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Abstract

Most tumors arise from epithelial tissues, such as mammary glands and lobules, and their initiation is associated with the
disruption of a finely defined epithelial architecture. Progression from intraductal to invasive tumors is related to genetic
mutations that occur at a subcellular level but manifest themselves as functional and morphological changes at the cellular
and tissue scales, respectively. Elevated proliferation and loss of epithelial polarization are the two most noticeable changes
in cell phenotypes during this process. As a result, many three-dimensional cultures of tumorigenic clones show highly
aberrant morphologies when compared to regular epithelial monolayers enclosing the hollow lumen (acini). In order to
shed light on phenotypic changes associated with tumor cells, we applied the bio-mechanical IBCell model of normal
epithelial morphogenesis quantitatively matched to data acquired from the non-tumorigenic human mammary cell line,
MCF10A. We then used a high-throughput simulation study to reveal how modifications in model parameters influence
changes in the simulated architecture. Three parameters have been considered in our study, which define cell sensitivity to
proliferative, apoptotic and cell-ECM adhesive cues. By mapping experimental morphologies of four MCF10A-derived cell
lines carrying different oncogenic mutations onto the model parameter space, we identified changes in cellular processes
potentially underlying structural modifications of these mutants. As a case study, we focused on MCF10A cells expressing an
oncogenic mutant HER2-YVMA to quantitatively assess changes in cell doubling time, cell apoptotic rate, and cell sensitivity
to ECM accumulation when compared to the parental non-tumorigenic cell line. By mapping in vitro mutant morphologies
onto in silico ones we have generated a means of linking the morphological and molecular scales via computational
modeling. Thus, IBCell in combination with 3D acini cultures can form a computational/experimental platform for
suggesting the relationship between the histopathology of neoplastic lesions and their underlying molecular defects.
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Introduction

The environment in which tumor cells are growing in vivo can be

very complex, and may include distinct stromal cells, normal or

aberrant vasculature, inhomogeneous concentrations of nutrients,

proteases or growth factors, gradients in interstitial pressure or

non-uniform alignment and cross-linking of various fibrous

proteins forming the extracellular matrix (ECM). Since the cells

are exposed to these various and often contradictory microenvi-

ronmental cues, and moreover, they can actively participate in

remodeling of the physical structure and chemical composition of

the stroma, it is difficult to predict tumor progression and response

to treatments. The change in cell phenotypic state (i.e., the

initiation of cell proliferation or death, cell epithelial polarization

or epithelial-mesenchymal transition) depends not only on cell

intrinsic sensitivity to extrinsic cues from the surrounding

microenvironment, but also on cell robustness and adaptability

to microenvironmental conditions.

Several in vivo techniques have been used to investigate

interactions between individual cells and to test cell responses to

various extrinsic cues in more controlled conditions. In particular

in the three-dimensional (3D) culture systems cells display many

features characteristic of their in vivo growth, but not observed

when these cells are cultured in two-dimensional monolayers.

Ideally, one would like to be able to make an initial assessment

about the possible molecular changes or underlying mutations by

examining the morphology of the multicellular structures grown

from mutated or tumorigenic cells.

Therefore, we have developed a computational model, IBCell

(Immersed Boundary model of a Cell [1,2]) that allows us to
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simulate the development of multicellular structures by focusing on

cell mechano-biology and the interactions between individual cells

and their microenvironment. IBCell is a general computational

framework that has been previously used to model different tumor

related phenomena, such as growing multiclonal colonies [3],

various patterns of ductal carcinoma in situ [4], and formation of

invasive cell cohorts [5]. The advantage of the IBCell model over

other cell-based modeling approaches in which cells are

represented either as point particles or as deformable cells

composed of fixed size grid sites [6,7,8,9] lies in the fact that the

cells in our model are fully deformable. Cell geometry in IBCell is

neither predefined nor grid-determined, but can vary dynamically

due to interactions between individual cells. Moreover, the

plasticity of cell shape is accompanied by dynamical changes in

cell sensors/receptors configuration. Thus two neighboring cells or

two phenotypically identical cells may have slightly different

distributions of specific cell surface receptors leading to a natural

cell-to-cell heterogeneity, which is similar to what actually happens

in real cells. Therefore, IBCell model simulations represent more

faithfully the emerging multicellular morphologies (such as

multilayered structures [2,10], epithelial acini [11,12], or ductal

carcinoma in situ [4]) than other computational models in which

cells are modeled as points, squares, hexagons or spheres

[6,8,9,13,14]. This makes the outcomes of IBCell simulations

more easily comparable with experimental morphologies in both

qualitative (shape) and quantitative (cell numbers) ways.

The rest of this paper is organized as follows. We first

summarize how IBCell has been adjusted to model the formation

of epithelial acini by focusing on three cellular processes: cell

proliferation, cell apoptotic death and ECM-density dependent

inhibition of cell growth. Then we show how the model can be

tuned, so the emerging acinar structures match qualitatively and

quantitatively the experimental data collected from 3D culture of a

non-tumorigenic breast cell line MCF10A [15]. We then use this

MCF10A-tuned model to explore the 3D parameter subspace (the

IBCell morphochart) corresponding to different non-stabilizing

acinar mutants and compare these simulated structures with the

experimentally observed morphologies of MCF10A-HER2 mu-

tants. In addition, we analyze more closely the IBCell simulation

reproducing the MCF10A-HER2-YVMA [16] mutant morphology

to quantitatively assess the changes in model parameters when

compared to the simulation reproducing the wild-type MCF10A

acinus. This allows us to formulate hypotheses about the

phenotypic changes that have occurred in the mutated cells and

to potentially guide further experimentation.

