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ABSTRACT: Rheological models are usually used to predict foamed fluid viscosity; however,
obtaining the model constants under various conditions is challenging. Hence, this paper
investigated the effect of different variables on foam rheology, such as shear rate, temperature,
pressure, surfactant types, gas phase, and salinity, using a high-pressure high-temperature foam
rheometer. Power-law, Bingham plastic, and Casson fluid models fit the experimental data well.
Therefore, the data were fed to different machine learning techniques to evaluate the rheological
model constants with different features. In this study, seven different machine learning
techniques have been applied to predict the rheological models’ constants, including decision
tree, random forest, XGBoost (XGB), adaptive gradient boosting, gradient boosting, support
vector regression, and voting regression. We evaluated the performance of our machine learning
models using the coefficient of determination (R2), cross-plots, root-mean-square error, and
average absolute percentage error. Based on the prediction outcomes, the XGB model
outperformed the other ML models. The XGB model exhibited remarkably low error rates,
achieving a prediction accuracy of 95% under ideal conditions. Furthermore, our prediction
results demonstrated that the Casson model accurately captured the rheological behavior of the foam. Additionally, we used
Pearson's correlation coefficients to assess the significance of various properties in relation to the constants within the rheological
models. It is evident that the XGB model makes predictions with nearly all features contributing significantly, while other machine
learning techniques rely more heavily on specific features over others. The proposed methodology can minimize the experimental
cost of measuring rheological parameters and serves as a quick assessment tool.

1. INTRODUCTION
The injection of water-based acid fracturing fluids in depleted
carbonate reservoirs might hinder the recovery of treatment
and reservoir fluids.1 The flowback process is challenging
because of the trapping of large liquid volumes into the
formation due to the higher interfacial tension and low
reservoir energy.2 To overcome this challenge, foamed acid
was introduced to energize the well and ease the flowback
process. Additionally, foamed acid has successfully delivered
deeper penetration, controlled the reaction, reduced acid loss,
and improved acid diversion.3 This was possible due to the
creation of a multiphase fluid system where the gas is trapped
between liquid lamella.
The success of the acid fracturing process strongly depends

on the fluid’s viscosity. It controls the fluid loss, reaction rate,
and etching pattern.4 Therefore, accurately determining acid
foam viscosity is critical for effective acid fracturing
techniques.5 Foaming acid is classified as a non-Newtonian
fluid due to its response to shearing. The rheological models,
such as power law, Bingham plastic, or Herschel−Bulkley, are
determined using the relationship between shear rate and
stress or viscosity.6 Generally, most of the published reports

show that foam fluid follows a power-law model.6−9 However,
few studies presented foam as Bingham plastic, Herschel−
Bulkley, or Cross models.10,11

Einstein1,15 derived the first model to determine the
rheological behavior of foam. However, it is limited only to
low foam qualities, below 10%. The minimum foam quality is
52%; below this range, it is known as an energized fluid.
Mooney2,16 developed an exponential model to measure the
relative viscosity at high foam quality. The model was capable
of measuring the viscosity within an acceptable range.
However, it is limited to spherical bubbles. Similarly, Frankel
and Acrivos3,17 derived a suspension model that can only
predict the foam viscosity for uniform spherical bubbles.
Princen and Kiss4,18 derived their model, considering the
interaction between bubbles, bubble shape alteration, and
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shear-thinning behavior. However, foam quality is not the only
parameter controlling foam viscosity. The performance of foam
viscosity is strongly related to the bubble size, bubble density,
and bubble shapes and its response to the deformation in the
dynamic state.19 Additionally, the experimental studies showed
that foam viscosity varied with many parameters, including
foam quality, pressure, temperature, shear rate, salinity, and
additives.20−24

