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Active rehabilitation involves patient’s voluntary thoughts as the control signals of restore device to assist stroke rehabilitation.
Although restoration of hand opening stands importantly in patient’s daily life, it is difficult to distinguish the voluntary finger
extension from thumb adduction and finger flexion using stroke patients’ electroencephalography (EMG) on single muscle activity.
We propose to implement corticomuscular coherence analysis on electroencephalography (EEG) and EMG signals on Extensor
Digitorum to extract their intention involved in hand opening. EEG and EMG signals of 8 subjects are simultaneously collected
when executing 4 hand movement tasks (finger extension, thumb adduction, finger flexion, and rest). We explore the spatial and
temporal distribution of the coherence and observe statistically significant corticomuscular coherence appearing at left motor
cortical area and different patterns within beta frequency range for 4 movement tasks. Linear discriminate analysis is applied on
the coherence pattern to distinguish finger extension from thumb adduction, finger flexion, and rest. The classification results are
greater than those by EEG only. The results indicate the possibility to detect voluntary hand opening based on coherence analysis
between single muscle EMG signal and single EEG channel located in motor cortical area, which potentially helps active hand
rehabilitation for stroke patients.

1. Introduction

Stroke is one of the leading causes of death in the world
[1, 2]. In addition to the high death rate, most stroke patients
may lose many daily activities, such as walking, grasping,
and speaking [3]. To restore the losing motor functions of
a stroke patient, rehabilitation therapies are often necessary
and proven to be effective [4–9]. Studies on fMRI, PET, and
TMS had shown that some areas of the stroke patient’s brain
indicated reorganization [8–10], which played an important
role for restore of patients’ function. There are mainly two
kinds of rehabilitation: passive rehabilitation and active
rehabilitation. The passive rehabilitation directly stimulates

the affected muscles in therapies without involving patients’
volition, such as physical training, electrical stimulation (ES)
[11–14]. On the contrary, active rehabilitation is that stroke
patients’ volition is a necessary part in rehabilitation, inwhich
themuscles are stimulated to be active only when the patients
intent to do so. More importantly, active rehabilitation was
proved to be more effective to restore stroke patient’ motor
function and improve the performance of brain plasticity [15–
17]. Electromyography (EMG) or electroencephalography
(EEG) signals had been utilized and proved to be as useful
tools when volition was involved in active rehabilitation
[18–21]. EMG, as the control signals of ES, could be adopted
to help restore stroke patients’ walk and grasp functions
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[18–20]. However, the muscles are usually coactive, spastic,
or amyotrophic for stroke patients [22]. The voluntary
intention extract from such signals may not be reliable.

In therapies, restoration of hand function is usually a
common procedure for stroke patients, since the loss of
normal hand function can cause great difficulties in daily life.
One of the most challenge movements is that the therapist
needs to help patient to open hand, because the patient’s
hand is usually spastically closed [23, 24]. Extensor Digito-
rum is the muscle that mainly involved in finger extension
(corresponding to hand opening). Although finger extension
can be differentiated from thumb adduction and finger
flexion (corresponding to hand closing) with EMG signals
on extensor digitorum [25–27] for healthy subjects, it is not
easy to classify different hand movements for stroke patients,
since the muscles are coactive, spastic, or amyotrophic [22].
Therefore, extracting the intention of single muscle activity
that involved in hand opening, and distinguishing from the
hand closing, is meaningful for hand function restoration.

EEG is one of the approaches to interpret patient move-
ment intentions [21]. For example, motor imagery (MI) can
be used to distinguish rest from movements, or right from
left motor imagery. In Pfurtscheller and Neuper’s study, ES
was controlled by EEG signals to help patient with spinal cord
injury to restore grasp function [21]. However, EEG in his
study utilize MI that could only distinguish left from right
movement and it is difficult to classify different ipsilateral
hand actions, such as finger extension (corresponding to
hand opening), thumb adduction, and finger flexion (corre-
sponding to hand closing) [28–31]. Since EMG signals are
induced from EEG signals, the coherence is observed only
in correlated EEG-EMG signals [32]. Even though coactive
muscles or spasticity was observed in stroke patient’s ipsi-
lateral hand muscle, the cortico-muscular coherence (CMC)
may not exist, because the collected EMG signals do not
involve patient volition [32]. Conway et al. firstly described
CMC existing in magnetocephalography (MEG) and first
dorsal interosseous muscles surface EMG [33]. Mima and
Hallett extracted coherence between EEG and right Abductor
Pollicis Brevis muscle EMG and described CMC mechanism
[34, 35].The arm and hand coherence had overlap area shown
in Mima and Steger’s study [36].