Results

IBCell model of epithelial acini: assumptions and
challenges

The generic IBCell model has been adjusted to represent

interactions between individual cells that collectively lead to the

formation of hollow multicellular structures (acini) composed of a

shell of epithelial cells enclosing a hollow lumen. As our

experimental prototype, we used human epithelial breast cells,

MCF10A, and followed their development in a 3D Matrigel culture

as described in [15,17,18]. In particular, our goal was to capture

several stages of MCF10A acini formation starting from a single

cell and including self-organization into a multicellular cluster,

emergence of inner and outer cell subpopulations, epithelial

polarization of all outer cells as well as death of the inner cells and

lumen formation. An important feature of this model is the use of

cell surface receptors/sensors to define cell interactions and

communication with the surrounding environment. The following

five kinds of receptors/sensors are considered here: (1) cell-ECM

receptors that are activated if the concentration of ECM in their

vicinity exceeds a prescribed density threshold (similarly to actions

of integrins [19]); (2) cell-cell adhesive receptors that define an

adhesive link between two distinct cells located sufficiently close to

one another (similarly to cadherins [20]); (3) cell apical markers

[21] that emerge in an outer polarized cell by disassembling all

existing cell-cell adhesive links with inner cells; (4) cell death

receptors [22] that are created in an inner cell upon its detachment

from the polarized cell or from another dying cell; (5) cell growth

sensors that are used by the cell to sense free space in their vicinity

that is necessary for the initiation and progression of cell growth –

this is the assumed default state of all sensors when they are not

engaged in the other processes listed above.

The phenotypic state of each cell, i.e., its growth, death,

senescence or epithelial polarization, is modulated by the

percentage of receptors/sensors recruited to a particular process.

For example, the host cell can grow only if it can sense sufficient

space in its vicinity, which is defined by a percentage of growth

sensors located on its surface. If this ratio is small because of an

excess of cell-cell or cell-ECM adhesion receptors, the host cell is

considered to be in contact inhibition. Similarly, the process of cell

apoptotic death is initiated when the percentage of cell death

receptors reaches a prescribed level. Thus by varying these sensor/

receptor thresholds we can specify whether the cell is more

sensitive or more resistant to a specific life process, such as cell

death, growth, attachment to the ECM or contact inhibition.

Certain assumptions of IBCell have proven to be necessary to

generate the hollow monolayered structures [11,12], but may be

challenged experimentally in order to falsify model predictions.

We assumed that in the developing acinar structures the

orientation of dividing cells need to be quite tightly controlled.

In our model, all outer cells divide orthogonal to their basal

membrane domains (a symmetric division producing two basal

daughter cells) in the initial stage of acinar formation, but the

mode of cell division is switched in the later stages to asymmetric

division that results in emergence of one basal and one luminal

daughter cell. This assumption could be verified by systematic

Author Summary

The majority of tumors arise in epithelial tissues that form
monolayers of tightly packed cells enclosing the inner
ductal or lobular cavities. Epithelial tumors (carcinomas)
are associated with a disruption of epithelial architecture,
such as filling of the inner lumen in the early stages of
cancer, or the distortion of the ductal structure and
spreading to the surrounding stroma in the subsequent
invasive stages of tumor. Non-tumorigenic epithelial cells
grown in 3D in vitro cultures form regular monolayered
spheroids with hollow lumen (acini, Fig. 1a) resembling the
architecture of normal epithelial cysts. In contrast, tumor
cells taken from patients’ biopsies and grown in 3D culture
acquire various morphologies, often loosing the epithelial-
like architecture. How these molecular defects produce
such abnormal morphologies remains an open issue. We
propose here to use the bio-mechanical model of
epithelial morphogenesis, IBCell, to quantitatively investi-
gate the phenotypical changes that the epithelial cells
need to obtain in order to produce the aberrant
morphologies observable experimentally and clinically.
IBCell in combination with 3D acini cultures can form a
computational/experimental platform for suggesting the
link between histopathology of early tumors and under-
lying molecular defects.

Morphogenesis of Cancer Mutations
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inspection of growing cells within the multicellular structure (for

instance by using the live-cell confocal microscopy) in order to

determine the axes of cell division at the various stages of acinar

development. We have previously shown in [12] that improper cell

divisions may lead to irregular, degenerate morphologies. We also

assumed that stabilization of acinar structures is due to secretion

and accumulation of ECM proteins along the membranes of all

outer cells, which eventually leads to their growth arrest.

Experimentally, one could either inhibit secretion of ECM

proteins (i.e., laminin, collagen, elastin and/or fibronectin), or

modify cell ECM receptors (i.e., integrins) response, and investigate

whether the MCF10A cells will still form stable growth arrested

structures. We discuss later in this paper how the changes in cell

response to ECM cues leads to the emergence of invasive-like

mutants. More details about the IBCell model can be found in

[11,12]. See also the Methods section for model equations.

Quantitative modeling of epithelial acini
We used an integrative approach (Fig. 1) combining in vitro

experiments, confocal image analysis and quantification, and high

throughput simulation studies to better understand the phenotypic

and molecular changes in mutated cells in comparison to their

parental non-tumorigenic cell line, MCF10A. The multicellular

acini grown in the 3D Matrigel culture were collected every four

days for 20 days and stained with nuclear marker, DAPI, and

antibodies against cleaved caspase-3 and Ki-67, for apoptosis and

proliferation, respectively (Fig. 1a). The confocal images of central

acinar cross sections (Fig. 1b) were segmented (Fig. 1c) and cellular

nuclei delineated (Fig. 1d) using the BioSig bioinformatics software

(see Methods). Intensities of red (for caspase-3) and green (for

Ki67) wavelengths (Fig. 1f) were determined in BioSig, and the

proliferative and apoptotic events were reconstructed (Fig. 1e) in

all considered samples. This allowed for determination of the

Figure 1. A quantitative integrative approach to model the development of normal acini and their mutants. (a) 3D Matrigel culture of
non-tumorigenic epithelial breast cell line MCF10A. The representative data at days: 4, 8, 10, 12 16 and 20 show central cross sections through the
developing acini stained for cell nuclei (DAPI, blue), cell proliferation (Ki67, green) and cell apoptosis (caspase-3, red). Quantitative image analysis: (b)
confocal microscopy images stained for DAPI, Ki67 and caspase-3 are (c) segmented using the BioSig software and (d) used to delineate cell nuclei.
BioSig is used to identify the intensities (f) of red and green wavelengths in each nuclei that allows for reconstruction (e) of proliferative and apoptotic
events in the stained acinus and for determination of counts of growing (green), dying (red) and the total number (blue) of cells during the whole
course of the experiment (g). The computational IBCell model of acinar morphogenesis has been tuned with MCF10A data by constructing the search
tree (h) that identifies several model parameters (tree branches) generating the desired structures and cell counts on the consecutive time points. (i)
The evolution of growing (green), dying (red) and the total number of cells (black) arising during the MCF10A-tuned simulation; stars represent the
average value from experimental data. (j) The simulated morphologies at the days corresponding to experimental data; nuclear staining: viable cells
(blue), growing (green), dying (red); membrane receptor staining: adhesive receptors (green), growth sensors (blue), ECM receptors (pink-red-orange
depending on ECM concentration), apical markers (cyan), death receptors (grey). (k) 2D morphocharts showing a collection of final acinar
morphologies arising for different combinations of growth and death sensors thresholds; (l) 3D morphochart parameter space representing
combinations of growth, death and ECM sensor thresholds that result in normal (red region), not-hollow (blue), degenerate (yellow) and non-
stabilized (green) acini.
doi:10.1371/journal.pcbi.1000900.g001

