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Background: Patients with Crohn’s disease (CD) experience severely reduced quality of
life, particularly those who do not respond to conventional therapies. Antitumor necrosis
factor (TNF)α is commonly used as first-line therapy; however, many patients remain
unresponsive to this treatment, and the identification of response predictors could facilitate
the improvement of therapeutic strategies.

Methods: We screened Gene Expression Omnibus (GEO) microarray cohorts with
different anti-TNFα responses in patients with CD (discovery cohort) and explored the
hub genes. The finding was confirmed in independent validation cohorts, and multiple
algorithms and in vitro cellular models were performed to further validate the core
predictor.

Results: We screened four discovery datasets. Differentially expressed genes between
anti-TNFα responders and nonresponders were confirmed in each cohort. Gene ontology
enrichment revealed that innate immunity was involved in the anti-TNFα response in
patients with CD. Prediction analysis of microarrays provided the minimum
misclassification of genes, and the constructed network containing the hub genes
supported the core status of TLR2. Furthermore, GSEA also supports TLR2 as the
core predictor. The top hub genes were then validated in the validation cohort
(GSE159034; p < 0.05). Furthermore, ROC analyses demonstrated the significant
predictive value of TLR2 (AUC: 0.829), TREM1 (AUC: 0.844), and CXCR1 (AUC:
0.841). Moreover, TLR2 expression in monocytes affected the immune–epithelial
inflammatory response and epithelial barrier during lipopolysaccharide-induced
inflammation (p < 0.05).

Conclusion: Bioinformatics and experimental research identified TLR2, TREM1, CXCR1,
FPR1, and FPR2 as promising candidates for predicting the anti-TNFα response in
patients with Crohn’s disease and especially TLR2 as a core predictor.
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INTRODUCTION

Inflammatory bowel diseases (IBDs), including ulcerative colitis
(UC) and Crohn’s disease (CD), are chronic intestinal
inflammatory disorders. Treatment strategies for CD focus on
maintaining remission and preventing recurrence. Commonly
used medications to treat CD include mesalazine, locally active
steroids (such as budesonide), systemic steroids, thiopurines
(such as azathioprine and mercaptopurine), methotrexate, and
biological therapies [such as antitumor necrosis factor α (TNFα),
anti-integrin, and anti-interleukin (IL)-12/23 therapies] (Lamb
et al., 2019; Torres et al., 2020). In particular, biological therapies,
which include anti-TNFα antibodies (e.g., infliximab,
adalimumab, and certolizumab), anti-integrin antibodies (e.g.,
vedolizumab and natalizumab), anti-IL-12/23 antibodies (e.g.,
ustekinumab), and Janus kinase (JAK) inhibitors, have been
shown to be highly effective in many patients with CD.
However, up to 30% of patients do not respond to initial
treatment, and up to 50% of patients experience loss of
response over time.

Among these therapies, anti-TNFα antibodies have been used
for more than 26 years and are considered the most reliable
biological therapy for the treatment of CD (van Dullemen et al.,
1995; Torres et al., 2020). Loss of response to anti-TNFα therapy in
patients with CD involves primary and secondary nonresponses.
Primary nonresponse is defined as a failure of initial induction
therapy, whereas secondary nonresponse is defined as failure after
an effective period. Although inadequate drug levels and the
development of immunogenicity to drug treatments contribute
to some of these failures, additional heterogeneity of IBDs beyond
the classical CD and UC subtypes is likely to be another vital factor
(Chang, 2020). The incidence of nonresponse to anti-TNFα
therapy ranges from 8% to 71% (mean: 38.5%) (Qiu et al.,
2017). For infliximab, the incidence of nonresponse ranges from
11% to 71%, and the pooled incidences of nonresponse are 33% for
infliximab, 30% for adalimumab, and 41% for certolizumab (Qiu
et al., 2017). Many studies had explored ideal predictors for
primary nonresponders in patients with irritable bowel
syndrome receiving anti-TNFα therapy (Ben-Horin et al., 2014;
Lopetuso et al., 2017; Gole and Potocnik, 2019). However, the
incidence, causes, and predictors of primary nonresponse in
patients with CD have not yet been thoroughly evaluated, and
further identification of predictors of primary nonresponse in
patients with CD may facilitate the identification of precision
therapies and reduction of disease burden.

Accordingly, in this study, we aimed to identify novel
predictors of anti-TNFα primary nonresponse in CD using
independent bioinformatics analyses of multiple cohorts and
experimental validation in cell models.