In this paper, we propose to analyze cortico-muscular
coherence between EMG and EEG signals to distinguish
voluntary ipsilateral hand opening, hand closing, and rest
state. The EMG signals of Extensor Digitorum (ED) muscle
and 35 channels of EEG signals are simultaneously collected
when 8 subjects are instructed to voluntarily execute right
finger extension, thumb adduction, finger flexion, and rest.
We observe the spatial distribution of the EEG channels when
the cortico-muscular coherence reaches peak value. Then
brain channel corresponding to the voluntary movement is
fixed in left motor cortex, and CMC value over different
frequency within beta range is explored for 4 different
executions. After the temporal and spatial feature extraction,
we apply t-test to check if the coherence between EMG
on ED and EEG signals is statistically different among 4
movement states across all subjects. We finally implement
linear discriminate analysis to classify finger extension from

Table 1: Character of subjects.

Subject Age Gender Handedness
1 25 Male Right
2 27 Male Right
3 24 Male Right
4 24 Male Right
5 23 Female Right
6 23 Male Right
7 24 Male Right
8 23 Male Right

thumb adduction, from finger flexion, and from rest states
based on cortico-muscular coherence value.

2. Materials and Methods

2.1. Subjects and Experiments Paradigm. We recruit 8 normal
right-handed volunteers in this study without any healthy
neurology disease history (7 males and 1 female, mean age
24.13 ± 1.36, as shown in Table 1). The subject’s handedness is
tested by the Edinburgh inventory [37]. All subjects are given
informed written consent in the experiment and the protocol
is approved by the ethics committees Zhejiang University.

The subjects are seated comfortably in front of table
and asked to perform four simple hand movement tasks
(finger extension (corresponding to hand opening), thumb
adduction, finger flexion (corresponding to hand closing)
and rest).The first three handmovements mainly correspond
to Extensor Digitorum (ED), Abductor Pollicis Brevis (APB)
and Flexor Digitorum (FD) muscles, respectively. In order to
standardize experiment condition, an orthosis is used to fix
subjects’ finger and upper limb is fixed on the armrest (as
shown in Figure 1(b)).

The total experiment contains two main parts. Firstly,
the subjects are asked to finish the maximum volunteer
contraction (MVC) test [38]. To compare different subject
and same subject at different time, MVC test is necessary,
because EMG amplitudes are different among subjects, so are
the maximum EMG of the same subject. The subjects are
asked to do three separately above-mentioned muscle MVC
test, and the hand is fixed by a splint (as shown in Figure 1(b)).
We take ED muscle for an example here.

There are three states in whole MVC test hinted on
monitor (as shown in Figure 2(a)), ready, action, and rest.
The subject should keep 10 s maximum finger extension with
action hint in themonitor.The subject is asked to finishMVC
test three times for each muscle. The average of this duration
EMG amplitude is donated as EMGmax [38].

After the MVC test, each subject is asked to activate the
target muscle with amplitude close to 25% of EMGmax as
follows.

EMG𝑝 =
EMG𝑟
EMGmax

, (1)

where EMG𝑟 is real-time EMG signal displayed in real-time
feedback bar and EMGmax is the maximum EMG signal from
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Figure 1: (a) Top view of 35 channel quick cap and the mapping to 64 Ch quick cap name. (b) Demonstration of the experiment setup. (c)
Extensor Digitorum (ED), Abductor Pollicis Brevis (APB), and Flexor Digitorum (FD) muscles position.

MVC. EMG𝑝 is proportional of EMG signals and displayed
in real time to instruct the subjects.

A real-time feedback bar is shown to the subject for pre-
cise control of the EMG amplitude (as shown in Figure 2(b)).
The subject should keep the activity of any other muscle than
the target one as minimal as possible. For example, when
ED is the target muscle, APB and FD should be in the rest
state. In each trial, the durations of the ready state, action
state, and rest state are 1 s, 40 s, and 5 s, respectively, (as
shown in Figure 2(b)). The subject should be prepared in the
ready state to reduce onset artifacts in the action state and
minimize eye blinks and irrelevant movements during the
action state.There are total 6 trials for each handmovements.
The subjects should perform four hand movements: finger
extension, thumb adduction, finger flexion, and rest.

