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Abstract

The cellular structure of plant tissues is a key parameter for determining their properties. While the morphology of cells can
easily be described, few studies focus on the spatial distribution of different types of tissues within an organ. As plants have
various shapes and sizes, the integration of several individuals for statistical analysis of tissues distribution is a difficult
problem. The aim of this study is to propose a method that quantifies the average spatial organisation of vascular bundles
within maize stems, by integrating information from replicated images. In order to compare observations made on stems of
different sizes and shapes, a spatial normalisation strategy was used. A model of average stem contour was computed from
the digitisation of several stem slab images. Point patterns obtained from individual stem slices were projected onto the
average stem to normalise them. Group-wise analysis of the spatial distribution of vascular bundles was applied on
normalised data through the construction of average intensity maps. A quantitative description of average bundle
organisation was obtained, via a 3D model of bundle distribution within a typical maize internode. The proposed method is
generic and could easily be extended to other plant organs or organisms.
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Introduction

Crop species like maize (Zea mays L.) are of increasing interest for

cattle feeding or for bioethanol production [1–3], and many

studies have been devoted to the elucidation of relationships

between cell wall chemical composition and degradability [4–6].

In addition to the variability of the composition of cell types, the

morphology of cells should be taken into account to better

understand plant degradation or mechanical properties [7,8]. Cell

morphology is typically investigated through the distribution of

morphometric features that quantify cell size and shape [9–12]. At

a larger scale, the proportion and the spatial distribution of tissues

within plant organs may impact the mechanical and degradation

properties of the tissues. Few attempts have been made to obtain a

quantitative description of this spatial organisation.

The general aim of this work was to develop generic procedures

to establish statistical 3D mappings of biological structures

organisation within an organ. Maize internodes are taken as a

model of the lignocellulosic stem. In the present study, the spatial

organisation of vascular bundles within the stem is considered.

Vascular bundles are important in terms of stem structure and

development. They are composed of several types of cells with

different compositions and morphologies [13,14]. It is suspected

that they have a strong impact on the mechanical behaviour of the

whole stem. As they are hardly degradated by enzymatic reactions,

they directly impact the global degradability of the stem. In

addition, the size, the shape and the orientation of the parenchyma

cells vary with the distance to the nearest bundle. Vascular bundles

do not form a continuous tissue, but may be instead considered as

individual objects within the stem cross-section. We propose to

describe their spatial organisation using tools from spatial statistics.

Within this framework, the observed point patterns are considered

as random realisations of a more general point process [15–17].

The aim is to describe the process on the basis of measurements

made on one or several representative observations. The simplest

tool to describe a point process is the intensity, which corresponds

to the expectation of the number of points within a given region.

More complicated tools can be used to describe interactions

between points, such as repulsion or clustering. In the present

work, the spatial distribution of vascular bundles is investigated

through the construction of average intensity maps, which

integrate observations made on several samples.

Due to experimental factors and to biological variability, stems

exhibit a strong heterogeneity in shape and size, making it difficult

to compare or summarise individual observations. A possible

solution is to consider a reference structure, such as the organ

boundary, and study variations of tissue morphology as a function

of the distance to the boundary. This results in morphology

profiles, that can be normalised for allowing comparison between

individuals [18–20]. In order to analyse differences in spatial

organisation, reduction to profiles is not sufficient. A better
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approach is to apply a geometric transform that project each

individual observation into the same reference shape. This type of

question is very common in medical image analysis when an

individual human brain has to be compared to a reference atlas, or

for building the reference atlas by merging a collection of

individual images [21,22]. Such questions also arise at lower

scales, for describing spatial organisation within a reference cell or

organ [23,24]. An underlying assumption in cartography or atlas

construction is the homology of the structures, i.e., the direct

correspondence of pixels or voxels belonging to different subjects.

In the case of plant stems, the number and the position of the cells

and of the vascular bundles vary between plants, i.e., homology

cannot be easily found. For the contour of the organ, some

homology can generally be assumed. Each contour may be

deformed to match a reference contour, and it is possible to merge

several images. The reference contour can be explicitly chosen

from the set of individual contours. A better approach is to

compute an average contour that summarises the set of contours.

Several families of methods have been developed for modelling

shape contours. Euclidean Fourier descriptors are quite popular

for identifying the most relevant variations in shape, but their

interpretation can be difficult [25–28]. Statistical analysis of shapes

is a more general approach that describes structures by a set of

landmarks located at particular positions, typically points of high

curvature [29–31]. For both approaches, appropriate statistical

tools make it possible to extract the average shape as well as the

variations of shapes around the average.