Foam quality is the major factor affecting the performance of
foam viscosity. It is described as the proportion of the gas
volume fraction to the entire volume fraction (gas and liquid).
Low foam quality results in low viscosity due to the low
interaction among bubbles. While at high foam quality, the
bubble number increases with significant interaction, which
results in higher foam viscosity. In addition, the shear rate has
the main effect on the foam viscosity. Following the power-law
model, Al-Darweesh et al.19 found that the foam viscosity
decreased exponentially with the increase in shear rates. This
observation was due to the deformation and shrinkage of
bubbles during the shearing and, consequently, the viscosity
reduction of the generated foam. Literature review19,25

indicated that the foam viscosity drops remarkably at high
temperatures due to the thermal thinning of foam film
(lamella). This caused faster coarsening and rupture of
bubbles.
Several surfactants generated foam at harsh reservoir

conditions; however, most chemicals are degraded. Coconut
monoethanolamide and Lauryl diethanolamide were not able
to generate foam at a temperature of 60 °C.25 Additionally,
internal olefin sulfonate and sodium dodecyl sulfonate
produced weak foam with salinity.25,26 Due to their significant
effects, additives such as corrosion inhibitors (CIs) are
excessively utilized in well-stimulation techniques. However,
CIs usually decrease the viscosity of viscoelastic surfactant
solutions due to the breakage of large micelles into smaller
ones.27 In addition, Al-Darweesh et al.20 reported the impact of
CI on the half-life and viscosity of foam at high pressure and
temperature. The results showed that the stability of the foam
was reduced by 74% once CI was added to the Armovis
solution. In addition, it reduced the viscosity by 40% at 500 1/

s. Carbon dioxide (CO2) and nitrogen (N2) are the most
commonly used to generate foam. CO2 is less stable than N2
foam due to its high solubility within the liquid film.28,29

However, CO2 foam is more suitable for hot reservoirs since it
is compatible with many fracturing fluids. CO2 can interface
with the cross-linking fluid structure by reducing the fluid pH.2

Therefore, these parameters should be considered to predict
accurate foam viscosity.
Due to the complex nature and poor understanding of foam

behavior, the prediction of foam viscosity under harsh reservoir
conditions is still a challenging task.9,12−14 Recently, artificial
intelligence (AI) tools have attracted special interest in oil and
gas applications due to their ability to solve nonlinear problems
with high accuracy. Othman et al.30 predicted the fracturing
fluid viscosity by considering different parameters such as
polymer, temperature, and salinity, utilizing 86 experiments.
They used six machine learning models, including decision
trees (DTs), fully connected neural networks (FCNN),
gradient boosting (GB), random forest (RF), extreme GB
(XGB), and adaptive gradient boosting (AGB; AdaBoost).
Among these techniques, FCNN yielded remarkable accuracy
with 95% accuracy. Ahmed et al.31 predicted the viscosity of
CO2 foam fracturing, considering different variables: foam
quality, shear rate, temperature, and pressure using the deep
neural networks approach. The fracturing CO2 foam viscosity
was predicted with 99.8% accuracy and a low average absolute
relative deviation (<1.8%). Tariq et al.32 analyzed 360 data
points of effective foam viscosity using four AI techniques: K-
nearest neighbor (KNN), artificial neural network (ANN),
random forest regressor (RFR), and DTs. The study tested a
wide range of conditions using a high-pressure high-temper-
ature foam rheometer and utilizing seven commercial
surfactants. The ANN-based model predicted foam viscosity
with an optimum accuracy (R2 = 0.972).
Few papers studied the prediction of foam viscosity using

machine learning tools due to the complex nature of the foam
structure. Additionally, the generation of foam viscosity
experimentally at high pressure and high temperature was
not trivial due to the limitation of the experimental setup.
Compared with previous research, this paper presents an

Table 1. Chemistry Details of Selected Surfactants
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effective model to predict foam viscosity based on popular
rheological models such as the power-law, Bingham plastic, or
Casson models. The experimental data were generated using a
high-pressure, high-temperature foam rheometer at a range of
temperature (100−150 °C), shear rate (100−2000 1/s),
pressure (1000−2500 psi), and foam quality of 70%. The effect
of different variables was investigated such as surfactant types,
concentrations, water chemistry, gas types, chelating agents,
and CIs. Machine learning approaches were used to derive a
model for foam viscosity based on the rheological model
constants, considering the features above. In addition, the
significance of each parameter on foam viscosity was
investigated through Pearson’s correlation coefficients.