METHODS

Date Screening and Selection
We searched the Gene Expression Omnibus (GEO, http://www.
ncbi.nlm.nih.gov/geo/) database for Crohn’s disease data with the
following inclusion criteria: 1) key words“(Crohn OR CD OR IBD

OR inflammatory bowel disease) AND (anti-TNF OR infliximab
OR adalimumab OR certolizumab OR golimumab)”; 2) Homo
sapiens; 3) expression profiling by array OR high throughput
sequencing; 4) submitted date <01/10/2022; and 5) datasets or
series. After that, we reviewed every data under the following
exclusive criteria: 1) recruited Crohn patients<6; 2) no Crohn’s
anti-TNFα therapy record; 3) no anti-TNF response record; 4)
responder or nonresponders <3; and 5) no clear endoscopy
evaluations. For discovery cohorts, we tried to choose
homogeneous data. For example, all the anti-TNFα therapy
response outcomes were based on the endoscopy measure after
therapy. Since adequate discovery data of candidates were lacking,
we chose mixed Crohn’s disease majority’s data without a clear
subtype for validation cohort’s selection in a slightly relaxed range.

Common Differential Network Exploration
We performed differential expression analyses between
responders and nonresponders to infliximab therapy using the
limma R package (Team, 2013; Ritchie et al., 2015). Due to the
limited recruited Crohn’s disease cohorts with the anti-TNFα
response, for obtaining sufficient differential expressed genes, all
significant differentially expressed genes (p < 0.05) were further
analyzed using Gene Ontology (GO) enrichment in the
Metascape database (https://metascape.org) (Zhou et al., 2019).
The common differential genes in discovery cohorts were
obtained by a Venn package in the UpsetR (Conway et al.,
2017). Furthermore, the interactions among these genes were
obtained from the STRING database (https://string-db.org/)
(Szklarczyk et al., 2021). To identify the core network, we
calculated the top differentially expressed genes using the
degree algorithm in the CytoHubba package of Cytoscape
software (version 3.8.2) (Shannon et al., 2003; Chin et al., 2014).

Multiple Algorithms’ Confirmation and Core
Predictor Exploration
We further performed prediction analysis of microarrays (PAM),
a type of classification based on nearest centroids. The PAM R
package provides an accurate predictor that may outperform
much more complicated methods (Dabney, 2005; Korkola et al.,
2009; Arijs et al., 2010). Owing to the relatively large group of
nonresponsive patients in GSE16879, we selected this dataset for
PAM. Genes with a minimum classification error were further
analyzed and combined with the top differentially expressed
genes. Interactions of the aforementioned genes were further
evaluated using the degree algorithm of the CytoHubba package.
Immune cell scoring in the GSE16879 dataset was calculated
based on the xCell website using a curve fitting approach for
linear comparison of cell types and a novel spillover
compensation technique for separating them (Aran et al.,
2017). Different immune cell type profiles were displayed.

Validation in Independent Cohort and ROC
Test
The top differentially expressed genes were further assessed in the
discovery cohort, and the top five differentially expressed genes
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were further validated in the discovery cohort of responders and
nonresponders with IBDs (validation cohort). Receiver operating
characteristic (ROC) curve analysis was then performed to
evaluate the predictive values of these top genes in response to
anti-TNFα therapy in patients with CD.

Single-Cell Portal Analysis
We explored Crohn’s disease data entitled “PREDICT 2021
paper: CD” on the single-cell portal (https://singlecell.
broadinstitute.org/single_cell) held by the Broad Institute of
MIT and Harvard. The Crohn’s disease single-cell data include
27 volunteers’ 201,883 single-cell transcriptomes. Then we
obtained the cell types’ tSNE (t-Distributed Stochastic
Neighbor Embedding) map and TLR2 expression tSNE map
on the interactive visualization web tools.