In order to build a statistical map, data from replicated images

acquired for several plants are integrated. The vascular bundles

correspond to observed point patterns that are bounded by the

stem contour and that are repeated over several stems and

positions within the stem. This study aims at estimating the

intensity map of vascular bundles based on the replicated data. In

order to compare intensity maps for different experimental factors,

it is necessary to build a reference stem model. The reference stem

is obtained by modelling the contour of several stem slabs. The

positions of the vascular bundles are obtained by macroscopy

imaging and projected onto the reference stem mode. Spatial

normalisation makes it possible to compute an intensity map of

vascular bundles averaged over several stem images.

Materials and Methods

Material
Maize internodes were provided by Biogemma (Paris, France),

within the project GRASSBIOFUEL. Two genotypes were

considered: the wild type, and a mutation on a gene coding for

an UDP D-glucose dehydrogenate [32,33]. Seven stems were

sampled from each genotype. For each stem, the internode located

below the first ear was truncated into seven or eight 1 cm high

slabs. Slabs were numbered from A to G or H, starting from the

top of the internode (Fig. 1).

General approach
Figure 2 gives a graphical overview of the overall proposed

methodology. The first step was to define a common reference to

compare all observations. The reference stem was obtained by

computing a statistical model of the average stem contour. For

practical reasons, it was necessary to remove the bark of the stems

before slicing to obtain vascular bundle observations. It was

therefore not possible to use the same images for computing the

average stem contour and for identifying the position of vascular

bundles. Scan images of stem slabs acquired before bark removal

were used for computing the contour of the reference stem (Figs. 2-

A,B,C). Macroscopic images of stem slices after bark removal were

used for identifying the position of individual vascular bundles

(Fig. 2-E). A spatial normalisation procedure is applied to the

positions of the vascular bundles in each stem slice, resulting in a

set of points projected onto the reference stem (Figs. 2-F,G). Once

projected onto a common reference space, the normalised point

patterns can be described through their intensity map (Fig. 2-H).

Since intensity maps are computed in the same reference space, it

is possible to compute an average intensity map that takes all of the

images into account. The result is a representation of the vascular

bundle intensity variations within a reference stem (Fig. 2-D).

Modelling the 3D stem shape
Images of slab contours. Colour images of stem slabs were

acquired using a flat scanner. Each side of the slabs was observed,

resulting in a symmetric replicated observation for each slab

section. The red, green and blue channels were coded with values

Figure 1. Sampling of a maize internode. All slabs were used for
contour modelling. Only slabs A, D and G (marked with a cross) of each
internode were used for macroscopy imaging.
doi:10.1371/journal.pone.0090673.g001

Figure 2. Graphical abstract of the proposed methodology. (A)
Image acquisition of maize stem slabs. (B) Spatial normalisation and
alignment of slab contours. (C) Modelling of a reference stem. (D)
Global intensity map obtained by averaging individual normalised
maps. (E) Acquisition of macroscopy image of stem sections. (F)
Automatic segmentation of vascular bundles. (G) Projection of bundle
positions obtained in F onto the reference space, using the stem model
obtained in C. (H) Computation of intensity map for the sample image
projected onto the reference space.
doi:10.1371/journal.pone.0090673.g002

Statistical Intensity Maps from Replicated Images
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between 0 and 255. Images were acquired with a resolution of

720DPI, corresponding to 35.3 mm/pixel (Fig. 3-A).

Slab images were converted to Hue-Saturation-Value colour

space, and the ‘‘value’’ channel was used for the segmentation of

slabs. A threshold was applied to the ‘‘value’’ channel to identify

regions corresponding to each slab [34]. The value channel ranged

from 0 to 1. The ‘‘value’’ histogram of each image exhibited two

peaks around 0.1, corresponding to the background, and 0.8,

corresponding to the slabs. A threshold value equal to 0.5 was

empirically chosen in between. A binary image of the contour was

obtained for each slab face by keeping only boundary pixels (Fig. 3-

B), resulting in approximately 14 or 16 contours for each stem.