2.2. EEG and EMG Acquisition. EEG signals are recorded
from 64 scalp positions system using the international 10–20
system (Synamp2, Compumedics Inc., Charlotte, NC, USA)
referenced to right mastoid and ground at AFz, and motor
cortex related 35 positions are recorded (as shown in Fig-
ure 1(a)). EEG signals are filtered by a 1Hz–200Hz band-pass
filter and sampling frequency is 1000Hz. Before recording,
the reference surface skin is prepared with neuroprep and
alcohol to lower the impedance under 5 kΩ with Ag/AgCl
electrodes.

MVC test
Start Action 

 

Rest Ready
5 s 5 s1 s 40 s

(a)

Start Ready Action Rest

25% 100%0%

EMG value

Experiment

5 s 5 s1 s 40 s

(b)

Figure 2: (a) The scheme of the MVC test and (b) upper is the
scheme of the experiment and bottom is the real feedback bar. The
subject is asked to maintain 25% EMGmax.

EMG signals are recorded by surface electrodes with
band-pass filter between 5 and 200Hz and sampling fre-
quency is 1000Hz using neuroscan Synamp2 EMG acquisi-
tion. The Ag/AgCl electrodes are applied on three surface
muscles (ED, APB, and FD) with using electrical stimulation
which fixed the position. The distance between a pair of
electrodes is 5 cm in ED and FDmuscles, 1 cm inAPBmuscle.
All electrode impedances are kept under 5 kΩ.
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2.3. Signal Analysis. EOG is recorded in EEG and EMG
acquisition at the same time to remove signals contaminated
with eye movement. After removing artifacts and EOG in the
EEG and EMG signals trial by trial, we partition the EEG
and EMG signals into nonoverlapping segments of 1024ms,
which has a frequency resolution of 0.976Hz. There are 150–
190 seconds of available data collected for all subjects. Here
we adopt uniformly 150 segments to estimate CMCvalue over
the whole frequency range. Coherence spectrum is calculated
with a fast Fourier transform algorithm:

𝐶 (𝑓, ch) =
𝐶𝑥𝑦 (𝑓, ch)

𝐶𝑥𝑥 (𝑓, ch) 𝐶𝑦𝑦 (𝑓, ch)
, (2)

where 𝑓 is frequency and ch is channel. 𝐶𝑥𝑦(𝑓, ch) is cross-
spectrum of EEG and EMG, and 𝐶𝑥𝑥(𝑓, ch) and 𝐶𝑦𝑦(𝑓, ch)
are autospectrum of EEG and EMG signal, respectively.
Therefore, CMC is function of frequency and channel. The
confidence level is calculated in

CL𝜕 = 1 − (1 − 𝜕)
1/(𝑁−1)
, (3)

where 𝛼 is confidence level,𝑁 is the number of segments. (𝛼
is 95% in our study and correspondence to 𝑃 value is 0.05;
𝑁 is 150 in our study.) CL represents the confidential limit.
If the value is above CL, the coherence is considered to be
significant.

In order to classify finger extension from thumb adduc-
tion, finger flexion, and rest, we explore the spatial and
temporal distribution of CMC on ED muscle and EMG
signals during the above-mentioned handmovements, which
refers to channel and frequency respectively. For simple
expression, here we define a few abbreviations below.

CMCFE max = ED muscle CMC peak value in finger
extension movement. “FE” represents finger exten-
sion.
CMCTA max = ED muscle CMC peak value in thumb
adduction movement. “TA” represents thumb adduc-
tion.
CMCFF max = ED muscle CMC peak value in finger
flexion movement. “FF” represents finger flexion.
CMCREST max = ED muscle CMC peak value in rest.
𝐹FE max = the frequency which reaches CMCFE max.
ChFE max = the channel which provides CMCFE max.