Coculture Model Proves the Value of Core
Predictor
We then performed coculture of immune cells (THP1 cells, a
human monocytic cell line) and colonic epithelial cells (Caco2, a
human colonic epithelial cell line) to validate the bioinformatics
results. Caco2 and THP1 cells were obtained from the Cancer
Research Institute of Central South University, China. THP1 and
Caco2 cells were cultured in RPMI-1640 or MEN medium
(Gibco; Thermo Fisher United States) supplemented with 10%
fetal bovine serum (Gibco; Thermo Fisher United States) at 37°C
in an atmosphere containing 5% CO2. THP1 cells were stimulated
using different concentrations of lipopolysaccharide (LPS; Sigma-
Aldrich, Merck KGaA) or infliximab (Remicade; Cilag AG,
Sweden), and Cell Counting Kit-8 (CCK8) assays (Dojindo,
Japan) were performed to determine the appropriate
concentration to use in subsequent experiments. THP1 cells
were then transfected with a Toll-like receptor (TLR) 2
overexpression vector or TLR2 small interfering RNA (siRNA)
using Lipo 2000 (Invitrogen, Carlsbad, CA, United States).
Reverse transcription-quantitative polymerase chain reaction
(RT-qPCR) and Western blotting were further performed to
validate the overexpression and knockdown of TLR2 in THP1
cells (Proteintech, United States). The TLR2 inhibitor C29
(TargetMol, United States) was added to block TLR2
overexpression in the coculture system. Caco2 cells were
treated with 100 ng/ml LPS for 24 h and then with 100 μg/ml
infliximab for another 24 h in the lower chambers of 6-well
Transwell plates. The cells were then cocultured with TLR2-
overexpressing THP1 cells cultured with 50 μM C29. Total RNA
from the Caco2 cells was obtained after 24 h of coculture, and
epithelial inflammation and tight junctions (representing
epithelial permeability) were assessed using qPCR. RT-qPCR
and Western blotting were carried out as described previously
(Luo et al., 2019). All primers and short hairpin sequences are
listed in the supplemental data.

Statistical analysis of bioinformatics data was performed using
the R package. One-way analysis of variance (ANOVA) was used
to compare multiple randomized sets of data. Unpaired t-tests
were used to compare double randomized data. Results with p
values less than 0.05 were considered significant.

RESULTS

Data Screening and Process
A total of 30 data were included in the selection of further
analysis. After carefully checking every data by the exclusion
criteria, 25 data were excluded. Due to the limited eligible data for
analysis, we choose total Crohn’s disease data (GSE111761,
GSE107865, GSE52746, GSE16879) as discovery cohorts,
which will help in revealing a reliable differential network
between responders and nonresponders. For the validation
cohort, we choose another mixed IBD data (GSE159034)
dominated by Crohn’s disease patients without clear subtype
information. The detailed information on included data is listed
in Table 1. We gave priority to samples with expression profiles
before the initial infliximab therapy in patients with CD
(i.e., GSE16879). If there was no sampling information, we
analyzed the results. First, our discovery analysis contains 47
responders and 30 nonresponders among patients with CD
receiving anti-TNFα therapy. Second, differentially expressed
gene networks and pathways were obtained under the p-value
<0.05 for enough differential expressed genes. We performed
PAM analysis and gene set enrichment analysis (GSEA) to
validate the core predictor. Validation and ROC curve analyses
were further performed in an independent Crohn’s disease cohort
and a relatively large cohort. Coculture experimental validation
was conducted. The study analysis flow is depicted in Figure 1.
The four data series were downloaded from GEO and were
normalized using the limma R package (Ritchie et al., 2015)
(Supplementary Figure S1A).

The Exploration of Core Anti-TNFα
Response Differentially Expressed Genes
From the analysis of differentially expressed genes between
responders and nonresponders, due to the insufficient
significant differential genes under the adj p-value, we
identified 4690, 3422, 1020, and 2811 differentially expressed
genes in GSE16879, GSE52746, GSE107865, and GSE111761
datasets, respectively, under p < 0.05 (Figure 2A,
Supplementary Table S1). Some of the datasets shared
common differentially expressed genes (purple) and
interactions among genes (blue), as shown in Figure 2B.
Overlaps among the four differentially expressed genes
revealed that 32 common differentially expressed genes
exhibited shared characteristics between responders and
nonresponders of different cohorts (Figure 2C) by a Venn
package in the UpsetR (Conway et al., 2017). C-X-C motif
chemokine receptor (CXCR) 1, CXCR2, TLR2, and triggering
receptor expressed on myeloid cells (TREM1) were common
differentially expressed genes. Furthermore, GO enrichment
(Zhou et al., 2019) of all differentially expressed genes showed
that innate immunity was involved in the response of patients
with CD to the anti-TNFα therapy. Specifically, lymphocyte
activation, T-cell activation, leukocyte migration, and cell
adhesion were the top GO enrichment pathways (Figure 2D,
Supplementary Table S1). STRING is a database of known and
predicted protein–protein interactions (Szklarczyk et al., 2021),
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including direct (physical) and indirect (functional) associations
based on computational prediction, knowledge transfer between
organisms, and interactions aggregated from other (primary)
databases. Thus, interactions among common differentially
expressed genes were obtained from the STRING database
(Figure 2E). The degree algorithm based on this interaction
network (Chin et al., 2014) revealed the core components
between unresponsive and responsive subgroups. TLR2,
TREM1, CXCR1, formyl peptide receptor 1 (FPR1), and FPR2
were the top five differential genes.

