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Background. Emergence of infectious diseases like influenza pandemic (H1N1) 2009 has become great concern, which posed
new challenges to the health authorities worldwide. To control these diseases various studies have been developed in the field
of mathematical modelling, which is useful tool for understanding the epidemiological dynamics and their dependence on social
mixing patterns.Method. We have used Bayesian approach to quantify the disease outbreak through key epidemiological parameter
basic reproduction number (𝑅

0
), using effective contacts, defined as sum of the product of incidence cases and probability of

generation time distribution. We have estimated 𝑅
0
from daily case incidence data for pandemic influenza A/H1N1 2009 in India,

for the initial phase. Result. The estimated 𝑅
0
with 95% credible interval is consistent with several other studies on the same

strain.Through sensitivity analysis our study indicates that infectiousness affects the estimate of 𝑅
0
.Conclusion. Basic reproduction

number 𝑅
0
provides the useful information to the public health system to do some effort in controlling the disease by using

mitigation strategies like vaccination, quarantine, and so forth.

1. Introduction

Influenza is an emerging infectious disease and influenza-like
illness (ILI) is a clinical illness caused by the influenza virus,
which gave rise to human pandemics such as 1918 Spanish
flu (H1N1), 1957 Asian flu (H3N2), 1968 Hong Kong flu
(H2N2), andmost recentlyH1N1 pandemic 2009. InfluenzaA
(H1N1) was originally referred to as “swine flu” because
laboratory testing showed that many of the genes in this new
virus were very similar to those found in pigs in North
America. Further on, it has been found that this new virus has
gene segments from the swine, avian, and human flu virus
genes. The scientists call this a “quadruple reassortant” virus
and hence this new (novel) virus is christened “influenza-A
(H1N1) virus” [1].

A reassorted influenza was first detected in Mexico on
March 18, 2009, and rapidly spread to the United States,
Canada, and subsequently all regions worldwide including
India. The first case of H1N1 was reported in India on May
17, 2009, at Hyderabad Airport in a young boy who travelled
from the USA and later it spread throughout the country [2].

According to World Health Organization (WHO) update of
November 20, 2009, virus spread across more than 206 coun-
tries resulting in 6770 deaths [3]. In June 2009 World Health
Organization (WHO) raised the level of pandemic alert phase
5 to phase 6 [4]. According to the Directorate General of
Health Services, Government of India, New Delhi, update on
November 19, 2009, there have been 16044 laboratories
confirming cases recorded in India resulting in 537 deaths [5].

To formulate the valid and reliable estimate of transmis-
sibility and spread of an outbreak we have utilised statistical
modelling, which facilitates our understanding of mecha-
nism of disease spread. To access the intensity of an outbreak,
transmission potential can be quantified by reproduction
number𝑅

0
, that is, average number of secondary cases gener-

ated by a single primary case in a completely susceptible pop-
ulation [6, 7]. The importance of basic reproduction number
𝑅
0
becomes more apparent when an emerging infectious

disease strikes a population which is a key concept in the
epidemic theory. If 𝑅

0
is less than or equal to one, then trans-

mission in the population goes stochastically extinct with
probability of one after a small number of infections. If 𝑅

0
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Figure 1: Daily reported cases of influenza A/H1N1 2009 of India.

is greater than 1, then there is a positive probability of a large
epidemic. Statistical estimation of 𝑅

0
is used to understand

the transmission dynamics and evolution of the infectious
disease which facilitate designing the effective public health
intervention strategies and mitigation policies [8].

The aim of present study is to quantify the intensity of
pandemic influenza A/H1N1 2009 in India. To achieve this
goalwe have calculated basic reproductionnumber from time
series data set of H1N1 through Bayesian approach to contact
patterns. We have estimated basic reproduction number 𝑅

0

with 95% credible interval.

2. Material and Methods

2.1. Data Sources. Time series data for the 2009 influenza
A/H1N1 pandemic in Indiawas obtained from theMinistry of
Health and Family Welfare (MoHFW), Government of India
[9]. 31,924 infected cases with 1525 deaths were reported dur-
ing May 17, 2009, to May 17, 2010, with two complete waves of
epidemic.We have represented the data of the first wave from
May to October 2009 (see Figure 1). For the analysis we have
used daily reported cases (incidence) for initial phase of an
epidemic from June 11 to August 13, 2009 [10].