Descriptors of slab contours. In order to compute statis-

tical models of stem shape, descriptors of individual contours that

can be compared and averaged must be assessed. The contours

were described as polygons rotated to have the same orientation

and the same number of vertices whose coordinates are expressed

in relation to to the centre of gravity of the slab. The procedure

consisted first in chaining the adjacent pixels of the contour (Fig. 4-

A). To ensure that contour width was one pixel, a homotopic

thinning was first applied to the binary image [35]. An initial pixel

was arbitrarily chosen on the contour. The neighbours of the

current pixel were considered, and the first unprocessed neighbour

was chosen as the next current pixel. The polygon was obtained by

iterating along the pixels of the contour until coming back to the

initial pixel. The resulting polygons were translated so that their

centre of gravity would be located at the origin and eventually re-

oriented so that their orientation would be counter-clockwise.

Polygons were rotated so that their symmetry axis would be

aligned with the vertical axis. The symmetry axis of each polygon

was identified by flipping the polygon around the y-axis and

rotating the flipped polygon so that the difference between the two

polygons was minimal (Fig. 4-B). The difference between the two

polygons was obtained by computing the sum, over all vertices of

rotating polygon, of the minimal distance between current vertex

and the original polygon. The minimum was computed using

golden section search and parabolic interpolation, by calling the

‘‘fminbnd’’ Matlab’s function. The rotation angle minimizing the

difference was divided by 2, and the corresponding rotation

transform was applied to the original polygon, resulting in a

polygon pointing upwards. The vertex located on top of each

polygon was chosen as initial vertex (i.e. with index equal to 1).

The vertex number of each contour polygon was reduced to the

same number by sub-sampling, starting from the top vertex. The

number nv of vertices of resampled polygons was chosen equal to

200. The position of each vertex was defined by the two x and y

coordinates expressed in relation to the centre of gravity. Each

contour was therefore described by the nc = 26nv = 400 coordi-

nates of the vertices of its polygon. All the resulting polygons

started from the upper vertex, had the same number of vertices,

and were oriented counter-clockwise. The vertices of all polygons

were assumed to be in direct correspondence. A data table XY(i, j)

was built with the rows i corresponding to the individual slabs and

the columns j corresponding to the 400 x and y coordinates of the

polygon vertices.

Statistical analysis of stem contours. Statistical analysis of

the contour was done in two steps. First, a principal components

analysis was applied to help identifying the slab populations with

similar or different contours. Then an analysis of variance was

applied on the first principal components to identify which factors

were relevant for modelling.

Principal components analysis was applied on the XY data table

formed by the coordinates of slab contours. Principal component

analysis is a multidimensional data treatment that reveals the

similarities between samples by taking all variables into account.

Similarity maps, drawn from the principal component scores, are

used to compare the samples and to identify clusters of similar

samples. Applied to ordered signals such as polygon coordinates,

synthetic polygons can be reconstructed from principal component

loadings, highlighting changes from the average contour.

Figure 3. Imaging of slab contours. (A) Acquisition of slab images
for a sample internode. (B) Automatic segmentation of slab contours.
doi:10.1371/journal.pone.0090673.g003

Figure 4. Construction of contour polygons. (A) Chaining contour pixels. (B) Determination of the polygon orientation. Black: original polygon;
blue: left-right flipped polygon; green: minimal difference between the two polygons. Pink line: symmetry axis.
doi:10.1371/journal.pone.0090673.g004

Statistical Intensity Maps from Replicated Images

PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e90673



A general linear model was applied to each of the first five

principal component scores SC(i, j), i being the index of the slab

contour, and j the principal component index. The general linear

model used in this study took into account the fixed effect aG of the

genotype G (G~fM,Sg), bC the fixed effect of the cutting position

C (C~fxa,ab,bc,cd,de,ef ,fg,ghg, ‘‘ab’’ being the cutting position

between slabs A and B), and the fixed effect cG|C of their

interaction. A random effect dS(G) of the stem S nested in the

genotype G was taken into account, resulting in the final model:

SCG,S,C(i,j)~m(j)zaG(j)zbC(j)zcG|C(j)zdS(G)(j)ze(i,j) ð1Þ

where m(j) is the intercept and e(i, j) is the residual error. An

analysis of variance was applied to each of the effects and for each

of the first five principal components. The effects whose p-value

were greater than 0.05 were considered as not signifiant and were

not taken into account for the statistical modelling.