The Reinforced Validation of Core
Anti-TNFα Response Feature by
Independent Algorithms
To further evaluate the predictive value of the newly built model,
PAM was performed based on the nearest centroid classification
to classify responders and nonresponders from the GSE16879

dataset. In the PAM model, the threshold corresponding to the
lowest misclassification rate was 3.938, and 10 risk genes
corresponding to this threshold were considered (Figures
3A,B, Supplementary Table S2). The larger range between
the no-score (nonresponders) and yes-score (responders)
indicated a better value of classification (Figure 3C,
Supplementary Table S2). The good classification efficiency
supported the roles of these 10 genes, which included matrix
metalloproteinase (MMP) 1, MMP3, regulator of G protein
signaling 2, and alpha-2-macroglobulin, in our predictive
model (Figure 3D, Supplementary Table S2). A
combination model of the top differentially expressed genes
and lowest misclassification genes was built using interaction
data from the STRING database (Supplementary Figure S1C).
A set of core genes, including TLR2, tissue inhibitor of
metalloproteinases 1, CXCR1, and TREM1, emerged after the
degree calculation based on the combination model in
Cytoscape (Figure 3F).

TABLE 1 | Detailed information of included cohorts in the combining analysis.

Reference Platform GEO ID Crohn’s Ratio
(%)

Responder Nonresponder Cohort type

Heike Schmitt et al GPL13497 GSE111761 100 3 3 Discovery
Shai S Shen-Orr et al GPL23159 GSE107865 100 17 5 Discovery
Azucena Salas et al GPL17996 GSE52746 100 7 5 Discovery
Arijs et al. (2010) GPL570 GSE16879 100 20 17 Discovery
Salvador-Martin et al. (2019) GPL16791 GSE159034 75 6 6 Validation

FIGURE 1 | Detailed data preparation flow of the study.

Frontiers in Pharmacology | www.frontiersin.org April 2022 | Volume 13 | Article 8707964

Nie et al. Core Predictor in Crohn’s Anti-TNF

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


GSEA is a computational method that determines whether an a
priori defined set of genes shows statistically significant, concordant
differences between two biological states (e.g., phenotypes)
(Subramanian et al., 2005). Unlike differential analysis, which
focuses on individual gene differences, GSEA derives its power by
focusing on gene sets, that is, groups of genes that share common
biological functions, chromosomal locations, or regulation
(Subramanian et al., 2005). It includes three steps, namely,

calculation of an enrichment score (ES), estimation of the
significance level of the ES, and adjustment for multiple
hypothesis testing (Subramanian et al., 2005). Thus, we next
performed GSEA to detect the core genes between responders
and nonresponders. When we treated the response to infliximab
as a phenotype in the GSE16879 dataset, a Th1 immune response
gene showed an enrichment score of 0.54 (p = 0.015), representing
one of the top three enrichment gene sets (Figure 3E). Importantly,

FIGURE 2 | Exploration of differentially expressed gene network between anti-TNF responders and nonresponders with CD. (A) Volcano plot of the discovery
cohorts GSE111761, GSE107865, GSE52746, and GSE16879 showing significantly upregulated genes (red dots) and downregulated genes (green dots) with p < 0.05
between responders and nonresponders. (B)Circle diagram indicating shared differentially expressed genes (purple) and interacting differentially expressed genes (blue)
among the four discovery cohorts. (C) Plot showing shared differentially expressed genes among the four discovery cohorts. Black columns show the number of
shared genes, and the gray columns show the total number of significant differentially expressed genes in each cohort. Red lines show details of the shared genes (see
also Supplementary Table S1). (D) Network results in GO enrichment analysis. (E) Core network of common differentially expressed genes obtained from the STRING
database.
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we confirmed that TLR2was one of the genes in the core enrichment
gene list for this Th1 gene set (Supplementary Figure S1B,
Supplementary Table S2). However, no other previous core
genes were found in the top three core enrichment genes.