We first compare the maximal CMC value of ED mus-
cle (CMCFE max versus CMCTA max, and CMCFE max versus
CMCFF max) across the all frequency and all EEG channels to
see whether there is a significant difference across subjects in
ED CMC peak value in finger extension other than thumb
adduction or finger flexion. Next, we then generate the
topographical distribution of CMC on the scalp, find out the
most related cortical area, which means that the channel is
fixed at ChFE max and observe the maximal CMC value of ED
muscle across the frequency range. t-test is applied to check
if there is significant difference across subjects between finger
extension and the 3 other movement tasks. Then, we obtain

Table 2: Number of segments for each subject.

Subject 1 2 3 4 5 8 7 8
Number of segments 25 23 25 22 20 25 21 23

the tuning frequency of finger extension (𝐹FE max) at themost
related EEG channel. t-test is again used to check whether
the ED CMC value acquired at ChFE max and 𝐹FE max has a
significant difference across subjects in finger extension from
the other two above mentioned movements and rest.

If we could successfully classify the significant coherence
of finger extension from other movement tasks, it provides
promise to detect voluntary hand opening (versus hand
closing) during active therapy. Here we divide signals into
20–30 segments for each subject (as shown in Table 2). The
length of the segment is chosen when there is CMC value
appeared above the significant value. We calculate CMC
value within beta frequency between the collected EMG
signals and the most related motor cortical channel. Linear
discriminate analysis is applied on the CMC vector (across
beta frequency) to calculate the classification accuracy in
distinguishing finger extension from thumb adduction, finger
extension, and rest for each subject.

3. Results

We first compare the maximal CMC value of ED mus-
cle (CMCFE max versus CMCTA max and CMCFE max versus
CMCFF max) across the all frequency, and all EEG channels.
With t-test, there is no significant difference in finger exten-
sion from thumb adduction and finger flexion in channel,
frequency and peak coherence value.

An example of the topographical distribution of EDCMC
value in the different actions is shown in Figure 3. At 𝐹FE max,
ED muscle CMC value is more obvious in finger extension
and finger flexion than in thumb adduction, and rest. As seen
from the Figure 3, the significant EDmuscle CMChas overlap
in channels on left motor cortex between finger extension
with thumb adduction, finger flexion and rest.

We fix the channel at ChFE max and observe the CMC
value across frequencies. We calculate the maximal ED
muscleCMCvalue of fourmovement tasks across frequencies
at ChFE max as shown in Table 3.With t-test, there is no signif-
icant difference between finger extension and finger flexion
in ED CMC value. And there is no significant difference in
finger extension from thumb adduction, finger flexion, and
rest in frequency. But there is a significant difference at ED
CMC value in finger extension from thumb adduction and
rest; the 𝑃 values are 0.0102 and 0.0161, respectively, at 𝛼 =
0.05.

Figure 4 shows an example of the distribution of ED
CMC collected on ChFE max across beta frequency range for
4 different movement tasks. We can see that the ED CMC
peak value appears at different frequencies for fourmovement
tasks.

Then, we obtain the tuning frequency of finger extension
(𝐹FE max) at the most related EEG channel. The ED CMC
values acquired at ChFE max and 𝐹FE max for four movement
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Figure 3: The topographical distribution of ED muscle CMC value on finger extension, thumb adduction, finger flexion, and rest. The
significant ED muscle CMC has overlap in these mentioned movements around C3. The significant value was 0.0199, and the color bar
was corresponding to CMC value bar. The peak coherence position and frequency are 15 and 20.51Hz, respectively, in finger extension. The
peak coherence position and frequency are 2 and 15.1367Hz, respectively, in thumb adduction. The peak coherence position and frequency
are 9 and 26.37Hz, respectively, in finger flexion.

tasks that are shown inTable 4.The result of t-test shows there
is significant difference across subjects in finger extension
from the other three movements in ED muscle CMC value
with the 𝑃 values are 0.000000205, 0.000089, and 0.00012
respectively at 𝛼 = 0.05 (as shown in Table 4). It is obvious
to linearly classify ED CMC in finger extension from other
two movements and rest (as shown in Figure 5).