Morphogenesis of Cancer Mutations
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counts of growing, dying and the total number of cells in all

collected samples (Fig. 1g). The previously developed model of

epithelial morphogenesis, IBCell [11,12], has been used to simulate

the formation of a generic epithelial acinar structure (as described

in [11]), and subsequently tuned with experimental data for

MCF10A. The tuning process requires construction of the search

tree (Fig. 1d) that discriminates between model parameters

showing promise to generate the desired structure as well as cell

counts comparable with experimental data at each considered

time point (see Methods) and those that lead to false multicellular

structures (see Methods for a description and Fig.S1 for examples).

The resulting simulated morphologies from the MCF10A-tuned

IBCell model together with the evolution of growing, dying and the

total number of cells matching the experimental data are shown in

Figs. 1i–1j. By systematically varying model parameters in IBCell

simulations we can obtain a spectrum of different final acinar

morphologies (a morphochart). A typical chart constructed for

parameters defining cell sensitivity to proliferating and apoptotic

cues is shown in Fig. 1k. In this morphochart the normal hollow

acini are produced by cells resistant to contact inhibition, but

sensitive to apoptotic cues (lower left region); partially or fully filled

acini arise from cells that are resistant to death signals (right

region); and irregularly shaped acini emerge from cells that enter a

growth arrest phase due to their sensitivity to contact inhibition

(top region). By varying multiple model parameters one can create

a multidimensional space of final acinar morphologies and group

them according to their architecture. Fig. 1l shows four color-

coded regions containing normal (red), filled (blue), irregular

(yellow) and non-stabilized (green) acinar structures generated by

IBCell. For more details on the subspace of normal and non-

stabilized acini see Fig. 2 and Fig. 3, respectively.

3D IBCell morphocharts of epithelial acini
We have previously shown [11,12] that our IBCell model can

simulate the development of normal acini starting from a single

cell and ending with a structure composed of one layer of tightly

packed epithelial cells enclosing the hollow lumen. However, our

aim here is not only at qualitative (morphological) agreement with

experimental data, but we also want to quantitatively recapitulate

the dynamics of the emergent structures. Therefore, the generic

model of epithelial morphogenesis has been tuned (as described in

Methods) with quantitative experimental data from 3D cultures of

MCF10A cells. For the tuning process we used counts of

proliferating and apoptotic cells, together with information on

the times and locations of these events (i.e., initially the

proliferating cells are detectable in the whole cluster; at the later

stages the growing cells are mostly confined to the outer layer; in

contrast the dying cells are only located inside the cluster). The

third model parameter that we used, corresponds to the ECM

density and may be adjusted to fit experimental data on the density

of ECM proteins, such as collagen, elastin, fibronectin or laminin.

As a result of this tuning process we identified a set of model

parameters that reproduced an acinar morphology in good

quantitative agreement with the experimental cellular baseline

Figure 2. 3D IBCell morphocharts of epithelial acini. A 3D parameter space of the IBCell model defining cell sensitivity to proliferating,
apoptotic and ECM-density cues. A light-red region corresponds to the subspace of model parameters that produce hollow acinar structures of
various sizes and cell counts (i–v). A dark-red region defines a subspace of model parameters producing acini that quantitatively agree with
experimental data from MCF10A samples. Two representative final morphologies and evolution curves of cell counts for the MCF10A-tuned model are
shown in (i) and (ii). (iii) shows an acinar structure larger than experimentally observed MCF10A morphologies; the corresponding evolution curve
reaches much larger number of cells than the experimental data. (iv) and (v) show much smaller final acini with evolution curves not reaching the
level of experimental data. The solid lines represent simulated evolution curves of growing (green), dying (red) and the total number of cells (black);
stars represent the average value from experimental data with vertical lines representing the standard deviation.
doi:10.1371/journal.pcbi.1000900.g002
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(Fig. 1i–1j and video S1). This combination of model parameters

was then utilized as the initial seed for a suite of simulations that

examined the outcome of varying all three thresholds systemat-

ically to inspect the whole 3D parameter space (Fig. 2). A broad

region in this parameter space can be identified (indicated by light

red color) that comprise only of hollow acini of various areas, cell

counts and luminal sizes (inserts in Fig. 2i–2v and Fig.S2). A

smaller subregion (indicated by dark red color) corresponds to

acini that agree quantitatively with the experimental data from the

MCF10A cell line, i.e., the counts of viable, proliferating and

apoptotic cells. Interestingly, the tuned region highlights that there

is a degree of variability in the cellular traits and appears to

contain two distinct acinar morphologies with slightly different cell

counts and evolution curves that both fall within the ranges of

MCF10A experimental measurements (Fig. 2i–2ii). The area

outside the indicated regions contains multicellular morphologies

that do not represent normal acinar structures, i.e., they are either

distorted, or not hollow, or multilayered and not stabilized (yellow,

blue and green regions in Fig. 1l, respectively; see also Fig. 3 and

[11,12,23] for other examples).