Statistical modelling of stem contours. The aim of

contour modelling was (1) to define a reference stem contour

used to project all observations and (2) to compute an estimate of

the stem contour corresponding to each macroscopy image. A

simplified general linear model was computed on the data table

X(i, j) corresponding to the vertex coordinates. Removing non

relevant effects improves the estimation of the other effects. The

linear model took into account the fixed effects of the genotype, of

the cutting position, and the random effect of the stem nested to

the genotype:

XYG,S,C(i,j)~m(j)zaG(j)zbC(j)zdS(G)(j)ze(i,j) ð2Þ

The intercept values m(j) were used to compute the reference

average contour that will be used for subsequent spatial

normalisation. The estimated coefficients aG(j) and dC(j) were

used together with the intercepts to compute the model contour

for each genotype and for each cutting position respectively.

Combining the genotype and the cutting position coefficients

made it possible to reconstruct 3D models of internodes for each

genotype.

The slab effects were estimated for each of the three slabs A, D

and G that were sampled for macroscopy imaging. The estimated

coefficients d’B(j), B~fA,D,Gg were obtained from the average

of coefficients for the two cutting positions around each slab. The

stem contour corresponding to each macroscopy image was

obtained by adding the intercepts m(j) with the genotype, slab and

stem effects corresponding to the image.

Estimation of vascular bundle intensity
Imaging vascular bundles. Macroscopy imaging was used

to visualise vascular bundles within the whole stem cellular

structure. Three slabs were chosen to study bundle intensity in the

upper, middle, and lower part of each stem, corresponding to

labels A, D and G (Fig. 1). The bark of each slab was manually

removed to allow slicing of the whole stem section. Slices (150-mm

thick) were obtained using a vibrating lame microtome (MI-

CROM, HM 650 V, Microm International GmbH, Walldrof,

Germany). Stem slices were imaged using the macroscopy imaging

system developed at INRA Nantes, and known as the ‘‘BlueBox’’

[36,37]. The device provides dark field images with a field of view

of approximately 25 mm2 to 1 cm2, with a resolution of 3–7 mm.

Such images have been shown to be relevant for quantifying the

cellular morphology of plant tissues such as tomato pericarp

[19,36] and apple parenchyma [38]. From 12 to 16 images per

slice were combined to obtain mosaic images of the whole stem

parenchyma sections. Images were stitched by using a multi-

resolution pyramid approach [39]. The size of mosaic images was

approximately 450064500 pixels, with a resolution equal to

3.62 mm by pixel, and grey values coded between 0 (black) and

255 (white). As the diameter of most parenchyma cells ranged

between 50 and 150, the resolution of macroscopy images made it

possible to observe the cellular morphology. Moreover, the field of

view gave access to the global organisation of plant tissues within

the inner parenchyma of the stem (Fig. 5).

Segmentation of slice contours. Slice contours were

obtained by applying a watershed algorithm that detected cells,

and then applying a hole-filling algorithm. A morphological

closing of radius 30 was applied to smooth the boundary. The

contours of the resulting binary images were transformed into

polygons using the pixel-chaining procedure described previously.

Coordinates were multiplied by image resolution in order to be

expressed in millimetres. In order to smooth the contour and

reduce further computation time, the vertex number of the

contours was reduced using the Douglas-Peucker algorithm [40].

The principle is to recursively subdivide portions of polygons until

the maximum distance between original and simplified polygons is

below a given tolerance value (Fig. 6). Portions of polygons were

subdivided by determining the furthest vertex from the line joining

the extremities of the current portion. A tolerance of 100 microns

was used, resulting in polygons with vertex numbers between 10

and 30. Each polygon was translated so that its centroid would be

located at the origin.

Segmentation of vascular bundles. Vascular bundles

appeared as sets of small cells with thick walls, with diameters of

approximately 300 mm. Since bundles contain several regions with

cells of various sizes, differentiating vascular bundles from

parenchyma cells is difficult. Images were enhanced by using

alternate sequential filters [35], which consist in applying

morphological openings and closings of increasing size. Structur-

ing elements were discrete disks with radii ranging from 1 to 10

pixels. This resulted in images without parenchyma cell walls,

while vascular bundles were still visible (Fig. 7-B). Vascular

Figure 5. Imaging of vascular bundles. Sample image of stem
section obtained by macroscopic imaging, with a detail of the whole
image.
doi:10.1371/journal.pone.0090673.g005
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bundles were segmented with extended minima filters. A threshold

of 30 was used to detect large bundles. A threshold of 20 was used

to detect small bundles. To separate collapsing bundles, a

watershed was applied to the complement of the distance map

(Fig. 7-C). The centroid coordinates of each bundle were

computed and translated according to the centroid of the contour.