Immune cell scoring of the GSE16879 dataset was then performed
by uploading the expression data to the xCell website (Aran et al., 2017).
A heatmap of immune cell scoring demonstrated divergent immune
landscapes between responders and nonresponders (Figure 4A,
Supplementary Table S3). The nonresponders had higher immune

scores than responders and controls. Scores for macrophages, activated
dendritic cells, natural killer cells, and neutrophils in all samples showed
significant differences between responders and nonresponders
(Figure 4B, Supplementary Table S3; one-way ANOVA, p < 0.05
or 0.001). Thus, we hypothesized that TLR2 in immune cells may have
biological effects on the colonic response to infliximab. Moreover, after
tSNE reanalysis of TLR2 expression and cell types in public single-cell
sequencing data of Crohn’s disease patients. Data from the Single Cell
Portal support the major contributor of TLR2 expression in colonic

FIGURE 3 | Confirmation of the core predictors after screening. (A) Misclassification error analysis under the PAM predictive model and model gene number. (B)
Curve of the false discovery rate. The lowest false rate was observed when the threshold was 3.938 in the PAM model. (C) No-score (nonresponders) and yes-score
(responders) for the best classified genes, supporting the favorable predictive value when the range widened. (D) Actual classification effects of these 10 risk genes. (E)
Third-ranked GSEA results from GSE16879 nonresponders. The gene set was a Th1 immune response gene set in the database. (F) The core scoring network
from CytoHubba for combined top differentially expressed genes and lowest misclassification genes.
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tissues is the mononuclear phagocyte system, and lead to our THP-1
selection in the coculture validation (Figure 4C). Based on these
findings, we chose TLR2 as an experimental biomarker to validate
the bioinformatics findings.

The Core Predictor’s Independent
Validation, ROC Tests, and Coculture
Experiment
To validate and evaluate these newly built predictors’ value, we
first displayed the basic expression profiles of top differential

genes using a scatter plot for GSE16879 (Figure 5A). The
expression signature in the discovery cohort was also validated
in independent IBD cohort (GSE159034) including 9 Crohn’s
disease patients. Importantly, we confirmed the significant
differences in TLR2, and consistent difference in TREM1,
CXCR1, FPR1, and FPR2 between responder and
nonresponder groups (Figure 5B). ROC analysis using the
GSE16879 dataset also demonstrated the significant predictive
value of the top five differentially expressed genes [Figure 5C;
TLR2, area under the curve (AUC): 0.829, p = 0.001, 95%
confidence interval (CI): 0.680–0.979; TREM1. AUC: 0.844,

FIGURE 4 | Immune scores landscape between responders and nonresponders. (A) Heatmap of xCell 22 immune cell scores in GSE16879. (B) Independent
score profiles for different immune cells, including macrophages, activated dendritic cells, natural killer cells, regulatory T cells, and Th1-type cells (one-way ANOVA, *p <
0.05, ***p < 0.001). (C) tSNE map of TLR2 expression and cell types in Crohn’s disease single-cell sequence data.
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p < 0.001, 95% CI: 0.716–0.873; CXCR1, AUC: 0.841, p < 0.001,
95% CI: 0.708–0.974; FPR1, AUC: 0.894, p < 0.001, 95% CI:
0.778–1.0; FPR2, AUC: 0.824, p < 0.001, 95% CI: 0.678–0.969].

A coculture system of THP1 and Caco2 cells was established to
elucidate the effects of TLR2 expression on the colonic response
to anti-TNFα therapy (Figure 6A). Efficient TLR2 knockdown
was achieved in THP1 cells using siRNA (Supplementary Figure
S1D), and we evaluated the effects of TLR2 overexpression and
knockdown on TLR2 expression in THP1 cells using Western
blotting (Figure 6B). CCK8 assays revealed the appropriate LPS
and infliximab concentrations to use in coculture (Figure 6C).
Importantly, we showed that infliximab could alleviates the
amplified inflammation [i.e., IL-1β, IL-6, and monocyte

chemotactic protein 1 (MCP1)] and improves the reduced
epithelial permeability [i.e., occludin and zona occludens (ZO)-
1] in the LPS-induced model. Furthermore, the overexpression of
TLR2 in THP1 cells amplified colonic epithelial inflammation, as
measured by IL-1β, IL-6, and MCP1 (Figure 5C; one-way
ANOVA, p < 0.05 or 0.001), and reduced the expression of
tight junction proteins, such as occludin and ZO-1, even in the
context of infliximab rescue. The TLR2 inhibitor C29 alleviated
TLR2 overexpression-induced amplification of epithelial
inflammation and impaired permeability during the infliximab
therapy. By contrast, TLR2 knockdown showed an effective
response to infliximab rescue after the LPS induced
inflammation. (Figure 6C; one-way ANOVA, p < 0.05 or 0.001).