The light-red region specifies the range of acinar plasticity

defined here as morphological variations in acinar structure arising

as a result of developmental dynamics. Several epithelial systems

have been successfully grown in 3D cultures showing variations in

acinar sizes both within and across different cells lines (i.e.,

averaged diameters of prostate acini can reach: 140.8631.0mm,

and 149.8624.3mm [24], canine kidney acini: 80–90mm [21],

breast acini: 67.2616.5mm and 93.9619.5mm [15]). In our model

such differences in acinar sizes, shapes and cell counts depend on

the time at which the acinar structures become growth arrested

and stabilized. We hypothesized that extracellular matrix

produced by cells acts as an inhibitory mechanism on prolifera-

tion. That is, as the density of the matrix increases in the cell

vicinity the sensors in contact with the ECM are converted to

ECM sensors, thus decreasing the number of growth sensors and

inhibiting cell growth. This could be considered biologically

equivalent to the process of ‘‘matrix assembly’’. Therefore, for low

values of the ECM threshold the acini stabilize very early reaching

only a few cells with a minimal inner lumen (Fig. 2v). With the

increasing ECM threshold the acini grow larger and need more

time and a higher density of accumulated ECM to become

stabilized (compare inserts in Fig. 2iv and Fig. 2iii). Biologically,

contact inhibition resembles this kind of behavior, and it is

generally observed in 2D tissue culture (i.e., confluence). In a 3D

setting, contact inhibition is likely to be more closely related to

epithelial polarization, whereby plasma membranes become

committed to basolateral and apical domains. Our model

recapitulates this mechanism, however, further experiments are

needed to confirm which ECM proteins may play a major role in

this inhibitory mechanism for a given cell line.

The dark-red region defines robustness of MCF10A-comparable

acinar structures, i.e., their capability to retain the architecture of

the hollow one-layered acini, and to remain in quantitative

agreement with experimental data when cell sensors thresholds are

varied. Interestingly, the model is less sensitive to death signals,

with changes in the death threshold from 7.5% to 17.5% of all cell

Figure 3. 3D MCF10A-tuned morphocharts of epithelial mutants. A 3D parameter space of the MCF10A-tuned model defining cell sensitivity
to proliferating, apoptotic and ECM-density cues. A dark-red region represents a subspace of MCF10A-comparable acini. The green region defines a
subspace of model parameters producing non-stabilized morphologies representing the potentially invasive mutations of the MCF10A baseline: (i)
non-polarized structures showing no cell growth; (ii) non-stabilized structures with growing cells observed only on the outer rim; (iii) disorganized
structures with multiple cells growing throughout the cell cluster, and with sporadic apoptotic events; (iv) non-stabilized structures with multiple
proliferating and apoptotic events; (v) non-polarized but hollow structures with an outer rim containing multiple growing cells. Four genetic mutants
of the MCF10A parental cell line shown in (I–IV) can be mapped onto the IBCell morphochart in a qualitative way by comparing morphologies of
simulated (i–v) and experimental (I–IV) cell clusters.
doi:10.1371/journal.pcbi.1000900.g003
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membrane sensors still resulting in a completely hollow luminal

space. Similar effects have been observed experimentally when

anti-apoptotic proteins Bcl-2 or Bcl-XL were overexpressed in the

MCF10A cells [17] causing cells to become more resistant to the

initiation of the apoptotic process, but still resulting in formation of

the hollow lumen. There is no quantitative data available to assess

the relative differences between wild-type MCF10A cells and

MCF10A-Bcl-2 or MCF10A-Bcl-XL cells in terms of their sensitivity

to apoptotic cues, but these experiments show a trend similar to

that seen in our simulations. The dark-red region of MCF10A-

comparable acini in Fig. 2 contains two slightly different

morphologies and corresponding evolution curves, both falling

within the ranges of experimental measurements. These morphol-

ogies are robust with respect to slight variations in the cell

proliferation threshold (changes of 15–20%, and 22.5–25% of all

cell membrane sensors for ECM threshold of 12.5 and 15,

respectively). Again, such variability in acinar sizes, shapes and cell

counts is observed experimentally for MCF10A cells (Fig. 1g and

[15]).

3D MCF10A-tuned morphocharts of acinar mutants
By tuning the generic model with the experimental data we

identified parameter vectors for which the model generates

MCF10A-like structures. However, when the model parameters

are chosen outside this range, the resulting structures are

morphologically different from hollowed and monolayered acini.

By inspecting the whole MCF10A-tuned morphochart we can

identify regions in which our computational model produces

altered morphologies. Of particular interest to us is the region of

non-stabilized mutant structures (shown in green in Fig. 1l and

in Fig. 3), as these morphologies represent the potentially

invasive mutants of the non-tumorigenic epithelial baseline

MCF10A. Out of the five different structures that emerged from

our simulations, four can be qualitatively matched with

morphologies from experimental mutants of MCF10A cells. We

describe below the morphological similarities between experi-

mental and simulated structures. It must be stressed, however,

that further experiments are needed in order to validate or falsify

model predictions by comparing model parameter vectors to

experimental measurements.

A non-polarized structure (Fig. 3i) showing no cell growth

resembles the MCF10A-HER2 mutant (Fig. 3I) that at day 24

consists of a mass of cells with no detectable staining for

proliferation or apoptosis. This simulation was run with low

thresholds for both cell growth and cell ECM receptors, and a high

threshold for cell death receptors (lower left corner of the mutant

parameter space in Fig. 3). This suggests that both cell

proliferation and apoptosis were upregulated in comparison to

the parental non-tumorigenic cell line, but since the ECM

threshold was downregulated all cells became growth-arrested

either due to cell-cell adhesion (inner cells) or cell-ECM adhesion

(outer cells). A non-stabilized structure with growing cells observed

only on the outer rim (Fig. 3ii) is similar to the MCF10A-HER2-

Bcl2 mutant (Fig. 3II) that at day 24 forms a solid cluster of cells

with a few outer cells stained with Ki67 nuclear marker showing

proliferating events. Matching computational morphologies were

obtained when all three thresholds were chosen to be high, such

that no cell death was detectable, and all inner cells were in

contact inhibition, thus non-growing, but most outer cells have not

reached the growth arrested state and therefore continued to

proliferate (region ii in the parameter space in Fig. 3). A

disorganized acinus with multiple cells growing throughout the

cell cluster, and with sporadic apoptotic events (Fig. 3iii) resembles

the MCF10A-HER2-YVMA mutant (Fig. 3III) that at day 24 forms

an irregular mass of cells with numerous proliferative cells located

both inside the cluster and on its outer rim. This simulation was

run with high thresholds of ECM and apoptotic receptors (both

upregulated in comparison to the parental cell line), but a low

threshold of growth sensors resulting in frequent proliferations

even in the center of the cluster due to diminished contact

inhibition response (region iii in Fig. 3). A non-stabilized structure

with multiple proliferating and apoptotic events (Fig. 3iv) is similar

to the morphology of the MCF10A-HER2-E7 mutant (Fig. 3IV). In

this case the proliferative and apoptotic thresholds were set to a

lower level, resulting in numerous growing and dying cells in the

simulated acinus. However, the ECM threshold was set high, such

that the emerging structures did not reach the growth arrested

state by day 24 in culture (right upper corner of the mutant region

in Fig. 3). A non-polarized but hollow acinus with an outer rim

containing multiple growing cells (Fig. 3v) was simulated by

choosing lower values for all three cell receptors thresholds,

resulting in a hollow inner lumen with a constantly growing rim of

outer cells (right lower corner of the mutant region in Fig. 3).

