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Abstract

Background: Chronic inflammation and oxidative stress play fundamental roles in the pathogenesis of non-alcoholic
steatohepatitis (NASH). Previously, we reported that myeloperoxidase (MPO), an aggressive oxidant-generating neutrophil
enzyme, is associated with NASH severity in man. We now investigated the hypothesis that MPO contributes to the
development and progression of NASH.

Methodology: Low-density lipoprotein receptor-deficient mice with an MPO-deficient hematopoietic system (LDLR2/

2/MPO2/2tp mice) were generated and compared with LDLR2/2/MPO+/+tp mice after induction of NASH by high-fat feeding.

Results: High-fat feeding caused a ,4-fold induction of liver MPO in LDLR2/2/MPO+/+ mice which was associated with
hepatic sequestration of MPO-positive neutrophils and high levels of nitrotyrosine, a marker of MPO activity. Importantly,
LDLR2/2/MPO2/2tp mice displayed markedly reduced hepatic neutrophil and T-lymphocyte infiltration (p,0.05), and strong
down regulation of pro-inflammatory genes such as TNF-a and IL-6 (p,0.05, p,0.01) in comparison with LDLR2/2/MPO+/+tp

mice. Next to the generalized reduction of inflammation, liver cholesterol accumulation was significantly diminished in
LDLR2/2/MPO2/2tp mice (p = 0.01). Moreover, MPO deficiency appeared to attenuate the development of hepatic fibrosis as
evident from reduced hydroxyproline levels (p,0.01). Interestingly, visceral adipose tissue inflammation was markedly
reduced in LDLR2/2/MPO2/2tp mice, with a complete lack of macrophage crown-like structures. In conclusion, MPO
deficiency attenuates the development of NASH and diminishes adipose tissue inflammation in response to a high fat diet,
supporting an important role for neutrophils in the pathogenesis of metabolic disease.
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Introduction

The progression of non-alcoholic steatohepatitis (NASH) is

driven by activation of the innate immune system, which

contributes to hepatocyte damage and fibrosis in various ways

[1]. Both Kupffer cells and the complement system have been

shown to be involved [2,3]. Furthermore, neutrophil accumulation

is a prominent feature of the inflammation observed in NASH

[4,5]. These phagocytes are notorious for their ability to induce

tissue damage through generation of aggressive oxidants, which is

largely mediated by the myeloperoxidase (MPO) enzyme [6,7].

Importantly, increased MPO activity has previously been suggest-

ed to promote lipid peroxidation in steatotic livers [4], a process

involved in the progression of simple steatosis to steatohepatitis.

Recently, we obtained additional evidence implicating MPO in

the progression of NASH by showing that accumulation of HOCl-

modified proteins and nitrated proteins was associated with

increased hepatic CXC chemokine expression in the liver of

patients with NASH [5]. MPO also catalyzes nitration of protein

tyrosyl groups, which is associated with human non-alcoholic fatty

liver disease (NAFLD) as well [5,8].

Next to its ability to induce tissue damage, MPO also directly

regulates inflammatory pathways and processes involved in

fibrosis. For example, MPO enhances macrophage cytotoxicity

[9] and induces neutrophil activation [10]. In addition, MPO-

derived HOCl causes fragmentation of the extracellular matrix

[11], resulting in activation of hepatic stellate cells.
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All in all, there is compelling evidence to suggest that MPO

plays a crucial role in the pathogenesis of NASH by affecting

inflammation, oxidative stress, and fibrogenesis. We now report on

studies with NASH-prone [12] low-density lipoprotein receptor-

deficient mice (LDLR2/2 mice) transplanted with MPO2/2 or

MPO+/+ bone marrow. Our data demonstrate that MPO

deficiency attenuates hepatic cholesterol accumulation, inflamma-

tion, and potentially fibrosis in response to a high-fat diet,

indicating an important role for MPO in metabolic liver disease.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee for Animal Welfare of

Maastricht University (Permit Number: 2007-034). The investi-

gation conforms to the Guide for the Care and Use of Laboratory

Animals published by the US National Institutes of Health (NIH

Publication No. 85-23, revised 1996).