Without too finely tuning on the frequency, we calculated
CMC value within beta frequency between the collected
EMG signals and the most related motor cortical channel.
Linear discriminate analysis is applied on the CMC vector
(across beta frequency) to classify finger extension from
thumb adduction, finger extension, and rest for each subject.
Fourfold cross-validation is adopted in LDA analysis. To
show the superiority of our method, the classification results
by CMC are compared with EEG in this study. This is
because in healthy subject, finger extension could be easily

classified from thumb adduction, finger extension and rest.
But it is difficult in stroke patient due to abnormal coactive
muscle and spasticity [22]. Study has shown that the average
classification accuracy was 71.6% in moderately impaired
subjects and only 37.9% in severely impaired subjects [22].
The voluntary intention extract from such signals may not
be reliable. Therefore, good classification results by EMG do
not necessarily result in good performance in patients. Here
we classify finger extension from thumb adduction, finger
flexion, and rest using CMC and by EEG only at the same
channels (as shown in Figure 6).

The average accuracies across subjects by CMC are
78.96 ± 4.29%, 81.00 ± 7.34%, and 78.025 ± 9.39%, respec-
tively, to distinguish finger extension from thumb adduction,
finger flexion, and rest (see Table 5). It indicates the possibility
to detect voluntary hand opening (versus hand closing) based
on coherence analysis between EMG signal on one single
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muscle and one EEG channel located on motor cortical area.
The average accuracies by EEG across subjects are 71.27 ±
12.32%, 71.12 ± 12.80%, and 81.39 ± 11.52%, respectively, (see
Table 5). CMC classification accuracy is around 10% higher
in average and less variance than EEG classification in thumb
adduction and finger flexion, which is the main function
(hand opening) we focused on for hand rehabilitation. The
classification results on finger extension versus rest by CMC
and EEG are similar (less average and less variance), which
matches the good performance by EEG to distinguish move-
ment from rest [39].

Furthermore, we do the 3-class classification (finger
extension versus thumb adduction versus finger flexion) to
extract finger extension. The best two subjects’ accuracies by
CMC are 75.80% and 79.56%. The mean accuracy of the 8
patients by CMC is 69%, which is greater than 64% by EEG.

4. Discussion and Conclusion

Active rehabilitation involves patients’ voluntary movement
intention. It is effective to restore stroke patient’ motor
function, such as hand opening (one of the most challenge
movements) [23, 24]. In this study, we focus on finger
extension, which is mainly involved in hand opening. EMG
could be easily to extract such intention, while it is not
reliable to extract such intention due to the abnormal coactive

muscles and spasticity in stroke patient [22]. EEG can be used
to interpret patient movement intentions, but it is not good
enough to distinguish ipsilateral hand movements [28–31].
Cortico-muscular coherence exists between EEG and EMG
even on the abnormal muscle when stroke patient’s inten-
tion appears [40]. We propose to analyze cortico-muscular
coherence between EMG and EEG signals to distinguish
voluntary ipsilateral hand opening, hand closing, and rest
state. The EMG signals of Extensor Digitorum (ED) muscle
and EEG signals are simultaneously collected when 8 subjects
are instructed to voluntarily execute right finger extension,
thumb adduction and finger flexion, and rest. We observe
significant cortico-muscular coherence appearing at the left
motor cortical area of the EEG channels, which is consistent
with findings in Mima and Hallett’s study [36] and shows
different patterns within beta frequency range for 4 different
executions. Statistical t-test shows that the coherence values
of finger extension collected at tuning frequency and themost
related channel are statically different from 3 other states,
respectively, across all subjects. We apply linear discriminate
analysis on the coherence pattern within beta range and
average accuracy to distinguish finger extension state from
thumb adduction, finger flexion, and rest. CMC classification
accuracy is around 10% higher in average and less variance
than the performance using EEG only in distinguishing
finger extension from thumb adduction and finger flexion,
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Figure 5: ED muscle CMC values at ChFE max and 𝐹FE max in finger extension could be classified from thumb adduction, finger flexion, and
rest. Finger extension versus thumb adduction (a). Finger extension versus finger flexion (b). Finger extension versus rest (c). Blue circle is
EDmuscle CMC values in finger extension. Red circle is EDmuscle CMC value in thumb adduction. Red asterisk is EDmuscle CMC value in
finger flexion. Red cross is EDmuscle CMC value in rest. Green l line distinctly classified ED EMC in finger extension from thumb adduction,
finger flexion, and rest.

Table 3: ED muscle CMC on four movements at ChFE max (Ch is channel).