However, to our knowledge there is no experimental data

matching this simulated morphology of a MCF10A mutant.

These distinct acinar architectures simulated by our model and

indicated in Fig. 3 and Fig. S3 arise for different combinations of

all three receptor thresholds defining cell sensitivity to prolifera-

tive, apoptotic and ECM signals. By mapping various experimen-

tal morphologies of MCF10A genetic mutants onto the non-

stabilized region of the MCF10A-tuned morphochart we can

estimate the relative changes in the proliferation, death and ECM

sensitivities between the mutated and the parental cell lines, i.e., we

can indicate whether a certain cellular process is up- or down-

regulated in comparison to the parental cell line. These back

estimated values effectively link genetic mutations to cell life

processes via the generated multicellular morphology and can be

used to guide further experimentation.

IBCell morphocharts case study: MCF10A-HER2-YVMA
mutant

To illustrate how the IBCell morphocharts can be employed to

shed light on phenotypic differences between normal and mutated

cells, we used the MCF10A-tuned model as a starting point and

adjusted its parameters (following the tuning procedure described

in the Methods section and the search tree depicted in Fig. 1h) to

quantitatively match the experimental data collected from

MCF10A-Her2-YVMA (called YVMA thereafter) cells carrying a

constitutively active HER2 mutant. This allowed us to identify

which aspects of the non-tumorigenic baseline needed to be

changed in the computational model in order to simulate both the

morphology of this specific mutant cell line and its developmental

dynamics. Typical cross sections from the YVMA experimental

data collected over a period of 24 days are shown in the top row of

Fig. 4a, whereas the bottom row shows corresponding computa-

tional outcomes. The counts of proliferating (green), apoptotic

(red) and the total number of cells (blue) from the experimental

YVMAs (quantified using BioSig, see Methods) are shown in Fig. 4b

and from the simulated structures in Fig. 4c. The table in Fig. 4d

lists the set of model features that were set differently in simulations

reproducing the MCF10A-like hollow acini and the non-polarized

and non-stabilized multicellular clusters typical of YVMA mutants.

We assumed that both cell types, MCF10A and YVMA, have

similar diameters of about 20mm. This was estimated from

confocal images of the early developmental stages when both cell

lines formed solid spheres of cells with no apoptotic events present.

The average areas of the central cross sections through MCF10A

clusters were measured to be 34906810mm2 at day 4, and
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764061550mm2 at day 8 with the average cell counts of 11.562

and 25.866.3, respectively; whereas the average areas of YVMA

sections were 618061280mm2 at day 4 and 1145062770mm2 at

day 8 with cell counts of 20.264.2 and 40.7610.7, respectively. In

both cases the average cell diameter was about 19.5mm. This

clearly highlights that the YVMA mutants grow larger and contain

more cells than MCF10A acini.

To achieve the matched computational results presented in

Fig. 4 we first needed to match the number of YVMA cells at day 4,

which are two times larger than the MCF10A samples from the

same day. We identified model parameters that directly influence

the duration of cell growth leading to the desired increase in cell

number. As a result the effective doubling time in our simulations

has been changed from 47.769.4 hours for MCF10A cells to

33.366.8 hours for YVMA cells. This is consistent with the

reported MCF10A population doubling time of 48 hours [25], and

with the 2- and 4-fold increase in YVMA cell number after 4 and

16 days, respectively, when compared to the parental MCF10A

cells (see [16] as well as Fig. 1g and Fig. 4a). To achieve the desired

cell counts and distributions of proliferating cells that match the

YVMA experimental data at later stages we needed to release the

constraints of cell contact inhibition and remove the restriction

blocking the inner cells’ receptors from sensing free luminal space.

We have previously shown that removing these constraints may

lead to complete repopulation of the empty lumen [12]. Also, the

final morphologies of the YVMA mutant are much larger than the

MCF10A acini, so to reach comparable sizes in our simulations we

needed to increase the ECM sensors threshold to prevent or delay

acini stabilization. This modification can be interpreted as making

the computational YVMA cells less sensitive to ECM binding or

ECM contact inhibition. Confocal images of YVMA clusters show

very limited staining for caspase-3 (apoptotic marker) and no

lumen formation even at later stages in contrast to MCF10A acini

that became completely hollow at day 20. In fact, in both

experimental systems the quantitative data did not show any

significant apoptotic cell death (1–2 cells on average at days 12–

20). This may be due to the fact that the apoptotic staining of

caspase-3 is detectable only for a few hours and only at the later

stages of cell apoptotic death, whereas the experimental data was

collected every 4 days. Alternatively, other forms of cell death,

such as autophagy [26] or entosis [27] may be responsible for

clearing the MCF10A lumen. To avoid formation of the luminal

space we set the threshold for death sensors significantly higher in

the YVMA simulations in comparison to MCF10A (Fig. 4d), and

apoptotic cells were then seen to emerge sporadically (video S2).

With these parameters our simulated results for both the total

number of cells and the number of growing cells fall within the

range of experimental measurements (Fig. 4c), and the distribu-

Figure 4. Adjusting the MCF10A-tuned model to quantitatively match MCF10A-HER2-YVMA data. (a) Representative central cross sections
from experimental (above the time line) and simulated (below the time line) MCF10A-HER2-YVMA mutant at days: 4, 8, 10, 12, 16, 20 and 24, stained
for cell nuclei (DAPI, blue), cell proliferation (Ki67, cyan) and cell apoptosis (caspase-3, red). (b) Evolution curves of proliferating (green), apoptotic
(red) and the total number of cells (blue) collected from experimental data. (c) The corresponding evolution curves from computational simulations;
stars represent the average value from experimental data with vertical lines showing standard deviations. (d) A set of model parameters that differ
between simulations reproducing both experimental systems.
doi:10.1371/journal.pcbi.1000900.g004
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tions of proliferating and apoptotic cells also match the

experimental samples (Fig. 4a).