FIGURE 5 | Validation of hub genes and ROC curves. (A) Expression profiles of the top five core genes obtained from the above network in the discovery cohort
(GSE16879; one-way ANOVA, p < 0.05). (B) Validated expression profiles of the top five core genes between responders and nonresponders from an additional
independent IBD cohort (GSE159034; one-way ANOVA or unpaired t-tests, *p < 0.05). (C) ROC curves for the top five core genes in GSE16879.
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DISCUSSION

To date, many studies have explored the factors that predict primary
response to anti-TNFα in patients with CD (Siegel and Melmed,
2009; Ben-Horin et al., 2014; Leal et al., 2015; Naviglio et al., 2018;
Gisbert and Chaparro, 2020). Predictive factors include patient-
related factors (age, sex, weight, smoking, and body mass index),
disease-related factors (disease duration, disease location/extension,
disease behavior/phenotype, disease severity, previous surgery,
C-reactive protein, blood count parameters, albumin, perinuclear

antineutrophil cytoplasmic antibodies, anti-Saccharomyces cerevisiae
antibodies, fecal calprotectin, fecal lactoferrin, genetic
polymorphisms, and prior anti-TNF therapy), and
immune–epithelial biomarkers (several genes and protein
biomarkers) (Lewis, 2011; Prieto-Perez et al., 2013; Lopetuso et al.,
2017; Qiu et al., 2017; Gole and Potocnik, 2019; Gisbert and
Chaparro, 2020). Mucosal genes and cytokines are also important
predictors. Patients with primary nonresponse show a mixed
signature, with increased IL-1β, IL-17α, MMP3, interferon-γ, IL-
10, IL-8, and S100A8 (Leal et al., 2015; Kim et al., 2021). Furthermore,

FIGURE 6 | Experimental validation of core predictors. (A) Coculture system of THP1 and Caco2 cells. (B) Validated Western blotting results for TLR2
overexpression and knockdown. (C) CCK8 results for infliximab and LPS in Caco2 cells. (D) RT-qPCR results for cocultured Caco2 cells after infliximab treatment in the
context of LPS-induced inflammation (one-way ANOVA, *p < 0.05, **p < 0.01, and ***p < 0.001).
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the expression levels of other colonic genes, including IL-17 and IL-
23, also predict the response to infliximab treatment in patients with
CD (Zhang et al., 2015). Nevertheless, another study showed that
anti-TNFα therapy significantly downregulates IL-1β and IL-17α in
nonresponders, suggesting potential predictive value in
nonresponders (Leal et al., 2015). In a study of protein
biomarkers, excellent long-term (3–5 years) use of infliximab was
predicted according to the dose of L-selectin used in patients (Bravo
et al., 2021). In another study, high pretreatment expression of OSM
was also shown to be strongly associated with the failure of the anti-
TNFα therapy in a large patient cohort. Therefore, OSM may be a
potential predictor of the primary response to the anti-TNFα therapy
(West et al., 2017). Although many efforts had been made to identify
ideal biomarkers, no single ideal predictor has been accepted in
clinical guidelines for CD (Danese et al., 2015; Lamb et al., 2019;
Torres et al., 2020). Therefore, in this study, we explored the
identification of new predictors to improve the quality of disease
management in patients with CD.

