; SVÞ; we use Ŝ as a variable to refer generically to any

spatial estimate) for each combination of auditory (SA) and visual (SV) source location. These

predicted distributions marginalise over the internal sensory inputs (i.e., xA, xV) that are

unknown to the experimenter (see [2] for further explanation). More specifically, we fit (1) the

Bayesian causal inference model based on pðŜAjSA; SVÞ for auditory report conditions and

pðŜVjSA; SVÞ for visual report conditions, (2) the forced-fusion model based on

pðŜAV;C¼1jSA; SVÞ, and (3) the SegV,A model based on pðŜA;C¼2jSA; SVÞ for auditory report con-

ditions and pðŜV;C¼2jSA; SVÞ for visual report conditions. At the neural level, we also fit the

SegV model based on pðŜV;C¼2jSA; SVÞ and the SegA model based on pðŜA;C¼2jSA; SVÞ to the

spatial estimates decoded from EEG activity pattern across both visual and auditory report

conditions.

To marginalise over the internal variables xA and xV that are not accessible to the experi-

menter, the predicted distributions were generated by simulating xA and xV 10,000 times for

each of the 64 conditions and inferring the different sorts of spatial estimate Ŝ from Eq 3–9. To

link any of those pðŜjSA; SVÞ to participants’ auditory and visual discrete localisation responses

at the behavioural level, we assumed that participants selected the button that is closest to Ŝ
and binned the Ŝ accordingly into a histogram (with four bins corresponding to the four but-

tons). Thus, we obtained a histogram of predicted localisation responses for each of those five

models separately for each condition and individually for each participant. Based on these his-

tograms, we computed the probability of a participant’s counts of localisation responses using

the multinomial distribution (see [2]). This gives the likelihood of the model given partici-

pants’ response data. Assuming independence of conditions, we summed the log likelihoods

across conditions.

At the neural level, we first binned the spatial estimates decoded from each ERP activity pat-

tern at each time point based on their distance from the four true locations (i.e., −10˚, −3.3˚,

3.3˚, or 10˚) into four spatial bins before fitting the models to those discretised spatial

estimates.

To obtain maximum-likelihood estimates for the parameters of the models (pcommon, σP,

σA, σV1 − σV2 for the two levels of visual reliability; formally, the forced-fusion and segregation

models assume pcommon = 1 or = 0, respectively), we used a nonlinear simplex optimisation

algorithm as implemented in MATLAB’s fminsearch function (MATLAB R2016a). This opti-

misation algorithm was initialised with a parameter setting that obtained the highest log likeli-

hood in a prior grid search.

The model fit for behavioural and neural data (i.e., at each time point) was assessed by the

coefficient of determination R2 [77], defined as

R2 ¼ 1 � exp �
2

n
l b
� �

� l 0ð Þ
� �� �

ð10Þ

where lð�̂Þ and l(0) denote the log likelihoods of the fitted and the null model, respectively,

and n is the number of data points. For the null model, we assumed that an observer randomly

chooses one of the four response options; i.e., we assumed a discrete uniform distribution with

a probability of 0.25. As in our case, the Bayesian causal inference model’s responses were dis-

cretised to relate them to the four discrete response options, and the coefficient of

ß
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determination was scaled (i.e., divided) by the maximum coefficient (see [77]) defined as

maxðR2Þ ¼ 1 � exp
2

n
l 0ð Þ

� �

ð11Þ

To identify the optimal model for explaining participants’ data (i.e., localisation responses

at the behavioural level or spatial estimates decoded from EEG activity pattern at the neural

level), we compared the candidate models using the Bayesian information criterion (BIC) as

an approximation to the model evidence [78].

BIC ¼ � lnðL̂Þ þ k � logðnÞ ð12Þ

where L̂ denotes the likelihood, n the number of data points (i.e., EEG activity patterns

summed over conditions at a time point t), and k the number of parameters. The BIC depends

on both model complexity and model fit. We performed Bayesian model selection [25] at the

group (i.e., random-effects) level as implemented in SPM8 [79] to obtain the protected exceed-

ance probability that one model is better than any of the other candidate models above and

beyond chance.

Assumptions and caveats of EEG decoding analyses. The EEG activity patterns mea-

sured across 64 scalp electrodes represent a superposition of activity generated by potentially

multiple neural sources located, for instance, in auditory, visual, and higher-order association

areas. The extent to which auditory or visual information can be decoded from EEG activity

patterns depends therefore inherently on how information is neurally encoded by the ‘neural

generators’ in source space and on how these neural activities are expressed and superposed in

sensor space (i.e., as measured by scalp electrodes). For example, visual space is retinotopically

encoded, whereas auditory space is represented by broadly tuned neuronal populations (i.e.,

opponent channel coding model [31,80]), rate-based code [30,81], or spike latency and pattern

[82,83]. These differences in encoding of auditory and visual space may contribute to the visual

bias we observed for the audiovisual weight index wAV in early processing (Fig 4A–4D) and

the dominance of the SegV model in the time course of exceedance probabilities (Fig 4F). Fur-

thermore, particularly at later stages, scalp EEG patterns likely rely on superposition of activity

of multiple neural generators so that ‘decodability’ will also depend on how source activities

combine and project to the scalp (e.g., source orientation etc.). Given the inverse problem

involved in inferring sources from EEG topographies, recent studies suggested combining

information from fMRI and EEG activity pattern via representational similarity analyses

[84,85]. Although we informally also pursue this approach in the Discussion section of the cur-

rent paper, when merging information from a previous fMRI study that used the same ventril-

oquist paradigm and analyses with our current EEG results, we recognise the limitations of

such an fMRI and EEG fusion approach. For instance, different features encoded in neural

activity may be expressed in BOLD-response and EEG scalp topographies [86].