The MCF10A-HER2-YVMA tuned simulation of the IBCell

model led to identification of changes in cell doubling time, lower

sensitivity to contact inhibition, modifications in ECM-dependent

inhibition of cell proliferation and luminal space promotion of cell

growth, that together resulted in the emergence of YVMA-like

morphologies that quantitatively agreed with our experimental

data. These model predictions (Fig. 4d) may be further

investigated experimentally in order to confirm or rule out our

findings.

Discussion

In this paper we presented an integrative approach combining

in vitro experiments, confocal image analysis and quantification,

and high throughput simulation studies to understand the

relationship between phenotypic and molecular changes in certain

mutated cells when compared with their parental non-tumorigenic

cell line. We used the previously developed IBCell model of

epithelial morphogenesis to simulate the formation of a generic

acinar structure composed of a shell of tightly packed epithelial

cells enclosing the hollow lumen. Subsequently, we tuned this

model with quantitative experimental data collected from several

samples of MCF10A cells grown in three-dimensional cultures.

This allowed us to identify starting parameters that served as a

seed for constructing a 3D morphochart, i.e., a collection of final

morphologies produced by IBCell when the model parameters

were varied systematically around these baseline values. Next we

used this IBCell morphochart to identify regions in which our

computational model produced structures that quantitatively

agreed with MCF10A data, as well as those that were morpho-

logically different from the hollow monolayered acini. We then

mapped morphologies of four MCF10A mutants onto the IBCell

morphochart to identify the cell phenotypic changes in terms of

three cellular processes: proliferation, apoptosis, and ECM-

dependent growth inhibition, potentially underlying these mu-

tants. Finally, we examined more closely one specific mutant, i.e.,

MCF10A-HER2-YVMA, and adjusted MCF10A-tuned model to

quantitatively match the YVMA data. This led us to identify the

up- and down-regulated cellular processes responsible for observed

qualitative and quantitative changes. These computational

findings need to be examined experimentally, however, this is

beyond the scope of this paper.

It is often a major experimental challenge to acquire certain

quantitative data from 3D culture systems, particularly at the

cellular scale. Our IBCell model has allowed us to acquire a range

of quantitative measurements in terms of both individual cellular

phenotypes and the whole cluster morphology. Analysis of these

measurements revealed that the time of cell growth depends on

what fraction of cell surface is exposed to external medium and is

not in adhesive contact with other cells. Therefore, the first few

cells of the acinus (that have only a few neighbors to adhere to)

grow much faster than the cells at the later stages that have a well-

developed adhesive neighborhood contributing to their growth

arrest. Though the molecular details of contact inhibition are not

entirely understood, it is believed that as the number of adherens

junctions on the plasma membrane increases, proliferation

decreases proportionally. In a 3D setting, contact inhibition is

likely more closely related to epithelial polarization, whereby

plasma membranes become committed to basolateral and apical

domains. Our model recapitulates this mechanism.

The IBCell model naturally links multicellular, cellular and

molecular scales by allowing us to directly compare mutant and

normal cell lines in terms of their phenotypic and morphological

changes. Thus enabling a computational investigation of the

impact that different cell phenotypes can have on the emerging

multicellular structures they produce both as an end point and

dynamically as they develop. This may also suggest ways to

experimentally investigate the underlying molecular mechanisms.

In the current implementation of IBCell we considered cell

sensitivity to proliferative and apoptotic signals, cell contact

inhibition and ECM-dependent inhibition of cell proliferation.

However, other phenotypic characteristics can also be taken into

consideration, such as the orientation of cell division, cell motility,

response to metabolic factors or to various anti-cancer drugs.

IBCell can easily integrate multiple cellular traits measured

independently in different experimental settings. By using high

throughput computational simulations and multidimensional

IBCell-morphocharts we can map multiple cellular traits to their

morphogenetic outcomes and identify combinations of model

parameters that define subregions in IBCell-morphocharts corre-

sponding to experimentally observed morphologies, and thus

determine the common ranges of individually measurable traits for

each morphological structure. It is worth to indicate that multiple,

differently networked mechanisms, implemented in different ways

can give rise to essentially the same phenomena (e.g. multicellular

structures of distinct types), thus it is important to validate model

findings with wet-lab experiments.

By developing a method that maps mutant morphologies onto

simulated ones we have generated a means of linking the

morphological and molecular scales via computational modeling.

High throughput simulation studies, with the systematically

generated model parameter space can point to the altered cell-

cell and cell-microenvironment interactions, as well as to changes

in cell intrinsic sensitivity to the extrinsic cues. This in turn may

guide further experimentation in order to dissect the underlying

molecular mechanisms. This procedure of mapping changes in

epithelial morphology to cellular phenotypes and to the underlying

cancer mutations can also enable quantitative transformations of

molecular to pathological findings and vice versa. IBCell in

combination with 3D acini cultures can form a new computa-

tional/experimental platform for suggesting the link between

histopathology of neoplastic lesions and underlying molecular

defects. These computationally mapped values effectively link

genetic mutations to cellular traits and can be used to guide further

experimentation and to identify relationships between mutations

and early cancer tissue lesions.

Methods

Experimental methods
A human mammary non-tumorigenic epithelial cell line

MCF10A and its four mutants expressing HER2, HER2-Bcl2

(HER2 and Bcl2), HER2-E7 (HER2 and HPV E7), HER2-YVMA

(HER2 mutant containing a G776YVMA insertion in exon 20),

respectively, were grown in 3D cultures by seeding on Growth

Factor Reduced Matrigel (BD Biosciences, San Jose, CA) in 8-well

chamber slides. The developed multicellular acini were collected

every four days for 20 days for the parent cell line MCF10A and

MCF10A-HER2-YVMA, and at end of day 24th for HER2, HER2-

Bcl2, HER2-E7 and HER2-YVMA. All samples were stained with

nuclear marker, DAPI, and with antibodies against cleaved

caspase-3 and Ki-67. Confocal analyses were performed with an

inverted Zeiss LSM-510 confocal microscopy system (Zeiss,

Germany). The images of central acinar cross sections were

subsequently used to count the numbers of viable (DAPI-positive),

proliferating (Ki67-positive) and apoptotic (caspase-3-positive)
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cells. This analysis was performed using the BioSig software (LBNL

National Laboratory, Berkeley CA).