Mice
Twelve weeks old female LDLR2/2 (Jackson Laboratory, Bar

Harbor, Maine) and MPO2/2 [13] or MPO+/+ mice, on a C57BL/

6J background, were randomly assigned to the LDLR2/2/MPO2/

2tp (n = 9) or the LDLR2/2/MPO+/+tp (n = 9) group. LDLR2/2

mice were subjected to 11 Gy of radiation. The following day, 107

bone marrow cells of MPO2/2 and MPO+/+ mice were injected

into the tail vein of recipient LDLR2/2 mice. One LDLR2/

2/MPO+/+tp mouse did not survive after bone marrow transplan-

tation. After 10 weeks recovery, NASH was induced by feeding the

mice a diet containing 17% casein, 0.3% DL-methionine, 34%

sucrose, 14.5% cornstarch, 0.2% cholesterol, 5% cellulose, and

21% butter for 8 weeks (Scientific Animal Food and Engineering,

Villemoisson-sur-orge, France) [12]. The engraftment efficiency

was determined as previously described [14] and found to be

95.2%.To evaluate the effect of the intervention in relation to the

diet key parameters assessed in the high-fat fed mice in the current

study are compared with those obtained from chow-fed mice in a

recently published parallel experiment [15].

Tissue Specimens
Mice were sacrificed by CO2 asphyxation followed by removal

of liver and mesenteric adipose tissue. Tissues were divided into

pieces and 1) snap-frozen in liquid nitrogen for RT-PCR, ELISA,

and lipid analysis, 2) fixed with formalin and embedded in paraffin

for histopathology and immunohistochemistry, 3) snap-frozen in 2-

methylbutane after embedding in Tissue-Tek OCT (Sakura

Finetek, Zoeterwoude, the Netherlands).

Lipid Analysis
Tail vein blood was collected after 4 hours fasting in heparin

coated glass capillaries. Plasma and liver triglyceride and

cholesterol were measured using the GPO-PAP kit according to

the manufacturer’s instructions (Roche, Basel, Switzerland) after

lipid extraction was performed using a modified Folch technique

[16]. Protein content was measured by the BCA method (Pierce,

Rockford, IL).

Histology and Immunohistochemistry
Paraffin-embedded sections were cut and stained with haema-

toxylin and eosin for histopathological analysis and with Sirius red

to study collagen distribution. The degree of steatosis, lobular

inflammation, hepatocyte ballooning, and fibrosis was scored

semi-quantitatively on a 3-point scale by an experienced animal

pathologist. Frozen liver sections were immersed in Oil Red O/

isopropanol (Sigma-Aldrich, Zwijndrecht, the Netherlands) to

stain neutral lipids. Immunohistochemical staining for MPO, Ly-

6G, Mac-1, F4/80, and CD3 was performed as previously

described [5,12,14]. For quantification, six 2006 fields were

counted in a blinded fashion by two observers, and cell number

was expressed relative to the sectioned area per mm2. MPO foci

were defined as aggregation of .2 MPO-positive cells.

Quantitative Real-time PCR
Total RNA isolation, reverse transcription, and real-time PCR

was performed as previously described [5], using the primer sets

presented in Table 1. Relative gene expression was normalised

against cyclophilin A and b-actin gene expression.

Nitrotyrosine, Myeloperoxidase, and Alanine Amino
Transferase ELISA

Liver samples were homogenized with a mini-bead beater and

glass beads in lysis buffer (300 mM NaCl, 30 mM Tris-HCl

(pH 7.4), 2 mM MgCl2, 2 mM CaCl2, 1% Triton X-100, in the

presence of Pepstatin A, Leupeptin, and Aprotinin (all at 20 ng/

ml)). Plasma and liver MPO and liver nitrotyrosine were measured

using sandwich ELISA according to the manufacturer’s protocol

(Hycult Biotechnology, Uden, the Netherlands). Plasma alanine

amino transferase (ALT) was determined by ELISA (Antibodies-

online, Aachen, Germany). Samples were analysed in duplicate in

the same run. The intra-assay coefficient of variance was ,10%.

Hydroxyproline Assay
Hydroxyproline content of proteins was measured after acid

hydrolysis with 6M HCl. Amino acid analysis was performed as

recently described [17]. Briefly, samples were introduced into a

tandem mass spectrometer using UPLC. Amino acids were

measured in multiple reaction mode in ESI-positive mode. The

mass transition 131.75.85.9 was used for the identification of

hydroxyproline. Stable isotope-labelled asparagine was used as

internal standard.

Statistics
Data are represented as mean6SEM. Differences between

groups were analysed using the Mann Whitney test, or one-way

ANOVA with Dunnett’s test for multiple comparison. Statistical

analyses were performed using Graphpad Prism 5.02 for Windows

(Graphpad Software, San Diego, CA). A p value,0.05 was

considered statistically significant.