Integrated bioinformatics information from multiple cohorts can
overcome the bias of single-center data and provide more reliable
conclusions. In one bioinformatics analysis of IBD nonresponders to
anti-TNFα therapy, IL-6 was identified as a central node in the
differential gene interaction network, and the TLR and JAK pathways
were identified as essential nonresponse pathways (Yuan, et al., 2017).
Another multicohort bioinformatics study analyzed mixed patients
with IBD who showed nonresponse; nine hub genes (TLR4, TLR2,
TLR1, TLR8, CCR1, CD86, CCL4, HCK, and FCGR2A) were
identified, and the pathway enrichment highlighted the interaction
between the TLR pathway and FcγR signaling. Genes such as TLR4,
TLR8, and CCL4 have also shown predictive value in nonresponsive
intestinal tissue (Liu et al., 2020). Although these findings provide
meaningful information and identified several candidates for further
screening, CD exhibits significant heterogeneity compared with UC,
and many of these studies did not conduct independent analyses in
patients with CD and did not report experimental validation. By
contrast, in this study, we combined data from multiple cohorts of
patients with CD, confirmed biomedical algorithms, and performed
experimental validation in a coculture cell model. Overall, our
findings identified TLR2 and CXCR1 are important components
of the nonresponse pathways described previously (Bek et al., 2016;
Yuan, et al., 2017; Liu et al., 2020). Another core gene identified in this
study, TREM1, was detected previously as a primary nonresponse
biomarker in a cell-centered meta-analysis (Gaujoux et al., 2019).
Additionally, we also identified FPR1 and FPR2, which mediate the
response of phagocytic cells to the invasion of the host by
microorganisms, revealing important roles in host defense and
inflammation (Zhang et al., 2020). These findings are consistent
with most similar studies but established novel core predictors.

Gene polymorphisms, particularly those in the TNF receptor
superfamily, nuclear factor-κB pathway, IL pathway, and TLR2/9
family, have been shown to be linked to the response to anti-TNFα
therapy in patients with CD (Bek et al., 2016; Bank et al., 2019;
Salvador-Martin et al., 2019). TLR2 variants (e.g., rs4696480,
rs11938228, and rs2289318) are associated with the primary
nonresponse to anti-TNFα therapy in patients with CD (Bank
et al., 2014; Bank, 2015), whereas other TLR2 variants (e.g.,
rs1816702 and rs3804099) are associated with the primary

response (Bank et al., 2014). TLR2 variants (e.g., rs1816702) in
pediatric patients with IBD have been shown to be promising
markers for predicting the anti-TNF therapy response.
Furthermore, TLR2 variants (e.g., rs4696480 and rs11938228) have
been shown to be associated with the response to anti-TNF treatment
in patients with psoriasis (Loft et al., 2018). Although only a few
known variants can influence gene expression (i.e., TNFα rs1799724
and TLR9 rs187084) (Bank, 2015), we observed a direct link between
TLR2 and nonresponders. In other autoimmune diseases, such as
spondyloarthropathy and Behcet’s disease, TLR2 expression is
downregulated after infliximab therapy, supporting the role of
TLR2 in the response to the anti-TNFα therapy (De Rycke et al.,
2005; Keino et al., 2011). TLR2 is a typical TLR that induces NF-κB
pathway-related inflammatory signaling, thereby influencing
inflammatory response outcomes (Scheeren et al., 2014; Wang
et al., 2019; Meng et al., 2020). TLR2 can affect the colonic
immune and epithelial barrier function (Cario et al., 2007;
Scheeren et al., 2014). Higher baseline expression of colonic TLR2
induces severe inflammatory responses (Scheeren et al., 2014; Meng
et al., 2020) and is linked to nonresponse to anti-TNFα treatment.
Accordingly, TLR2 is expected to be a good predictor of nonresponse.

In this study, GSEA identified the monocyte-associated pathway
as a top enriched pathway, and TLR2 is highly related to the
activation of monocytes and the inflammatory reaction (De Rycke
et al., 2005; Bielinski et al., 2011). At the same time, a high immune
score may be associated with a high inflammatory state or immune
stress response. Martin et al. (2019) built a module called GIMATS
module includingmacrophage, DC, and fibroblast markers to predict
the IBD anti-TNFα response after single-cell sequencing. A
macrophage is an important contributor to this GIMATS module.
Thus, macrophages’ immune scoremay be important. However, they
also found other cell types like innate lymphoid cells and glia cells are
abundant in the responders. They also found that “good cells” like
ILCs and Glia enrich in the responders, while our immune scoring of
xCell did not include these “good cell” types. Moreover, we
introduced the immune score aim to determine which cells to
manipulate TLR2 expression in coculture experiments, and our
reanalysis of single-cell data of Crohn’s disease supports that the
mononuclear phagocyte system is the major contributor of TLR2
expression in the colon and leads to the THP-1 selection in the
coculture validation. In our coculture system, higherTLR2 expression
in monocytes amplified the inflammatory response and caused a
worse response to infliximab treatment. Moreover, higher levels of
inflammatory cytokines and reduced tight junction protein
expression were associated with nonresponse. We also found that
the TLR2 inhibitor C29 rescued the nonresponse outcome and
therefore linked TLR2 expression to the response to anti-TNFα
treatment. Similarly, higher colonic TLR2 expression results in
poor survival outcomes in patients with colorectal cancer
(Scheeren et al., 2014). However, a separate study identified a few
nonresponders among pediatric patients with IBD showing
downregulation of TLR2. Nevertheless, the baseline disease status
in responders and nonresponders with CD is different. Responders
have a higher Pediatric Crohn’s Disease Activity Index than
nonresponders prior to therapy, indicating more severe
inflammation and elevated TLR2 in responders (Salvador-Martin
et al., 2020). Additionally, TLR2-knockout mice exhibit more severe
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colitis than wild-type mice (Cario et al., 2007). High TLR2 expression
may result in poor outcomes, whereas low TLR2 expression may
provide some health benefits; this phenomenon may enable the
identification of the optimal cutoff value for the application of
TLR2 as a biomarker.