This resulted in a point pattern bounded by the slice contour

(Fig. 7-D).

Spatial normalisation of macroscopy images. In order to

compare stems and vascular bundle intensity, it is necessary to

project each individual slice onto the same reference coordinate

system by applying a spatial normalisation procedure. The stem

contour was used as a reference. One difficulty was that the stem

contour was not visible on macroscopy images. Therefore, the

spatial normalisation procedure consisted in (1) a rigid transform

that replaced the slice contour and the bundles within the

individual stem contour obtained from statistical modelling and (2)

a non-rigid transform that deformed individual stem contour into

the reference stem contour.

The polygons corresponding to the slice contour and the

individual stem contour model were superimposed. Both contours

were already centered at the origin, but it was necessary to

determine the rotation that minimised the difference between the

slice contour and the stem contour model. The optimal rotation

angle was computed using the procedure described previously for

the normalisation of slab contours. The corresponding rotation

transform was applied to the coordinates of the slice contour and

bundle positions (Fig. 8-A).

The reference stem contour was then considered together with

the slice contour and the individual stem contour (Fig. 8-A). Each

point within the individual slice was projected into the reference

coordinate system using a transform based on polar coordinates.

More precisley, the polar coordinates (r’(x),h’(x)) of a point x in

the reference space were obtained from its polar coordinates

(r(x),h(x)) in the space of the individual centred slice. The

angular position h(x) was maintained, and the distance to origin

r(x) was adjusted according to the shape of the stem. For each

point x, a ray emanating from the origin and passing through the

point is considered. The ray intersects both the model contour of

the current slice and the reference contour (Fig. 8-A). Distances to

the origin of each intersection point are designated dr(x) for the

reference contour and ds(x) for the contour of the current slice.

The normalised coordinates of the point are obtained as the ratio

of distances to the origin of the two intersection points (Fig. 8-A):

r’(x)~r(x):dr(x)=ds(x) ð3Þ

The same normalisation procedure was applied to the position of

the bundles and to the vertices of the macroscopy contour. The

result was a set of points representing vascular bundles for each

slice, together with the contour polygon of the slice, both expressed

in the coordinate system of the reference contour (Fig. 8-B).

Estimation of vascular bundle densities. Estimation of

vascular bundle densities was performed using kernel-based

intensity estimation [41,42]. The principle is to replace each point

by a predefined smooth function (called the kernel) centred on the

point, and to compute the sum of all shifted kernels. Computations

are performed using normalised bundle positions. The contour of

each slice was used as a bounding frame. A bundle intensity map

was estimated for each individual slice normalised into the

reference of the model stem contour, resulting in an estimated

map of bundle intensity for each slice. An isotropic gaussian

smoothing kernel was used, with a default value calculated by a

simple rule of thumb that depended only on the size of the

bounding frame. Default edge correction was applied.

Software implementation. Image processing was per-

formed within the Matlab environment (The MathWorks, Natick,

MA, USA). Geometric operations on polygons and point sets were

performed using software developed within the Matlab environ-

ment and integrated into ‘‘MatGeom’’, a freely available library

for geometric computing within Matlab (http://matgeom.

sourceforge.net/). Estimation of intensity maps was performed

within the R Software using the spatstat package [41]. Statistical

analyses (principal component analyses, general linear models)

were performed within the Matlab environment. In order to

facilitate reproducibility of results and their adaptation to other

data, the Matlab and R scripts used to process images and

geometric data are provided in File S1 and S3. Some pre-

Figure 6. Simplification of a polygonal curve with the Douglas-
Peucker algorithm. (A) Original polygonal curve. (B) First approxi-
mation by a line segment, and determination of the furthest vertex. (C)
Splitting of the curve into two sub-curves, and determination of the
furthest vertices in each sub-curve. (D) Iteration of the procedure until
the distance from the vertices to the simplified curve is lower than a
predefined threshold.
doi:10.1371/journal.pone.0090673.g006

Figure 7. Automatic segmentation of vascular bundles. (A)
Original slice image. (B) Result of Alternate Sequential Filtering. (C)
Detection of bundles with extended minima. (D) Bundle centroids with
corresponding slice contour.
doi:10.1371/journal.pone.0090673.g007
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processed data files are provided in File S2, and original data are

available on request.