2. METHODOLOGY
2.1. Chemicals and Sample Preparation. This paper

investigated the rheology of several surfactants: Duomeen
TTM, Ethoduomeen T/13, Armogel O, and Ethomeen C/12.
They are nonionic surfactants and converted to cationic
surfactants once they protonated. They are composed of
alkylamine and diamine derivatives manufactured by Nouryon.
Additionally, erucamidopropyl hydroxopropylsultaine is a
viscoelastic surfactant and commercially named Armovis
VES. It is only soluble in saline water. Moreover, CAS 50 is
an amphoteric surfactant synthesized from cocamidopropyl
hydroxysultaine. The chemistry of the surfactants that were
used is shown in Table 1. In addition, a low pH glutamic acid
diacetate tetrasodium salt (GLDA) (pH 3.87) was used in this
study. The CI is composed of alkyl polyquaternary amine-
based and commercially named CP-411T.
Three types of water were synthesized in-house; produced

water (PW), seawater (SW), and formation water (FW). The
salinity and ion content of each water type are shown in Table
2.

Each surfactant was typically dissolved in one of the water
types (deionized water, PW, SW, or FW) containing GLDA (0
or 15 wt %) and the CI (0 or 1.5 wt %). HCl droplets were
added (37.7%) to the batches that did not include GLDA to
reduce the pH and ensure surfactant dissolution. The liquid
solution was then stirred for 24 h at 450−500 rpm (RPM)
using a magnetic stirrer at room conditions?
2.2. HPHT Foam Rheometer. The apparent viscosity of

the foam was determined by using an HPHT foam rheometer,
as shown in Figure 1. The foam quality was set to be 70% for
all experiments. The viscosity measurements were evaluated at
a wide range of shear rates (100−2000 1/s). The experiment
started with the loading of a liquid solution into the
accumulator. Then, 130 mL of the solution was pumped into
a flow loop using a Quizix pump. Then, the oven was set to 70
°C. Once the temperature was reached, CO2 or N2 was
introduced to the recirculation loop to prevent the evaporation

of the liquid at elevated temperatures. Next, the oven was set
to the desired experiment temperature. When the experiment
temperature was reached, more gas was pumped through the
gas booster until the desired test pressure was reached. Then,
shearing was applied for enough time to generate foam using a
recirculation pump. The generated foam can be visualized
through a viewing camera. In addition, the foam quality was
controlled manually by adding more liquid or gas. Once the
homogeneous foam was produced and the desired foam quality
was set, an automated schedule was set to log the measured
value while increasing the shear rate from 100 to 2000 1/s
using 15−40 min time intervals. The apparent foam viscosity,
μ (mPa·s) is defined as the ratio of shear stress, τ (dyne-s/
cm2), to shear rate, γ̇ (1/s), evaluated using the following
equation:

= =
( )D P

L
U
D

4
8

(1)

where L is the length of the loop (cm), ΔP is the pressure
difference, D is the loop diameter (cm), and U is the velocity in
the loop (cm/s).
2.3. Foam Rheology Models. The flow behavior of foam

fluids is classified as non-Newtonian due to the viscosity
variation with shear rates. The power-law, Bingham, or Casson
models characterize the connection between shear stress or
viscosity and the shear rate.
The power-law model was developed with two factors: the

consistency index, K (m·pa·sn), and the flow behavior index, n
(dimensionless). These factors were used to develop the
following relationship between shear rate (γ̇) and shear stress
(τ) as follows:

= K n (2)