2.2. Statistical Method. Statistical inference of 𝑅
0
is still in

progress, and it is recognized that the estimate is very sen-
sitive to dispersal of the disease progression [11]. Estimation
of 𝑅
0
can be illustrated by employing time-since-infection

model and suggests origin of transmission of infectious dis-
eases which is the counterpart of compartmental models like
SI, SIS, and so forth. Both models are originated in the basic
paper of Kermack and McKendrick [12], and both the SIR
model and the simplest time-since-infection model are
known as “the Kermack-McKendrick age structure model.” It
is used to identify key epidemiological parameter by using a
simple renewal process which adheres to the basic reproduc-
tion number 𝑅

0
.

Let 𝑗(𝑡) represent the number of new infections or
incidence at calendar time 𝑡; that is, each infected individual

on an average generates secondary cases at a rate𝐴(𝜏) at time-
since-infection 𝜏 which is a specific case of renewal equation
of birth process [13–15]. Consider

𝑗 (𝑡) = ∫

∞

0

𝐴 (𝜏) 𝑗 (𝑡 − 𝜏) 𝑑𝜏. (1)

Since 𝑅
0
represents average number of secondary cases that

a primary case generates during entire his/her infectious
period, the estimate is given by [16, 17]

𝑅
0
= ∫

∞

0

𝐴 (𝜏) 𝑑𝜏. (2)

Under Kermack and McKendrick assumption “single infec-
tion causes an independent process of infection with host”
which allows an age representation for the state of infection,
that is, infectivity of an individual. The time elapsed since
infection is called the infection age or time since infection,
whereas 𝐴(𝜏) is expected infectivity of an individual with
time-since-infection 𝜏 whereas 𝐴(𝜏) becomes the rate of sec-
ondary transmission per single primary case at time-since-
infection 𝜏 [18]:

𝐴 (𝜏) = 𝛽 (𝜏) Γ (𝜏) , (3)

where 𝛽(𝜏) is the transmission rate which depends on
frequency of contact and infectiousness at infection age 𝜏 and
Γ(𝜏) is the probability of being infectious at infection age 𝜏.
Substituting 𝐴(𝜏) into (1) we get

𝑗 (𝑡) = ∫

∞

0

𝛽 (𝜏) Γ (𝜏) 𝑗 (𝑡 − 𝜏) 𝑑𝜏. (4)

Further, we consider a probability density of the generation
time where generation time is defined as time from infection
of an individual to the infection of a secondary case by that
individual, denoted by 𝑔(𝜏) through normalized density of
secondary transmission [16, 17, 19]. We have

𝑔 (𝜏) =
𝛽 (𝜏) Γ (𝜏)

∫
∞

0
𝛽 (𝜏) Γ (𝜏) 𝑑𝜏

=
𝛽 (𝜏) Γ (𝜏)

𝑅
0

. (5)

Using (5) in (4) we get

𝑗 (𝑡) = ∫

∞

0

𝑅
0
𝑔 (𝜏) 𝑗 (𝑡 − 𝜏) 𝑑𝜏. (6)

Then, the basic reproduction number 𝑅
0
is as in

𝑅
0
=

𝑗 (𝑡)

∫
∞

0
𝑔 (𝜏) 𝑗 (𝑡 − 𝜏) 𝑑𝜏

. (7)

In reality, the case incidences are rather in discrete form as
daily/weekly reports. The discretized analogy of (7) can be
derived as

𝑅
0
=

𝑗
𝑖

∑
∞

𝑠=0
𝑤
𝑠
𝑗
𝑖−𝑠

. (8)
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Figure 2: Transmission tree for contact patterns.

By taking the inverse of both sides of (8) we get

1

𝑅
0

=
∑
∞

𝑠=0
𝑤
𝑠
𝑗
𝑖−𝑠

𝑗
𝑖

, (9)

where 𝑠 is the discretized formof time since infection (usually
in days), 𝑖 is discretized calendar time (usually in days/weeks),
and 𝑤

𝑠
is the generation time distribution for an infectious

disease which is the probability distribution function for the
time from infection of an individual to the infection of a
secondary case by that individual [19, 20].