Results

Statistical analysis and modelling of stems
Figure 9 shows the projection of individual slab contours onto

the coordinate system given by the first two principal components.

For interpretation, the minimum and maximum scores of each

component were used to compute synthetic contours correspond-

ing to the variations described by the component. The first

principal component described 72% of the total variance. The

corresponding extreme contours were drawn over the similarity

map together with the average/reference contour. They clearly

show that principal component 1 described the size variations

Figure 8. Spatial normalisation of an individual section onto the reference section. (A) Original bundle positions, macroscopy section
contour (thin blue), estimated contour of the slab (thick blue), reference stem contour (thick green). (B) Position of bundles and slice contour after
spatial normalisation.
doi:10.1371/journal.pone.0090673.g008

Figure 9. Principal components analysis of stem contours. Similarity map of components 1 and 2. Individuals corresponding to the same stem
are represented within a convex polygon. Synthetic profiles corresponding to extreme scores are represented in thick blue together with the
reference contour in thin black for component 1 and on the right for component 2.
doi:10.1371/journal.pone.0090673.g009

Statistical Intensity Maps from Replicated Images

PLOS ONE | www.plosone.org 6 March 2014 | Volume 9 | Issue 3 | e90673



among the slabs. Groups were drawn on the map according to the

slab origin for highlighting genotypes and stem effects. Component

1 opposed slab contours of the two genotypes, showing that

mutant stem sections were larger than those of the wild type. The

second principal component that described 17% of the total

variance was interpreted as a difference in shape, revealing a

contrast between thick and round contours as opposed to thin and

elongated contours. The grouping of individual contours accord-

ing to the stem was observed. Table 1 presents an analysis of

variance performed on the first five principal components. An

effect of the genotype was observed for the first principal

component, related to the size. In fact, slab sections from the

mutant were larger than the wild type. An effect of the cut position

was revealed for the first two components. The size of the section

varies both in size and in elongation with the position. The stem

was also found to have an effect for the five components tested.

The simplified linear model specified in eq. (2) was used to

generate reference contours used for spatial normalisation and for

graphical representation of results. The genotype stem or cutting

position effects made it possible to obtain the average contours of

each genotype (Fig. 10-A), stem, and cutting position (Fig. 10-B).

The difference in size between genotypes is clearly visible, but no

difference in shape could be noticed. On the contrary, the cutting

positions showed differences in shapes, but no difference in size.

The combination of the genotype with the cutting position effects

led to model stems for each genotype (Fig. 10-C, 10-D).

Spatial normalisation of vascular bundle positions
Figure 11 shows several point patterns representing vascular

bundles before and after spatial normalisation, on four sample

slices for the wild type and the mutant genotypes, and for the

upper and lower positions. Before spatial normalisation, a regular

distribution of bundles could be observed in both genotypes,

typical for repulsive point processes. Global intensity was larger in

the wild type slices, but no particular variation in local intensity

was visible.

Normalisation allows the comparison of the vascular bundle

distribution independently of the variations in size and shape of

the slabs. Regularity is still visible, but the difference in global

intensity is less perceptible due to normalisation.

Table 1. Statistical analysis of contour principal components.

Inertia Analysis of variance p-values

(%) genotype cut geno6cut stem

CP1 72.1 v0:001 v0:001 .91 v0:001

CP2 16.9 .13 v0:001 .87 v0:001

CP3 4.0 .97 .66 .09 v0:001

CP4 2.7 .39 .66 .40 v0:001

CP5 1.0 .37 .06 .70 v0:001

Inertia corresponds to the amount of variability explained by the corresponding component. The analysis of variance results in a p-value computed for each
experimental factors of each principal component. Significant p-values (lower than 0.05) are highlighted.
doi:10.1371/journal.pone.0090673.t001

Figure 10. Modelling of slice contours. (A) Average contour of each genotype, exhibiting differences in size. (B) Average contour of each cutting
position, exhibiting differences in shape. (C) 3D model of the average wild-type stem. (D) 3D model of the average mutant stem.
doi:10.1371/journal.pone.0090673.g010
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Intensity maps of vascular bundles
Figure 12-A shows bundle intensity maps computed for each