Results

Hepatic MPO Accumulation in LDLR2/2 Mice after High-
fat Feeding

Hyperlipidemic mice such as LDLR2/2 mice provide an

excellent model for the study of NASH since they uniformly

exhibit all of its phenotypic aspects, including hepatic inflamma-

tion and fibrosis, without requiring non-physiological diets

[12,14,18]. Moreover, they exhibit insulin resistance [19],

enabling mechanistic studies of NASH in the appropriate context

of metabolic aberrations as observed in humans. Previously, high-

fat feeding of these hyperlipidemic mice was shown to lead to

elevated plasma MPO levels [12,20]. We now assessed whether a

three weeks high-fat diet also affected liver MPO, using previously

described liver samples [12]. High-fat feeding caused a 3.7-fold

MPO Aggravates NASH
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increase of liver MPO protein in LDLR-deficient animals

(p,0.01; Fig. 1a). This was associated with substantial infiltration

of MPO-positive neutrophils into the liver, and not caused by

expression of MPO in Kupffer cells (Fig. 1b). These neutrophils

frequently assembled into aggregate structures around hepatocytes

with macrovesicular steatosis, resembling the crown-like macro-

phage structures found in adipose tissue of obese animals [21].

Thus, hepatic lipid accumulation triggered by a high-fat diet is

associated with liver neutrophil infiltration, leading to increased

hepatic MPO protein levels.

Reduced MPO Activity in LDLR2/2/MPO2/2tp Mice
The accumulation of MPO in the liver upon high-fat feeding

suggested that MPO might contribute to the pathogenesis of

NASH. To further examine the role of MPO in NASH, we took

advantage of the fact that MPO is exclusively expressed in the

hematopoietic system [22], and performed bone marrow trans-

plantation experiments that resulted in the generation of combined

MPO-deficient, LDL-R-deficient mice (LDLR2/2/MPO2/2tp)

mice. LDLR2/2/MPO+/+tp controls and LDLR2/2/MPO2/2tp

mice had a similar body weight, and diet-induced weight gain

was comparable (LDLR2/2/MPO+/+tp from 19.960.4 to

21.860.3 g, LDLR2/2/MPO2/2tp: from 20.060.2 to 21.960.7 g).

After high-fat feeding, MPO plasma levels in the LDLR2/

2/MPO+/+tp mice were 324 ng/ml whereas plasma from LDLR2/

2/MPO2/2tp animals contained only 22 ng/ml of MPO (p,0.01;

Fig. 2a). Similar to plasma MPO, liver MPO was very significantly

reduced in the LDLR2/2/MPO2/2tp group after high-fat feeding

as shown by quantification of MPO-positive cell numbers, with

levels well under those observed in chow-fed LDLR2/2/MPO+/+

mice(p,0.001; Fig. 2b).

To investigate if the marked reduction of hepatic MPO in

LDLR2/2/MPO2/2tp mice translated into diminished generation

of MPO-mediated cytotoxic products, we studied hepatic levels of

nitrotyrosine, a protein modification generated at sites of

inflammation as a result of the activity of several enzymes among

which MPO, which accumulates in NAFLD [5,8,23]. As expected,

mice in the LDLR2/2/MPO2/2tp group displayed significantly

reduced levels of nitrotyrosine in the liver, consistent with reduced

MPO activity (Fig. 2c; p,0.05).

Characterization of NASH Severity
Histological examination of the livers after H/E-staining

revealed diffuse microvesicular and macrovesicular steatosis in

both groups (Fig. 3). Semi-quantitative evaluation of the extent

of steatosis showed no statistically significant differences between

LDLR2/2/MPO+/+tp and LDLR2/2/MPO2/2tp mice (2.460.3 vs.

2.160.2, p = 0.43). Inflammatory cell foci were observed in both

groups, but less frequently found in the LDLR2/2/MPO2/2tp

group, although the difference was not statistically significant

(0.7560.31 vs. 0.5060.27, p = 0.12). Hepatocyte ballooning, a

feature of progressive human NASH, was not observed in either

group. Plasma levels of ALT, a marker of hepatocyte injury,

were lower in the LDLR2/2/MPO2/2tp mice (31.364.1 U/l vs.

43.263.8 U/l in LDLR2/2/MPO+/+tp mice, p,0.05).

MPO Deficiency Leads to Reduced Liver Cholesterol but
does not Affect Triglyceride Accumulation

Next, the effects of MPO deficiency on the development of

hepatic steatosis were examined in more detail. Oil red O staining

of liver sections did not reveal obvious differences with respect to

distribution or extent of lipid accumulation between LDLR2/

2/MPO+/+tp mice and LDLR2/2/MPO2/2tp mice (Fig. 4a). In line

with this, biochemical analysis revealed similar liver triglyceride

content in LDLR2/2/MPO2/2tp and LDLR2/2/MPO+/+tp animals

Table 1. Primer sequences for quantitative RT-PCR.