When the flow behavior index (n) is equal to one, the flow
fluid acts as a Newtonian. Where the viscosity is unaffected by
the shear rate. When n is more than one, the fluid is classified
as shear thinning (pseudoplastic). When n is less than one, the
moving fluid exhibits shear thinning (dilatant fluid).
The Bingham plastic model was established using two

parameters: the fluid’s yield stress, τy (m·Pa), and its plastic
viscosity, μp (cp).33 The fluid initially resists flow until shear
stress surpasses a certain threshold. After that, the fluid begins
to flow, displaying linear Newtonian fluid behavior between
the shear stress and shear rate. The shear stress-shear rate
connection may be represented as follows:

= +y p (3)

The Casson fluid model, the shear-thinning model, is
derived based on two parameters; Casson yield, Koc (m·Pa),
and Casson plastic viscosity, Kc (m·Pa·s). The shear stress-
shear rate model is explained as the following:

= +K Koc c (4)

The viscosity measurements were carried out using HPHT
foam rheometer at foam quality of 70% and shear rates ranging
from 100 to 2000 1/s. Several surfactants, different water
chemistry (DI, PW, SW, and FW), temperatures (100−150
°C), pressures (1000−4000 psi), and surfactant concentrations
(0.5−2 wt %) were evaluated. Additionally, the impact of
chelating agent GLDA and CI on the acidic N2 foam and CO2
foam were investigated. The supporting data presented the

Table 2. Salt Composition of Synthetic Water

chemical
formula

produced water,
PW (g/L)

seawater, SW
(g/L)

formation water,
FW (g/L)

NaCl 14.976 41.172 150.446
CaCl2.2H2O 5.649 2.387 69.841
MgCl2.6H2O 2.258 17.644 20.396
NaHCO3 0.476 0.165 0.487
Na2SO4 1.252 6.339 0.518
TDS (ppm) 24611 67708 241688
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relation between apparent foam viscosity and shear rate. Then,
a curve fitting was performed for all experiments to obtain the
rheological models’ parameters: Kc, Koc, μp, τy, k, and n using
eqs 2−4. The power-law model was the most appropriate
model to describe the behavior of the foam with a linear
regression coefficient of R2 = 0.96, ranging from 0.99 to 0.79.
However, a deviation from the data was observed for some
features such as high temperature (150 °C), CI, and Armovis
surfactant. The Bingham plastic model was also used to
describe the behavior of the foam system. The regression
coefficient for all experiments was 0.87, ranging from 0.99 to
0.3561. Deviation from experimental data was detected for
many features: salinity, surfactant concentration, surfactant
type, gas pressure, and chelating agents. To the best of our
knowledge, no publication has investigated the foam flow
behavior using the Casson model. This model showed an
excellent correlation (R2 ∼ 0.94) with the rheological data.
Deviation was observed for the gas pressure and gas type.
The generated foam viscosity data were used to extract the

rheological models’ constants; Kc, Koc, μp, τy, k, and n using eqs
2−4. The objective of machine learning tools was to predict
the rheological models’ constants based on features, which
were used to evaluate foam viscosity based on the optimum
rheological model.
2.4. Data Analysis. In this study, histograms were used to

gain insights about the data distributions such as their range,
frequency, and the spread. Figure 2 provides a visual
representation of the histogram distribution for each parameter
used in machine learning predictive modeling.
To examine the degree of collinearity among the input

parameters, we constructed a heatmap utilizing Pearson’s
method. The collinearity refers to a strong linear association
between two or more input parameters. Figure 3 illustrates the
heatmap representing the correlations among all the
parameters.
2.5. Exploratory Data Analysis. Table 3 provides the

nomenclature and meanings of the 19 selected features derived

from the experimental data set, which were employed for
predicting the foam rheological parameters.
In this study, a total of 448 data points were collected from

laboratory experiments. The statistical analysis of the data set
was conducted on the obtained data set. The analysis included
identifying the mean, minimum, maximum, ranges, kurtosis,
skewness, standard deviation, variance, and interquartile
ranges. Table 4 lists all of these statistical analyses.
2.6. Performance Metrics. This study used several error

metrics to evaluate the predictive performances of the model,
including predictive cross-plots, average absolute percentage
error (AAPE), R2, root-mean-square error (RMSE), and SD.