normalised slice. Intensity heterogeneity is clearly visible within

each individual section: bundles are more numerous on the

periphery of the sections and less numerous in the centre. Global

intensity was visually greater in the mutant sections. Intensity was

estimated for the same positions in each slice, making it possible to

superimpose intensity maps. Hence, an average intensity map

could be obtained by computing point-wise intensity averages

(Fig. 12-B). The average intensity map showed an increase of

vascular bundle intensity on the left, right and top parts of the stem

section, and a decrease in the centre of the section. Low intensity

was observed on the edge of the stem. While edge correction was

applied for intensity estimations, intensity maps still seem

underestimated at slice edge. Average intensity maps were also

computed for each level of the experimental factor, e.g., cutting

position, stem and genotype. A higher global intensity of the points

was observed for the average intensity map of the mutant

genotype. However, no difference in intensity distribution could

be observed. A small difference could be observed for average

intensity maps estimated for different slabs: bundle intensity is

higher for two small lateral regions of the upper slices, for both the

wild type and the mutant. This difference in intensity could not be

explained, but will be further investigated in forecoming studies.

By combining all estimates for the different levels of the

experimental factors, it was possible to assess the bundle intensity

for different combinations of cutting position and genotype. These

average intensity maps are represented together with the

corresponding stem models (Fig. 13). A scaling factor was applied

to the x and y coordinates of each map to better fit the

corresponding stem model. The stem models show the difference

in size of each genotype, as well as the slight variation in size and

shape for the different cutting positions. The global difference in

intensity between genotypes is clearly visible. For both genotypes,

the intensity in the upper sections is globally higher. In all the

sections, a contrast is visible between the periphery and the centre.

Figure 11. Spatial normalisation of point patterns. Each macroscopic slice is rescaled and deformed to correspond to the reference space. M-A:
upper slice of the mutant genotype. M-G: lower slice of the mutant genotype. WT-A: upper slice of the wild type. WT-G: lower slice of the wild type.
doi:10.1371/journal.pone.0090673.g011

Figure 12. Computation of average intensity map. (A) Individual intensity maps, same as in Fig. 11. (B) Global average intensity map.
doi:10.1371/journal.pone.0090673.g012
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Discussion

The spatial organisation of vascular bundles in maize stems was

investigated using tools from spatial statistics together with a

spatial normalisation procedure. A statistical model of the

internode contour was computed using the whole data set,

therefore providing a reference space for comparing observations.

Vascular bundle positions were projected onto this reference

space, resulting in spatially normalised observations. The different

acquisitions were analysed together, and an average bundle

intensity map was obtained. The resulting distribution of bundles

established within the stem is more representative than those

obtained using a single image. The spatial normalisation

procedure is generic and can be applied to other types of plants

and other types of objects. In the present work, the projection onto

a reference space used a rather simple polar transformation. In the

case of more complicated shapes, other transformation procedures

may be considered, including polynomial [23], thin-plate, or

spline-based transformations [43]. Reference stems were built for

each genotype. The model integrates the global stem morphology

– stem size and shape – as well as the vascular bundle intensity.

The intensity maps were estimated in the reference space common

to all observations. One limit of this study is the lack of

information for the region corresponding to the bark. While the

bundle intensity in this region is high, its removal induces a bias in

the estimation of the intensity map.

Vascular bundles were considered as points with a spatial

distribution within the stem section. In the present work, the point

process representing the vascular bundles was described by the

local intensity estimated using classical kernel methods. Other

estimation methods could be investigated, e.g., ones based on the

distance to the k-th nearest neighbour [44,45]. Bundle intensity

maps will also be compared with other morphometric parameters,

e.g., the average cell size or the local chemical composition [20].

Many tools have been developed within the framework of spatial

statistics for the description and analysis of interactions between

points of a process [16,17]. Such tools make it possible to detect

and quantify clustering or repulsion of the structures, allowing us

to test hypotheses on the spatial organisation of bundles and to

consider the modelling of the underlying point process. In

particular, it may be possible to develop models that take both

the heterogeneity within the section and the repulsion between

bundles into account [46]. Cellular morphology is another key

parameter for understanding the global properties of plant tissues

[7,8,47]. The size and the shape of cells in a tissue have a direct

impact on its mechanical properties and, hence, the mechanical

behaviour of the plant or organ that contains it [48]. The

description of cellular morphology is also of interest for studying

the development of plant organs and understanding the mecha-

nisms involved in plant morphogenesis [49,50]. More generally, it

is hoped to obtain a better description of the plant structure,

histology and mechanical behaviour by coupling different models

of the plant structure at various scales (organ, tissue, cell, cell wall,

etc.) and using different modalities [19,51–53].

Supporting Information
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