Gene Sequence

b-actin Forward GACAGGATGCAGAAGGAGATTACTG

Reverse CCACCGATCCACACAGAGTACTT

Cyclophilin A Forward TTCCTCCTTTCACAGAATTATTCCA

Reverse CCGCCAGTGCCATTATGG

TNF-a Forward CATCTTCTCAAAATTCGAGTGACAA

Reverse TGGGAGTAGACAAGGTACAACCC

IL-6 Forward TTCAACCAAGAGGTAAAAGATTTACATAA

Reverse CACTCCTTCTGTGACTCCAGCTT

Mcp-1 Forward GCTGGAGAGCTACAAGAGGATCA

Reverse ACAGACCTCTCTCTTGAGCTTGGT

Mac-1 Forward ACTTTCAGAAGATGAAGGAGTTTGTCT

Reverse TGTGATCTTGGGCTAGGGTTTC

Adiponectin Forward AAGGAGATGCAGGTCTTCTTGGT

Reverse CCCCGTGGCCCTTCAG

Leptin Forward CACACACGCAGTCGGTATCC

Reverse GTCCATCTTGGACAAACTCAGAATG

SREBP1 Forward GATGTGCGAACTGGACACAG

Reverse CATAGGGGGCGTCAAACAG

SREBF2 Forward GCAGCAACGGGACCATTCT

Reverse CCCCATGACTAAGTCCTTCAACT

HMGCR Forward AGCTTGCCCGAATTGTATGTG

Reverse TCTGTTGTGAACCATGTGACTTC

SR-B1 Forward TTTGGAGTGGTAGTAAAAAGGGC

Reverse TGACATCAGGGACTCAGAGTAG

CD36 Forward ATGGGCTGTGATCGGAACTG

Reverse GTCTTCCCAATAAGCATGTCTCC

SR-A Forward CATACAGAAACACTGCATGTCAGAGT

Reverse TTCTGCTGATACTTTGTACACACGTT

BAMBI Forward GATCGCCACTCCAGCTACTTC

Reverse GCAGGCACTAAGCTCAGACTT

CD68 Forward TGACCTGCTCTCTCTAAGGCTACA

Reverse TCACGGTTGCAAGAGAAACATG

ASMA Forward ACGAACGCTTCCGCTGC

Reverse GATGCCCGCTGACTCCAT

TGF-b1 Forward GCCCTTCCTGCTCCTCATG

Reverse CCGCACACAGCAGTTCTTCTC

MMP-13 Forward ACAAAGATTATCCCCGCCTCATA

Reverse CACAATGCGATTACTCCAGATACTG

Col1A1 Forward AACCCTGCCCGCACATG

Reverse CAGACGGCTGAGTAGGGAACA

IL-1a Forward GCACCTTACACCTACCAGAGT

Reverse AAACTTCTGCCTGACGAGCTT

PAI-1 Forward TGGATGCTGAACTCATCAGACAA

Reverse GCCAGGGTTGCACTAAACATG

TIMP1 Forward GCAACTCGGACCTGGTCATAA

Reverse CGGCCCGTGATGAGAAACT

doi:10.1371/journal.pone.0052411.t001
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(p = 0.24; Fig. 4b). Plasma triglyceride levels were also similar in

LDLR2/2/MPO+/+tp and LDLR2/2/MPO2/tp- mice (Fig. 4c). In

contrast, both plasma and hepatic cholesterol levels were

significantly lower in LDLR2/2/MPO2/2tp mice after the high-

fat diet as compared with the LDLR2/2/MPO+/+tp animals

(33.561.2 vs. 39.561.9 mM; p = 0.01, and 0.07260.005 vs.

0.09060.004 mg/mg protein; p = 0.01, respectively; Fig. 4d,e),

though cholesterol accumulation in the LDLR2/2/MPO2/2tp

group was still higher compared to LDLR2/2/MPO+/+ animals

on chow.

The differences in hepatic cholesterol do not appear to be due to

altered synthesis, since hepatic gene expression of the two master

regulators of cholesterol synthesis, SREBP1 and SREBF2, was

comparable in both groups (p = 0.89, p = 0.32, respectively;

Fig. 4f). Expression of hydroxymethylglutaryl-CoA reductase

(HMGCR), the key rate-limiting enzyme in cholesterol synthesis,

was also not significantly different (p = 0.42; Fig. 4f). Interestingly,

however, expression of SR-A and CD36, two important proteins

involved in the uptake of oxidized LDL, was lower in the LDLR2/

2/MPO2/2tp group, although the difference was only significant

for CD36 (p = 0.63, p,0.01, respectively; Fig. 4f). This may

indicate reduced internalization of oxidized cholesterol in the liver

of LDLR2/2/MPO2/2tp mice. Hepatic expression of SR-B1, a

scavenger receptor mainly involved in the uptake of HDL-derived

cholesterol and cholesteryl esters, was also decreased in LDLR2/

2/MPO2/2tp mice (p,0.01, Fig. 4f).