From Figure 2 the concept of 𝑅
0
through contact patterns

has been illustrated here before taking up the Bayesian
method of estimation. From Figure 2(a), the transmission
tree with 𝑅

0
= 2 represents who infected whom, where each

primary case on an average generates “2” secondary cases.
Secondary transmissions from primary to secondary cases
are given by the basic reproduction number 𝑅

0
= 2. From

Figure 2(b) restructuring the transmission tree, given that
all the potential contacts made by primary cases with the
probability of each possible contact resulted in a secondary
transmission, is 1/𝑅

0
. This type of transmission tree repre-

sents who infected whom which is unobservable in nature
unless rigorous contact tracing is implemented [21, 22].

The numerator of the right hand side of (9) represents the
total number of effective contacts made by a possible primary
case in day/weekswhich have an equal probability of resulting
in the secondary transmission; that is, the probability that
a secondary case is linked to an effective contact made by
a single primary case at time 𝑖 is given by 1/𝑅

0
. Effective

contacts lead to potential secondary cases with equal chance
of getting the infection from the primary cases at time 𝑖. It
has been seen that every contact does not lead to successful
transmission of infection; that is, the effective contacts are
uncertain which is defined as the contact that is sufficient to
lead to the transmission of infection between infectious and
susceptible population.The total number of effective contacts
made by a potential primary case at time 𝑖 is the sum of the
product of incidence cases and generation time distribution

during the generation interval of length 𝑚. This indicates a
simple binomial law of uncertainty in effective contacts [22].

Total number of effective contacts become 𝑐
𝑖

=

∑
𝑚

𝑠=0
𝑤
𝑠
𝑗
𝑖−𝑠
, during the 𝑖th day, that is, 𝑐

𝑖
∼ Bin(𝑗

𝑖
, 1/𝑅
0
),

∀𝑖 = 1, 2, . . . , 𝑛, where 1/𝑅
0
is the probability of effective

contacts. Let 𝑗
𝑖
denote incidence or new cases at calendar time

𝑖 and 𝑤
𝑠
denotes generation time distribution at time-since-

infection 𝑠. Then the probability mass function of effective
contacts becomes

𝑃
𝑐𝑖
(
1

𝑅
0

) = (

𝑗
𝑖

𝑐
𝑖

)(
1

𝑅
0

)

𝐶𝑖

(1 −
1

𝑅
0

)

𝑗𝑖−𝑐𝑖

,

∀𝑖 = 1, 2, . . . , 𝑛; 0 <
1

𝑅
0

< 1.

(10)

The likelihood function of 1/𝑅
0
is as follows:

𝐿(
1

𝑅
0

d 𝐶
𝑖) =

𝑛

∏

𝑖=1

(

𝑗
𝑖

𝐶
𝑖

)(
1

𝑅
0

)

𝐶𝑖

(1 −
1

𝑅
0

)

𝑗𝑖−𝐶𝑖

𝐿(
1

𝑅
0

) =
[
[

[

𝑛

∏

𝑖=1

(

𝑗
𝑖

𝑚

∑

𝑠=0

𝑤
𝑠
𝑗
𝑖−𝑠

)
]
]

]

⋅ (
1

𝑅
0

)

∑
𝑚

𝑠=0
𝑤𝑠𝑗𝑖−𝑠

(1 −
1

𝑅
0

)

𝑗𝑖−∑
𝑚

𝑠=0
𝑤𝑠𝑗𝑖−𝑠

.

(11)

Here, Bayesian inferential approach is used to estimate
parameter 𝑅

0
which provides us with different but related

estimate by combining prior belief and the evidence
observed. Asmore evidence is gathered the prior distribution
is modified into the posterior distribution that represents the
uncertainty over the parameter values. Posterior distribution
is derived from the Bayes formula [23]

𝜋 (𝜃/𝑥) =
𝑓 (𝑥/𝜃) 𝜋 (𝜃)

∫
⋅

Θ
𝑓 (𝑥/𝜃) 𝜋 (𝜃) 𝑑𝜃

, (12)
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Table 1: Sensitivity analysis of basic reproduction number 𝑅
0
is depending on generation time distribution as Weibull distribution for time

since infection 𝑠 for 7 days as well as 10 days.