Finally, we trained the SVR model on the audiovisual congruent conditions pooled over

task relevance and visual reliability to ensure that the decoder was based on activity patterns

generated by sources related to auditory, visual, and audiovisual integration processes and that

the effects of task relevance or reliability on the audiovisual weight index wAV cannot be attrib-

uted to differences in the decoding model (see [65] for a related discussion).

Supporting information

S1 Data. Zip file containing datasets underlying Figs 1C, 2, and 4. The data are stored in

MATLAB structures.

(ZIP)
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S1 Text. Supporting information: Time-frequency analysis.

(DOCX)

S1 Fig. Distributions of spatial estimates. The distribution (across participants’ mean) of spa-

tial estimates given by observers’ behavioural localisation responses (solid lines) or predicted

by the Bayesian causal inference model fitted to observers’ behavioural responses (dashed

lines, for model averaging) are shown across all conditions in our 2 task relevance (auditory:

red versus visual: blue) × visual reliability (high: row 1–4 versus low: row 5–8) × 4 auditory

location (columns as indicated) × 4 visual location (rows as indicated) design.

(TIF)

S2 Fig. Time-resolved decoding of visual location for unisensory visual stimuli. (A) Time

course of decoding accuracy (i.e., Pearson correlation between true and predicted visual stimu-

lus locations pooled over both visual reliabilities, black line) and the EEG evoked potentials

(across participants’ mean) for the unisensory visual (high reliability only) signals at −10˚,

−3.3˚, 3.3˚, and 10˚, averaged over occipital channels. Shaded grey area indicates the time win-

dow at which the decoding accuracy is significantly better than chance. EEG signals were aver-

aged across the electrodes shown in the inset. (B) EEG topographies (across participants’

mean) for the unisensory visual signals (high reliability only) at −10˚, −3.3˚, 3.3˚, and 10˚

shown at the given time points.

(TIF)

S3 Fig. Time-resolved decoding of auditory location for unisensory auditory stimuli. (A)

Time course of decoding accuracy (i.e., Pearson correlation between true and predicted stimu-

lus locations, black line) and the EEG evoked potentials (across participants’ mean) for the uni-

sensory auditory signals at −10˚, −3.3˚, 3.3˚, and 10˚, averaged over central channels. Shaded

grey area indicates decoding accuracy significantly better than chance. EEG signals were aver-

aged across the electrodes shown in the inset. (B) EEG topographies (across participants’

mean) for the unisensory auditory stimuli at −10˚, −3.3˚, 3.3˚, and 10˚ shown at the given time

points.

(TIF)

S4 Fig. Temporal generalisation matrix for audiovisual congruent trials. The temporal gen-

eralisation matrix shows the decoding accuracy for audiovisual congruent trials across each

combination of training (y-axis) and testing (x-axis) time point. The grey line along the diago-

nal indicates where the training time is equal to the testing time. Horizontal and vertical grey

lines indicate the stimulus onset. The thin black lines encircle the cluster with decoding accu-

racies that were significantly better than chance at p< 0.05 corrected for multiple compari-

sons.

(TIF)

S5 Fig. Time-frequency results for oscillatory power in the alpha/beta band. (A) Time

courses of total power averaged over the alpha/beta (8–30 Hz) frequency bands (baseline cor-

rected using prestimulus window [−400 ms to −200 ms]) are shown for the main effects of

visual reliability (row 1), task relevance (row 2), spatial disparity (row 3), and the visual

reliability × task relevance interaction (row 4) at three selected electrodes (i.e., Fz = left;

Pz = middle; Oz = right columns). For each effect, we show the power for the difference (or

interaction) and the individual conditions coded in different colours as indicated for each row.

Grey shaded areas indicate the time windows where at least one electrode was part of the sig-

nificant cluster after correcting for multiple comparisons across time (i.e., −200 ms to 700 ms),
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frequency (i.e., 4–30 Hz), and topography. (B) Topographies of the t values averaged across the

significant time windows of the corresponding effects. Electrodes marked with black stars

were part of the significant cluster (corrected across topography × time × frequency).

(TIF)

S1 Table. Model parameters (across-subjects mean ± SEM) and fit indices of the BCI mod-

els with different decision functions. Model averaging (BCIavg), model selection (BCIsel), and

probability matching (BCImatch). BCI, Bayesian causal inference; PEP, protected exceedance

probability; R2, coefficient of determination; relBICgroup, group-level relative Bayesian infor-

mation criterion [25].

(DOCX)

S2 Table. Time-frequency results. Significant effects are shown for overall relative to baseline,

main effect of VR, and main effect of task relevance (‘Task’), and the interaction between VR

and task relevance is shown across rows. Columns of the table indicate the approximate time

windows that the significant cluster spanned. All p-values are reported at the cluster level, cor-

rected for multiple comparisons over time × topography × frequency. VR, visual reliability.

(DOCX)
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Resources: Uta Noppeney.

Software: Máté Aller.
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