Figure 1. Strong high-fat diet-induced induction of MPO in the liver. A) Total liver MPO content of LDLR2/2 mice as assessed by ELISA was
almost four-fold increased by three weeks of high-fat feeding (1961 vs. 68610 ng/mg protein, p,0.01; n = 6 in both groups). B) MPO immunostaining
reveals infiltration of neutrophils into the liver of LDLR2/2 mice after three weeks of high-fat feeding (see arrows; 1006 magnification). Many
neutrophils are organized into aggregates predominantly surrounding steatotic hepatocytes (right panel; 2006 magnification). MPO was not
detected in Kupffer cells.
doi:10.1371/journal.pone.0052411.g001

Figure 2. Reduced hepatic MPO and MPO-derived nitrated proteins in LDLR2/2/MPO2/2tp mice after 8 weeks of high-fat feeding. A)
Plasma MPO levels of LDLR2/2/MPO2/2tp and LDLR2/2/MPO+/+tp mice (2267 vs. 324652 ng/ml, p,0.01). B) The MPO-positive cell number is strongly
reduced in the liver of LDLR2/2/MPO2/2tp vs. LDLR2/2/MPO+/+tp mice (49.567.6 vs. 4.061.6 cells/mm2, p,0.01), and much lower than those observed
in LDLR2/2/MPO+/+ mice on chow. C) Hepatic levels of nitrotyrosine, a marker of MPO activity, are reduced in LDLR2/2/MPO2/2tp animals in
comparison with LDLR2/2/MPO+/+tp mice (12667 vs. 14969 mmol/mg protein, p = 0.02).
doi:10.1371/journal.pone.0052411.g002

MPO Aggravates NASH
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Generalized Attenuation of High-fat Diet-induced Liver
Inflammation in LDLR2/2/MPO2/2tp Mice

Active MPO has powerful pro-inflammatory effects, partly

attributable to the generation of oxidized cholesterol [7,24].

Therefore, we next investigated the effect of MPO deficiency on

hepatic inflammation following high-fat feeding. The cellular

nature of the inflammation was investigated by immunohisto-

chemical analysis of Mac-1, Ly-6G, and CD3, markers of Kupffer

cells/macrophages, neutrophils, and T-lymphocytes, respectively.

Interestingly, the number of neutrophils and T-lymphocytes was

significantly reduced in the liver of LDLR2/2/MPO2/2tp mice

(p,0.05, p,0.05, respectively; Fig. 5a), and similar to the

numbers observed in LDLR2/2/MPO+/+ mice on chow. More-

over, additional analyses of LDLR2/2/MPO2/2tp animals consis-

tently revealed a strongly reduced expression of pro-inflammatory

genes previously implicated in the pathogenesis of NASH (Fig. 5b).

For example, tumor necrosis factor-a (TNF-a) and IL-1a mRNA

expression were almost two-fold lower in the liver of LDLR2/

2/MPO2/2tp mice compared with LDLR2/2/MPO+/+tp mice

(p,0.05, p,0.01, respectively). In addition, hepatic IL-6 expres-

sion tended to be reduced in LDLR2/2/MPO2/2tp mice relative to

LDLR2/2/MPO+/+tp mice, although the difference was not

statistically significant. Hepatic monocyte chemoattractant pro-

tein-1 (Mcp-1) mRNA expression was over two-fold lower in

LDLR2/2/MPO2/2tp mice (p,0.01), and, consistent with this,

their CD68 mRNA expression was also significantly reduced.

Taken together, these results show that MPO plays an important

role in high-fat diet-induced inflammation of the liver, promoting

both inflammatory cell recruitment and cytokine/chemokine

expression.

Reduced High-fat Diet-induced Adipose Tissue
Inflammation in LDLR2/2/MPO2/2tp Mice