Prior distribution
for 𝑠 = 7 days

Basic reproduction number 𝑅
0

(with 95% CrI)
Prior distribution
for 𝑠 = 10 days

Basic reproduction number 𝑅
0

(with 95% CrI)

Beta(1, 1) 1.2548
(1.2223, 1.2923) Bata(2, 1) 1.3392

(1.3128, 1.3938)

Beta(4, 2) 1.2543
(1.2250, 1.2850) Beta(3.46, 5.2) 1.3323

(1.2962, 1.3762)

Beta(3.46, 5.2) 1.2578
(1.2309, 1.2909) Beta(4.4, 2.2) 1.3296

(1.2895, 1.3695)

Beta(1.75, 3.5) 1.2569
(1.2279, 1.2879) Beta(7, 3.5) 1.3303

(1.2969, 1.3669)

where ∫⋅
Θ
𝑓(𝑥/𝜃)𝜋(𝜃)𝑑𝜃 is a normalization constant, 𝑥 indi-

cated data, 𝜃 is the unknown quantity, 𝜋(𝜃) is the prior distri-
bution, 𝑓(𝑥/𝜃) is the likelihood function, and posterior dis-
tribution 𝜋(𝜃/𝑥) completely describes the uncertainty. There
are two key advantages of Bayesian theory: (i) once the uncer-
tainty in the posterior distribution is expressed via probability
distribution then the statistical inference can be automated
and (ii) available prior information is reasonably incorpo-
rated into the statistical model. Now, the posterior estimate
of parameter 𝑅

0
is derived using its prior information,

where likelihood function follows binomial distribution with

conjugate prior as beta distribution of first kind [24]. That is,
1/𝑅
0
∼ Beta(𝑎, 𝑏), with realistic choice of parameters (𝑎, 𝑏):

𝜋(
1

𝑅
0

) =
1

𝛽 (𝑎, 𝑏)
(
1

𝑅
0

)

𝑎−1

(1 −
1

𝑅
0

)

𝑏−1

0 <
1

𝑅
0

< 1, 𝑎 > 0, 𝑏 > 0.

(13)

Now posterior distribution of 1/𝑅
0
is proportional to the

likelihood times prior. Therefore,

Posterior = likeliHood ∗ prior
normalization constatnt

=

[∏
𝑛

𝑖=1
(
𝑗𝑖
𝑐𝑖
)] (1/𝑅

0
)
∑
𝑛

𝑖=1
𝑐𝑖
(1 − 1/𝑅

0
)
(∑
𝑛

𝑖=1
𝑗𝑖−∑
𝑛

𝑖=1
𝑐𝑖)
(1/𝛽 (𝑎, 𝑏)) (1/𝑅

0
)
𝑎−1
(1 − 1/𝑅

0
)
𝑏−1

∫
⋅

1/𝑅0

[∏
𝑛

𝑖=1
(
𝑗𝑖
𝑐𝑖
)] (1/𝑅

0
)
∑
𝑛

𝑖=1
𝑐𝑖
(1 − 1/𝑅

0
)
(∑
𝑛

𝑖=1
𝑗𝑖−∑
𝑛

𝑖=1
𝑐𝑖)
(1/𝛽 (𝑎, 𝑏)) (1/𝑅0)

𝑎−1
(1 − 1/𝑅

0
)
𝑏−1
𝑑 (1/𝑅

0
)

=
(1/𝑅
0
)
∑
𝑛

𝑖=1
𝑐𝑖+𝑎−1

(1 − 1/𝑅
0
)
∑
𝑛

𝑖=1
𝑗𝑖−∑
𝑛

𝑖=1
𝑐𝑖+𝑏−1

∫
1

0
(1/𝑅
0
)
∑
𝑛

𝑖=1
𝑐𝑖+𝑎−1

(1 − 1/𝑅
0
)
∑
𝑛

𝑖=1
𝑗𝑖−∑
𝑛

𝑖=1
𝑐𝑖+𝑏−1

𝑑 (1/𝑅
0
)

= Beta(
𝑛

∑

𝑖=1

𝑐
𝑖
+ 𝑎,

𝑛

∑

𝑖=1

𝑗
𝑖
−

𝑛

∑

𝑖=1

𝑐
𝑖
+ 𝑏) .