Quantification of experimental samples using BioSig
BioSig is a bioinformatics framework of integrated image

acquisition, annotation, and hierarchical image abstraction to

create a database that registers localization and intensity

information about multiple targets along with positional references

and morphological features [28,29]. It was originally developed at

the Lawrence Berkeley National Laboratory (LBNL) and is

accessible through the worldwide web. The first step of this

method includes transfer of raw, high-resolution images to the

online BioSig bioinformatics repository. Using the nuclear marker

DAPI as a guide for individual cells present in each acinar

structure, images were segmented using a radial voting function

[30]. Briefly, this technique includes constraining the solution to

provide seeds corresponding to the nuclear regions of all cells,

which are calculated based on fluorescence intensity and

geometric constraints. Once these seeds are established, Voronoi

tessellation provides the local neighborhood where each nucleus

resides; this locality is then further partitioned based on its

intensity distribution using level sets methods [31]. Additionally,

Voronoi tessellation enables quantification of signal within and

outside the nuclear regions. As a result, quantification of

fluorescence signal (e.g., caspase-3, Ki67) becomes more accurate.

These types of analyses are intended to capture inherent

heterogeneity in cellular responses and to remove bias associated

with user interactions.

IBCell model equations
The IBCell model is based on the Immersed Boundary Method

[32], a fluid-dynamics framework suitable to model interactions

between deformable elastic bodies (such as eukaryotic cells) and

the viscous incompressible fluid (such as cell cytoplasm or the

extracellular matrix). The cell structure consists of an elastic

plasma membrane modeled as a network of linear springs that

defines cell shape and encloses the fluid providing cell mass

(Fig. 5c). These individual cells can interact with other cells and

with the environment via a set of discrete membrane receptors/

sensors located on the cell boundary (Fig. 5a). These sensors can

be engaged in adhesion either with one of the neighboring cells or

with the extracellular matrix, or can be used to sense the presence

of other cells or the ECM in cell local vicinity. The host cell can

initiate certain cell life processes, such as proliferation, division,

apoptotic death or epithelial polarization, based on its membrane

receptors/sensors configuration (a distribution of growth, death,

apical, cell-cell and cell-ECM adhesion sensors, Fig. 5a). More

precisely, cell growth is modeled by placing point sources and sinks

Figure 5. IBCell model computational implementation. (a) Color-coded cell membrane receptors/sensors: growth sensors (blue), death
receptors (grey), apical markers (cyan), ECM receptors (yellow), cell-cell adhesive receptors (green); Color-coded nuclear staining: nuclei of growing
cells (green), nuclei of apoptotic cells (red), nuclei of viable cells (blue). (b) Color-coded representation of epithelially polarized cells containing three
membrane domains: basal consisting of ECM receptors (yellow), lateral consisting of cell-cell adhesive receptors (green) and apical consisting of apical
markers (cyan). (c) Forces exerted by an elastic cell membrane modeled as a collection of short liner springs. (d) Forces exerted by an expanding
(growing) cell. (e) Contractile forces exerted by a dividing cell. (f) Adhesive forces exerted by two neighboring nearby cells.
doi:10.1371/journal.pcbi.1000900.g005
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around the cell boundary to model transport of fluid through the

cell membrane (Fig. 5d), and once the cell area is doubled the

contractile ring is formed by introducing springs between opposite

points on the cell boundary that upon contraction split the cell into

two daughters (Fig. 5e). Cell-cell adhesion is modelled by

introducing a short liner spring between adhesive receptors on

two neighboring cells (Fig. 5f). Cell epithelial polarity is acquired

by developing three distinct membrane domains: basal, defined by

cell membrane sensors contacting the external media; lateral,

defined by cell sensors being in contact with other cells; and apical,

facing the hollow lumen (Fig. 5b). Cell apoptotic death is modelled

by placing point sinks and sources along the membrane of the

whole cell to release fluid from the cell interior to the extracellular

space. The IBCell model is fully deterministic (i.e., given the same

starting parameters, such as numbers of cell membrane sensors

and values of receptor thresholds), the model will produce the

same morphological output. The IBCell model is governed by the

following set of equations.
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In this system, Eq. (1) is the Navier-Stokes equation of a viscous

incompressible fluid defined on the Cartesian grid x~(x1,x2),
where u(x,t) is the fluid velocity, p(x,t) is the fluid pressure, m is

the fluid viscosity, r is the fluid density, s(x,t) is the local fluid

expansion, and f (x,t) is the external force density. Eq. (2) is the

law of mass balance. Interactions between the fluid and the

material points X (l,t) on cell boundaries C (where l is a material

point index) and at point sources Yk and sinks Zm placed in the

cell local microenvironment are defined in Eqs. (3)–(5). Here, the

force densityF (l,t) defined on cell boundaries, and the sources

Sz(Yk,t) and sinks S{(Zm,t) defined in the cell microenviron-

ment are applied to the fluid using the two dimensional Dirac delta

function d, while all material boundary points X (l,t) are carried

along with the fluid. The boundary forces F (l,t) arise from elastic

properties of cell boundaries, from cell-cell adhesion and from

contractile forces splitting a cell during its division. The sources

Sz(Yk,t) and sinks S{(Zm,t) are chosen such that they balance

around each cell separately. The kinetics of ECM proteins c(x,t) is

defined along the cell boundaries and includes: constant secretion

(at a rate k1) along the cells’ basal domains and its decay (at a rate

k2) around all cells’ boundaries. More details about model

implementation and computational complexity can be found in

[2,11]. Overall, each simulation reproducing a single acinar

morphology takes about 20–40 hours of computational time on a

standard single processor Mac Pro desktop computer.