The pathogenesis of NASH is mediated by cross-talk between

inflamed adipose tissue and the liver [25]. In order to investigate

the potential contribution of adipose tissue-derived factors to the

reduced hepatic inflammation in LDLR2/2/MPO2/2tp mice,

several inflammatory parameters were investigated. First of all, Ly-

6G staining revealed an absence of neutrophils in visceral adipose

tissue in both groups (data not shown). Next, visceral adipose tissue

was stained for the macrophage marker F4/80. High-fat diet-

induced obesity is characterized by infiltration of macrophages

into adipose tissue, where they organize into so-called ‘crown-like

structures’ surrounding dead adipocytes [21]. Interestingly,

adipose tissue of LDLR2/2/MPO2/2tp mice was completely

devoid of such crown-like structures, whereas they were readily

identifiable in adipose tissue of LDLR2/2/MPO+/+tp mice

(Fig. 6a). Quantitative PCR analysis of adipose tissue Mac-1

expression, another macrophage marker, was in line with these

results, showing a marked reduction in LDLR2/2/MPO2/2tp

animals (p,0.05; Fig. 6b). Similarly, expression of Mcp-1, a potent

chemo-attractant for monocytes, was strongly reduced in the

LDLR2/2/MPO2/2tp group (p,0.05; Fig. 6b). Furthermore,

adipose tissue expression of the pro-inflammatory adipokines

leptin and TNF-a was lower in LDLR2/2/MPO2/2tp animals,

whereas expression of adiponectin, which has anti-inflammatory

properties, was higher (Fig. 6c). Thus, MPO deficiency protects

adipose tissue from high-fat diet-induced inflammation, which

may contribute to the attenuation of inflammation in the liver of

LDLR2/2/MPO2/2tp mice.

Decreased Liver Fibrosis in LDLR2/2/MPO2/2tp Mice
Progression of NAFLD, mediated by sustained inflammation,

ultimately results in the development of hepatic fibrosis. Since

MPO exerts strong effects on various mechanisms involved in

fibrogenesis and has been implicated in pro-fibrotic states in

various other chronic inflammatory conditions, we next evaluated

parameters of fibrosis in the liver of LDLR2/2/MPO2/2tp and

LDLR2/2/MPO+/+tp mice. As expected in this dietary model of

NASH, Sirius red staining of collagen in liver sections indicated

only mild fibrosis in both groups (Fig. 7a). However, collagen

content appeared to be slightly decreased in LDLR2/2/MPO2/2tp

as compared to LDLR2/2/MPO+/+tp mice. More detailed quan-

titative biochemical analysis of the collagen/elastin content in liver

homogenates as determined by hydroxyproline quantity revealed a

lower amount in LDLR2/2/MPO2/2tp mice (p,0.01), supporting

that their liver was less fibrotic (Fig. 7b). This was further

substantiated by the fact that hepatic gene expression of collagen

1A1 was lower in the LDLR2/2/MPO2/2tp group (p,0.05;

Fig. 7c). Moreover, mRNA levels of PAI-1, an important regulator

of hepatic fibrosis, were significantly reduced in these animals

(p,0.01; Fig. 7c). Expression of other fibrosis-related parameters

such as tissue inhibitor of metalloproteinase 1 (TIMP1), a-smooth

muscle actin (a-SMA), MMP-13, TGF-b1, and BAMBI was also

reduced although not to a statistically significant extent (p = 0.15,

p = 0.19, p = 0.12, p = 0.06, p = 0.39, respectively); Fig. 7c).

Overall, these data suggest that MPO may promote the

progression of NAFLD towards more advanced stages with

fibrosis.

Discussion

Hepatic inflammation is one of the defining criteria in the

diagnosis of NASH, and primarily characterized by the abundant

presence of neutrophils [26]. Neutrophils are equipped with

formidable enzyme systems that generate factors with a high

potential of causing tissue damage, most prominently represented

by MPO. The results of the present study point to an important

role for MPO in the development of NASH by increasing hepatic

cholesterol accumulation, inflammation, and fibrosis.

The effect of MPO deficiency on plasma lipid levels and

inflammation was previously studied in the context of atheroscle-

rosis [20,27]. In line with our findings, plasma triglyceride levels

were comparable between LDLR2/2/MPO2/2 and LDLR2/

2/MPO+/+ mice, whereas plasma cholesterol was lower in mice

lacking MPO. We now report that hepatic cholesterol levels are

also reduced in LDLR2/2/MPO2/2tp mice after high-fat feeding.

There are several mechanisms by which MPO might affect plasma

and liver cholesterol levels. MPO is known to inhibit cholesterol

efflux from lipid-laden macrophages by oxidizing apoA-I in HDL

[28]. MPO is also able to oxidize other apolipoproteins including

Figure 3. Liver histology of LDLR2/2/MPO2/2tp animals in
comparison with LDLR2/2/MPO+/+tp mice after 8 weeks of high-
fat feeding. Representative pictures of HE-stained liver sections of
LDLR2/2/MPO2/2tp and LDLR2/2/MPO+/+tp mice indicating steatosis and
inflammation (arrows).
doi:10.1371/journal.pone.0052411.g003
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apoB, an important component of LDL [29]. This may alter