(14)

We are interested in estimating𝑅
0
with its 95% credible inter-

val (CrI) which has been derived by considering the sampling
transformation of 1/𝑅

0
through simulation from the above

posterior distribution with different choices of priors for beta
distribution. Theoretically, it is hard to find the posterior
distribution of 𝑅

0
where 1/𝑅

0
is a beta variable. Through

simulation we have generated 10000 samples from beta
posterior distribution and also estimated 95%CrI. We have
considered beta distribution with several combinations of
mean (ranges from 0.4 to 0.8) and accordingly we chose
different values of (𝑎, 𝑏). The second and fourth column of
Table 1 represent our estimates of 𝑅

0
which are posterior

means along with 95%CrI. Figure 3 displays the posterior
distribution of 𝑅

0
with different prior choices.

Generation time is another most important characteristic
in infectious disease epidemiology, since 𝑅

0
indicates only

the average number of secondary infections one primary
infection produces in one disease generation. When we con-
sider disease transmission in real time scale such as days or
weeks, it matters a lot how long one disease generation lasts.
Generation time is the average time taken for secondary
infections produced by a primary infection [25]. Generation
interval or generation time distribution is assumed to be
known as Weibull distribution which is a biologically plausi-
ble choice [20, 26–28] with amean of 1.78 and 2.48 days and a
standard deviation (SD) of 0.66 and 1.06 days for 𝑠 = 7 and 10
days [29, 30] (Tables S1 and S2 in Supplementary Mate-
rial available online at http://dx.doi.org/10.1155/2015/256319).
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Figure 3: Histogram of posterior distribution of 𝑅
0
by using different values of prior choices for beta distribution.
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All the sensitivity analysis was done by using MATLAB
(Supplementary Material, Algorithm).

2.3. Sensitivity Analysis. Sensitivity analysis is a statistical
technique which provides insight into how uncertainty in
input variables affects the model outputs and which input
variable tends to derive variation in the outputs [31]. We per-
formed sensitivity analysis to quantify the effect of changes on
𝑅
0
. It has been used to determine how sensitive an estimate

of the parameter is. It is usually performed as series of tests
in which one can use different set of hyperparameter values
to see the change in the estimate. Our analysis is based on
the pandemic influenza A/H1N1 in India 2009 through the
Bayesian estimates of basic reproduction number; we used
the daily reported cases to calculate effective contacts. We
have calculated posterior distribution of 𝑅

0
using prior as

beta distribution with different values of parameter choices.
From Figure 1 we have seen that as prior choice changes the
shape of the posterior distribution also changes.

3. Results and Discussion

The estimates of 𝑅
0
for the 2009 H1N1 influenza pandemic

were mainly reported based on the data obtained in the
first few months of pandemic or based on whole first wave
data. Most of these 𝑅

0
estimates ranges from 1.1 to 2 [32–

37]. Our estimated value of the basic reproduction number
indicates themilder intensity of disease transmission in India.
Interestingly, this estimated 𝑅

0
with 95% credible interval is

consistent with several other studies on the same strain [35],
along with many European countries [28]. Notably, it has a
smaller credible length which is more reliable estimate; see
Table 1. Statistical inference of 𝑅

0
is based on incidence

(reported cases) and known generation time distribution.
Some differences among these estimates are due to the choice
of generation time distribution because 𝑅

0
estimation relies

much on the assumptions of the generation time distribution
[38]. In general, shorter mean generation time may lead
to smaller 𝑅

0
estimates. Since, the estimate of 𝑅

0
crucially

depends on generation time distribution. From Table 1, we
conclude that generation time or infectiousness of an individ-
ual affects the basic reproduction number. This method does
not require exponential growth assumption. Still our estimate
is greater than one so one has to make effort in controlling
the disease through control strategies, which are typically
targeted to bring this number below one and maintain it, as
this will lead to eventual extinction of the epidemic.

3.1. Limitations. This method is applied only for initial stage
of the epidemic (exponential phase) when there is no inter-
vention like quarantine, isolation vaccination, and so forth.
If basic reproduction number is 𝑅

0
< 1, then the probability

1/𝑅
0
terminates because it exceeds the law of probability.
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