Subject Ch
Finger extension Thumb adduction Finger flexion Rest

Peak Frequency Peak∗ Frequency Peak Frequency Peak∗ Frequency
CMC (Hz) CMC (Hz) CMC (Hz) CMC (Hz)

1 24 0.0242 35.64 0.0234 35.64 0.0377 35.16 0.0185 17.09
2 9 0.0443 15.63 0.0207 37.10 0.0356 30.27 0.0192 41.02
3 15 0.0255 20.51 0.0187 15.13 0.0222 26.37 0.0204 28.32
4 2 0.0302 12.70 0.0296 12.70 0.0346 10.25 0.0300 33.20
5 9 0.0266 36.62 0.0221 33.69 0.0128 12.70 0.0248 29.97
6 24 0.0286 13.18 0.0243 10.25 0.019 25.88 0.0255 30.76
7 16 0.029 37.60 0.0172 13.18 0.0116 32.23 0.0207 40.53
8 24 0.0396 21.00 0.024 13.67 0.0273 31.25 0.0211 10.25
Mean / 0.031 24.11 0.0225 21.42 0.0251 25.51 0.0225 29.89
SD / 0.0071 10.80 0.0038 11.75 0.0103 9.19 0.0039 10.64
∗Represents that there is significant difference compared with finger extension. The ED CMC value compared in finger extension from thumb adduction and
rest is significant and the P values are 0.0102 and 0.0161, respectively, at 𝛼 = 0.05.

which is the main function (hand opening) we focused on
for hand rehabilitation. The classification results on finger
extension versus rest by CMC and EEG are similar (less
average but less variance), which matches the results that
EEG can be used to distinguish movement from rest [39].
Furthermore, the classification results on finger extension out
of 3 classes (finger extension versus thumb adduction versus
finger flexion) by CMC are also greater than the performance
by EEG only.

The results indicate the possibility to detect voluntary
hand opening based on coherence analysis between one
single muscle EMG signal and one EEG channel located on
motor cortical area. One of the challenges is to accurately
capture the instantaneous CMC value in real-time recoding.
In the real application, EEG and EMC signals can be recorded
from the patients at the same time.The significant coherence
(CMC) value can be estimated to better classify the voluntary
finger extension than EEG only and used as a more accurate
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Table 4: ED muscle CMC value in four movements at ChFE max and FFE max.

Subject Channel Frequency (Hz) Finger extension Thumb adduction Finger flexion Rest
Peak∗ Peak∗ Peak∗ Peak∗

1 24 35.64 0.0242 0.000736 0.0331 0.0021
2 9 15.63 0.0443 0.0056 0.007 0.0022
3 15 20.51 0.0255 0.0066 0.0025 0.0076
4 2 12.70 0.0302 0.0296 0.0045 0.000017
5 9 36.62 0.0266 0.0103 0.0022 0.0044
6 24 13.18 0.0286 0.0025 0.0015 0.0023
7 16 37.60 0.029 0.0063 0.0038 0.0114
8 24 21.00 0.0396 0.0022 0.0019 0.0051
Mean / 24.11 0.0310 0.0080 0.0071 0.0044
SD / 10.79 0.0071 0.0093 0.0107 0.0037
∗represents that there is significant difference compared with finger extension. The P values are 0.000000205, 0.000089, and 0.00012, respectively, at 𝛼 = 0.05.
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Figure 6: Classification accuracies are shown in the figure to distin-
guish finger extension from thumb adduction (a), finger flexion (b),
and rest (c). FE, TA, FF are finger extension, thumb adduction and
finger flexion, respectively. Green represents classification based on
CMCand yellow represents classification based onEEG.The average
accuracies by CMC and EEG are shown in Table 5.

Table 5: Average accuracies of CMC and EEG classification.

FE versus TA FE versus FF FE versus REST
CMC 78.96 ± 4.29% 81.00 ± 7.34% 78.025 ± 9.39%
EEG 71.27± 12.32% 71.12 ± 12.80% 81.39 ± 11.52%

control signal to evoke the electrical stimulation in active
rehabilitation for hand movement. With further experiments

on stroke patients, CMC needs to be compared with EMG
on abnormal muscles to classify the hand movement. It will
eventually help develop a new rehabilitation protocol that can
benefit the hand rehabilitation for stroke survivors.
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