interaction with hepatocyte receptors and contribute to dyslipide-

mia by affecting clearance. Furthermore, nitrotyrosine formation

on apoB-100 leads to enhanced uptake of cholesterol-containing

LDL by macrophages [30]. Identification of the relative impor-

tance of these mechanisms for the observed reduction of total liver

and plasma cholesterol levels will require detailed analysis of

lipoprotein profiles. In view of mounting evidence that Kupffer

Figure 4. Decreased cholesterol accumulation in the liver of LDLR2/2/MPO2/2tp mice. A) Representative Oil red O stainings of liver sections
of LDLR2/2/MPO2/2tp and LDLR2/2/MPO+/+tp mice fed a high-fat diet for 8 weeks, showing comparable lipid accumulation (1006magnification). B)
Similar hepatic triglyceride levels in LDLR2/2/MPO2/2tp and LDLR2/2/MPO+/+tp mice after high-fat feeding (0.3160.02 vs. 0.3560.02 mg/mg protein,
p = 0.24). Chow-fed LDLR2/2/MPO+/+ mice show a lower level of liver triglycerides. C) Plasma triglyceride levels are similar in LDLR2/2/MPO2/2tp and
LDLR2/2/MPO+/+tp animals after high-fat feeding (1.5060.09 vs. 1.6460.09 mmol/l, p = 0.42). D) High-fat feeding results in higher plasma cholesterol
levels in LDLR2/2/MPO+/+tp animals as compared with LDLR2/2/MPO2/2tp mice (33.560.1 vs. 39.562.0 mmol/l, p = 0.02). E) Diet-induced liver
cholesterol accumulation is reduced in LDLR2/2/MPO2/2tp mice compared with LDLR2/2/MPO+/+tp animals (0.07260.004 vs. 0.09060.004 mg/mg
protein, p = 0.01), but does not reach the level observed in chow-fed LDLR2/2/MPO+/+ mice. F) Hepatic mRNA expression of key enzymes in
cholesterol metabolism is not altered in LDLR2/2/MPO2/2tp mice, whereas scavenger receptor expression is reduced (SR-B1 1.7-fold, p,0.01; CD36
1.4-fold, p,0.01, SR-A 1.2-fold, p = 0.63).
doi:10.1371/journal.pone.0052411.g004
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cells acquire characteristics similar to lipid-laden macrophages/

foam cells in response to high-fat feeding [2,12], reduced hepatic

cholesterol in LDLR2/2/MPO2/2tp mice may be related to

diminished formation of foamy Kupffer cells.

Regardless of the mechanism, the reduced cholesterol levels in

LDLR2/2/MPO2/2tp animals are significant in light of recent data

indicating that cholesterol plays a pivotal role in the induction of

inflammation in NASH [12,31]. In this context, scavenging of

oxidized cholesterol/lipoprotein particles by Kupffer cells and

hepatocytes may be an initiating factor. Uptake of oxidized LDL/

HDL is mediated by scavenger receptors, and is associated with

chronic inflammation [32]. Of note, scavenger receptor expression

is regulated by oxidized LDL through a positive feedback loop

[33]. The reduced expression of CD36 that we found in the liver

of LDLR2/2/MPO2/2tp mice may therefore be indicative of lower

oxidized LDL levels, consistent with lower MPO activity. Future

studies on the levels of oxidized cholesterol in plasma and liver are

required to further define the mechanisms involved.

In addition to the pro-inflammatory effects related to cholesterol

accumulation and modification, MPO can promote inflammation

in various other ways. Firstly, MPO-mediated generation of HOCl

and NO2 radicals directly results in chlorination and nitration of

proteins and nucleic acids [7] reflecting cellular damage, a potent

inducer of inflammation. The fact that hepatic nitrotyrosine levels

were lower in LDLR2/2/MPO2/2tp mice suggests that MPO-

mediated protein nitration may indeed contribute to high-fat diet-

induced hepatic inflammation. Secondly, MPO and MPO-derived

HOCl activate NF-kB signalling and increase TNF-a production

by macrophages and other leukocytes [9,10,34]. This is consistent

with our observation of lower hepatic and adipose tissue TNF-a
expression in the LDLR2/2/MPO2/2tp mice, and may be related

to an interaction between neutrophil-derived MPO and hepatic

macrophages. Importantly, pro-inflammatory TNF-a and NF-kB

signalling are key factors in the progression of NAFLD [1].

Thirdly, MPO activity is linked to lipid peroxidation, which is a

prominent characteristic of fatty livers, promoting activation of

stellate cells and attraction of inflammatory cells [35,36]. Indeed,

the substantial reduction of hepatic neutrophils and T-lympho-

cytes in LDLR2/2/MPO2/2tp mice provides supporting evidence

for an important role of MPO-mediated lipid peroxidation in

chemo-attraction of leukocytes in NASH.