Interestingly, such discrepancies have also been observed in
studies of the TREM1 gene in patients with CD. Nonresponse to
anti-TNFα therapy in patients with CD is associated with higher
blood TREM1 levels (Verstockt et al., 2019a), whereas low blood
TREM1 levels predict better anti-TNFα response in patients with IBD
(Verstockt et al., 2019b). These findings are consistent with our
findings for TREM1. However, another study indicated that TREM1
was upregulated in nonresponders but that low blood TREM1 levels
may predict poor anti-TNFα outcomes (Gaujoux et al., 2019).
However, in the latter study, the results for the discovery and
validation cohorts were not consistent; thus, these results should
be carefully scrutinized (Gaujoux et al., 2019). A published comment
for this article suggested differentfindings and agreed that the optimal
TREM1 cutoff value should be determined in additional studies
(Verstockt et al., 2019a; Gaujoux et al., 2019). We also propose
that the optimal cutoff for TLR2 expression in CD should be further
evaluated in a larger prospective cohort. In addition, there are several
factors supporting TLR2 as a priority predictor of anti-TNFα
response. First, we found TLR2 and TREM1 as core differential
genes, but TLR2 is more robust after the PAM results’ interaction.
Second, TLR2 is proved to be a more robust predictor than TREM1
among the discovery cohort. Third, previous ideal IBD anti-TNFα
predictors likeTREM1 are also questioned as not a robust predictor of
clinical or endoscopic outcomes following adalimumab treatment in
patients with UC or CD (Verstockt et al., 2022.). Up to now, anti-
TNFα response biomarkers had not been divided precisely into
detailed disease groups. It is difficult to find ideal predictors that
cover multiple diseases at the same time. Especially Crohn’s disease is
quite different from ulcerative colitis in the immune reaction and
pathophysiology. This is a study designed only for Crohn’s disease
patients and supports a reliable application in Crohn’s disease
management. TLR2 will provide a candidate of predictors in the
Crohn’s disease anti-TNFα therapy. We support the subgroup
predictors’ classification in the management of IBD. However, we
will not be surprised to see the future applicability in other
autoimmune diseases like rheumatoid arthritis because predictors
may well indicate the TNFα’s origin and release dynamics.

However, there were some limitations to this study as well,
such as the number of patients included in the study was small.
Because of the coronavirus disease 2019 pandemic and the
limited number of patients taking anti-TNFα therapy, frequent
loss to follow-up, and the relatively high cost of biologics in China
(Kennedy et al., 2020), we failed to recruit a sufficient number of
eligible nonresponders into the validation cohort in our study.
We believe our findings strongly support that TLR2 is a
promising predictor for the response to anti-TNFα therapy in
patients with CD. Future research should focus on determining
the optimal cutoff value for TLR2 expression in a larger cohort of
patients with CD.

In conclusion, bioinformatics analysis and experimental
validation showed that innate immunity played critical roles in
the response of patients with CD to anti-TNFα therapy.

Moreover, we identified TLR2, TREM1, CXCR1, FPR1, and
FPR2 as promising candidates for predicting response to anti-
TNFα therapy in patients with CD. Our findings provided
evidence that TLR2 could be a potential predictor for the anti-
TNFα nonresponse in patients with CD, which could facilitate the
establishment of novel approaches to alleviate disease burden.
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