IBCell model tuning with experimental data
The IBCell tuning process is based on fitting the simulated

acinar structures and cell counts to experimental data and

measurements collected at certain time points. This is done by

constructing the search tree (Fig. 1h and Fig.S1) that discriminates

between these model parameters that can generate the desired

structure and cell counts at the consecutive time points, and those

that lead to false morphologies. For example, in order to attain the

desired number of cells at day 4, one of the following parameters

may be modified: i) cell-cell adhesion may be reduced resulting in

the increased number of growth receptors and subsequently in

larger amounts of water pumped into the host cell; thus the total

cell area will be doubled faster and the total number of cells will

increase faster; ii) cell maturation time (i.e., time used by the host

cell to rest after the mitotic division is completed) may be

shortened; iii) cell doubling time may be reduced by choosing a

larger fluid source strength for all growing cells; iv) the growth

receptor threshold may be reduced that will require a smaller

percentage of cell membrane receptors to be acuired to trigger the

process of cell growth (for more details on implementation of cell

life processes in IBCell see [2,11]). The simulated results are then

compared qualitatively and quantitatively to experimental data

and these branches of the search tree which do not match with

experiments are neglected in further analysis. In the case presented

in Fig. 1h both peripheral branches (at the top and bottom of the

search tree) will be cut as the number of cells in both branches is

significantly different at day 4 than in the experimental data

(compare Fig. 1a day 4, and Fig. 1h). It is worth noting that in the

initial phase the most significant model parameters are those that

result in comparable cell proliferation, whereas the parameters

influencing cell apoptosis (f.e. the threshold for death sensors, time

delay needed for cell cytoskeleton to collapse, time delay in cell-cell

adhesion disassembly), cell polarization and acinar stabilization

(f.e. a threshold for cell-ECM adhesion, distance for cell-cell

adhesion links assembly and disassembly, time dalay for the apical

sensors emergence) are more important in matching the simulated

and experimental data in the later stages of acinar development. A

more detailed exapmle of constructing the parameter tree

including the matching and false morphologies is presented in

Figure S1.

Supporting Information

Figure S1 A scheme of model tuning. A scheme illustrating the

process of model tuning with experimental data collected at the

particular time points. A search parameters tree allows for

discrimination between parameters showing promise to generate

the desired structures and those that lead to false morphologies.

The simulated results are systematically compared, qualitatively

and quantitatively, to experimental data in order to prune (dashed

arrow lines) these branches of the search tree that do not match.

The simulation process starts with a single cell (Day 0 figure a),

and several model parameters are selected in order to attain the

desired number of cells and the multicellular structure at day 4.

These branches of the search tree which do not match with
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experiments (i.e., both peripherial branches in figures a and d, Day

4) are neglected in further analysis. After fixing parameters for

which the simulated acini agree with experimental ones, another

parameters are inspected, and the simulations are run again from

a single cell in order to compare the simulated results with the next

time point. The search-and-simulation process is repeated until all

time points are fitted. It is is worth noting that in the initial phase

the most significant are these model parameters that result in

comparable cell proliferation (f.e., strength of cell-cell adhesion,

length of cell maturation time, strength of fluid sources, a

threshold for growth receptors), whereas the parameters influenc-

ing cell apoptosis (f.e. a threshold for death sensors, time delay

needed for cell cytoskeleton to collapse, time delay in cell-cell

adhesion disassembly), cell polarization and acinar stabilization

(f.e. a threshold for cell-ECM adhesion, distance for cell-cell

adhesion links assembly and disassembly, time delay for the apical

sensors emergence) are more important in matching the simulated

and experimental data in the later stages of acinar development. In

the presented example, only two paths (a-b-b-b-…-a, and a-b-c-

c-…-b at days 0, 4, 8, 12 and 20, respectively) lead to acinar

morphologies comparable with experimental data (see also Fig. 2i

and Fig. 2ii). All other paths are neglected since the computa-

tionally generated morphologies and cell counts do not match the

experimentally collected data.

Found at: doi:10.1371/journal.pcbi.1000900.s001 (2.11 MB TIF)

Figure S2 A developmental sequence of five acinar morpholo-

gies. A sequence of consecutive stages in the development of five

distinct acinar morphologies at days a) 0, b) 6, c) 12, d) 18, e) 24.

The final acinar structures correspond to those shown in Fig. 2.

Acinus i) and Acinus ii) correspond to structures that qualitatively

and quantitatively agree with experimental data acquired from

MCF10A cells. Three other structures have similar cell counts at

day 6 (b), but they either grow too large (Acinus iii) or too small

(Acinus iv and Acinus v). The five simulations differ only in three

receptor thresholds for cell growth (G), death (D) and ECM (E)

receptors emergence. The corresponding parameter vectors

V = (G,D,E) are: Acinus i) V = (25%,10%,14.5), Acinus ii)

V = (15%,12.5%,12), Acinus iii) V = (15%,12.5%,14.5), Acinus

iv) V = (20%,17.5%,9.5), Acinus v) V = (15%,17.5%,7). Color-

coded cell membrane receptors/sensors include: growth sensors

(blue), death receptors (grey), apical markers (cyan), ECM

receptors (yellow), cell-cell adhesive receptors (green). Color-coded

nuclear staining includes: nuclei of viable cells (blue), nuclei of

apoptotic cells (red).

Found at: doi:10.1371/journal.pcbi.1000900.s002 (2.71 MB TIF)

Figure S3 A developmental sequence of five mutant morphol-

ogies. A sequence of consecutive stages in the development of five

distinct mutant morphologies at days a) 0, b) 6, c) 12, d) 18, e) 24.

The final mutant morphologies correspond to those shown in

Fig. 3. The five simulations differ only in three receptor thresholds

for cell growth (G), death (D) and ECM (E) receptors emergence.

The corresponding parameter vectors V = (G,D,E) are: Mutant i)

V = (0%,40%,12.5), Mutant ii) V = (5%,45%,12.5), Mutant iii)

V = (0%,65%,12.5), Mutant iv) V = (10%,5%,12.5) and lumen

promotion growth, Mutant v) V = (0%,5%,12.5). Intra- and

intercellular elements are color-coded as in Fig. S2.

Found at: doi:10.1371/journal.pcbi.1000900.s003 (2.68 MB TIF)

Video S1 Development of an epithelial acinus. Development of

an epithelial acinus tuned with MCF10A experimental data over

the time corresponding to 20 days in culture. Left panel shows a

developing morphology of the MCF10A acinus. Right panel shows

the evolution of cell count curves matching the experimental data

represented as stars with vertical bars denoting the standard

deviation.

Found at: doi:10.1371/journal.pcbi.1000900.s004 (0.47 MB AVI)

Video S2 Development of an epithelial acinar mutant. Devel-

opment of an epithelial acinar mutant tuned with MCF10A-HER2-

YVMA experimental data over the time corresponding to 24 days

in culture. Left panel shows a developing morphology of the

mutant. Right panel shows the evolution of cell count curves

matching the experimental data represented as stars with vertical

bars denoting the standard deviation.

Found at: doi:10.1371/journal.pcbi.1000900.s005 (4.58 MB AVI)
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