Interestingly, we observed reduced numbers of adipose tissue

macrophages in LDLR2/2/MPO2/2tp mice. This is in line with

recent data indicating that high-fat diet-induced infiltration of

macrophages into adipose tissue is preceded by neutrophil

infiltration [37]. Moreover, lipid peroxidation is known to be

markedly elevated in adipose tissue of obese mice [38]. Hence, our

findings suggest that the reported early diet-induced sequestration

Figure 5. General reduction of diet-induced hepatic inflammation in LDLR2/2/MPO2/2tp mice. A) Significantly lower number of hepatic Ly-
6G+ neutrophils and CD3+ T-lymphocytes in LDLR2/2/MPO2/2tp mice as compared with LDLR2/2/MPO+/+tp mice after 8 weeks of high-fat feeding (Ly-
6G: 36.762.6 vs. 47.863.1 cells/mm2, p = 0.03; CD3: 49.164.2 vs. 62.965.0 cells/mm2, p = 0.04). Pictures represent examples of the stainings (2006
magnification). B) Hepatic pro-inflammatory cytokine/chemokine expression is substantially reduced in LDLR2/2/MPO2/2tp mice after 8 weeks high-
fat diet (TNF-a 1.8-fold, p = 0.03, IL-1a 1.6-fold, p,0.01, IL-6 1.3-fold, p = 0.67, Mcp-1 2.5-fold, p,0.01), in parallel with a reduction of CD68 expression
(1.3-fold, p,0.05).
doi:10.1371/journal.pone.0052411.g005
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of neutrophils in adipose tissue may promote lipid peroxidation via

MPO-dependent mechanisms. Furthermore, accumulation of

oxidized lipids in adipose tissue is associated with dysregulated

adipokine expression [38], which is in line with our data on leptin

and adiponectin expression. Importantly, reduced adiponectin and

increased leptin secretion by adipose tissue promotes lipid

accumulation, inflammation, and fibrogenesis in the liver [39].

Next to dysregulated adiponectin and leptin expression,

numerous other factors modulated by MPO and MPO-derived

products affect the development of fibrosis. For example, MPO-

generated oxidants activate matrix metalloproteinases [40] while

inhibiting protease inhibitors such as TIMP1 [41]. These actions

are thought to suppress fibrosis. In contrast, high levels of MPO-

derived HOCl can also inactivate matrix metalloproteinase 7 [42],

thereby promoting fibrosis. Furthermore, MPO-related lipid

peroxidation products stimulate stellate cell synthesis of type I

collagen, the major collagen of the fibrotic liver [43], which

expression was significantly reduced in the LDLR2/2/MPO2/2tp

mice. Finally, HOCl fragments the extracellular matrix [11],

which is associated with stellate cell activation as well. Our data

indicate that in vivo, the pro-fibrotic effects of MPO may outweigh

anti-fibrotic processes in the context of NASH, even though the

fibrosis we observed was still very mild.

Our findings are likely to be clinically important since human

NAFLD is associated with high numbers of MPO-expressing cells

and accumulation of HOCl-modified and nitrated proteins [4,5,8].

Furthermore, there is strong evidence for increased oxidative stress

and extensive lipid peroxidation in human NASH [4,36,44]. In

this regard it is also important to note that in comparison to the

mouse, human blood contains 5–7 times more neutrophils with a

longer half-life, each containing about 10-fold more MPO [6,45].

As such, it is likely that the contribution of MPO to the progression

of NAFLD in man is more pronounced. Moreover, high and

sustained MPO activity results in oxidative DNA damage [46],

which is associated with the ultimate and most devastating

complication of NASH, hepatocellular carcinoma [36].

In conclusion, we have shown that MPO-deficiency diminishes

high-fat diet-induced NASH by reducing hepatic cholesterol

accumulation, inflammation, and fibrosis. Furthermore, our data

indicate a general role for MPO in the chronic inflammation

associated with obesity and insulin resistance, and therefore argue

Figure 6. Reduced diet-induced adipose tissue inflammation in LDLR2/2/MPO2/2tp mice. A) Lack of high-fat diet-associated macrophage
‘crown-like structures’ in visceral adipose tissue of LDLR2/2/MPO2/2tp mice as revealed by F4/80 immunostaining (2006magnification). B) Adipose
tissue mRNA expression of the macrophage marker Mac-1 and the macrophage chemokine Mcp-1 is significantly lower in LDLR2/2/MPO2/2tp mice
fed a high-fat diet for 8 weeks (p,0.05). C) Reduced adipose tissue expression of the adipokines leptin and TNF-a in LDLR2/2/MPO2/2tp mice after 8
weeks of high-fat feeding, whereas expression of adiponectin is increased.
doi:10.1371/journal.pone.0052411.g006
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for a re-evaluation of the role of neutrophils and their cytotoxic

products in the pathogenesis of metabolic disease.
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