2.6.1. AAPE. AAPE is a metric used to evaluate a prediction
model’s degree of accuracy. The average absolute percentage
difference between the expected and actual values is quantified.
The absolute difference between each predicted value and its
matching actual value is taken, divided by the actual value, and
averaged throughout the data set to determine the AAPE:

= | | ×
n

x x
x

AAPE
1

( )
100

samples
measured pred

exp (5)

2.6.2. Root-Mean-Square Error. RMSE calculates the
square root of the mean of the squared differences between
the predicted values and actual values:

=
=n

x xRMSE
1

( )
i

n

samples 1
measured pred

2
samples

(6)

2.6.3. Coefficient of Determination (R2). The R2 ranges
from 0 to 1, with higher values indicating a better fit of the
model to the data:

=

i

k

jjjjjjjjjjjj

y

{

zzzzzzzzzzzz
( )( )
( ) ( )

R
x x y y

x x y y

i i

i i

2
2 2

2

(7)

Figure 1. Scheme of the HPHT foam rheometer.
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Figure 2. Histograms of input and output parameters used for machine learning models training.
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2.6.4. Standard Deviation. SD is a measure of the
dispersion or spread of a data set. It quantifies the extent to
which data points deviate from the mean (average) value. A
higher standard deviation indicates greater variability in the
data, while a lower standard deviation suggests that the data
points are closer to the mean:

=
=

i
k
jjjjj

y
{
zzzzzn

x x

x
SD

1
1 i

n

samples 1

measured pred

measured

2

(8)

2.6.5. Residual Errors. It represents the difference between
the observed (actual) values and the predicted values
generated by a statistical model. In other words, it quantifies
how much the model’s predictions deviate from the actual data
points:

= x xRE measured pred (9)

where xexp is the actual value and xpred is the predicted value
from the model, nsamples are the total number of data points,
and x and y are the two variables.
2.7. Machine Learning Techniques. In this study, seven

different ML techniques were implemented to predict the foam
viscosity model based on rheological models such as power-
law, Bingham plastic, and Casson models. These seven ML
techniques include DT, RF, extreme gradient boosting (XGB),
adaptive boosting (AdaBoost), gradient boosting (GBR),
support vector regression (SVR), and voting regression (VR).
These ML techniques are mostly used for various tasks, such

as classification, regression, and data analysis.34 Each algorithm
has its unique characteristics and advantages, which make it
suitable for different types of problems.35−37

The DT is a generalized algorithm that creates a flowchart-
like structure by partitioning the data based on feature values.
Each internal node represents a feature test, and each leaf node
represents a class label or regression value. DTs are known for
their interpretability and ease of understanding. They can

Figure 3. Visualizing the Pearson correlation coefficient between variables across an entire data set through a heatmap.
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handle both numerical and categorical data and are often used
for classification and regression tasks.38−41

RF is an ensemble learning algorithm that combines multiple
DTs. It creates a collection of trees and makes predictions by
averaging the predictions of individual trees. RF improves DTs
by reducing overfitting and increasing accuracy. It introduces
randomness in the training process by using random subsets of
the data and random subsets of the features. RF is robust and
performs well on large data sets.42−45

SVR is a regression algorithm that builds on the principles of
support vector machines. SVR finds a hyperplane that
maximizes the margin while still allowing some errors within
a specified tolerance (epsilon). It maps the input data into a
higher-dimensional space by using a kernel function and
constructs the regression model. SVR is robust against outliers
and can handle nonlinear regression tasks effectively. It is
widely used in various domains, including finance, bioinfor-
matics, and engineering.46−50

XGBoost, is a powerful GB algorithm that has gained
popularity in machine learning competitions. It is an ensemble
method that combines weak learners, typically DTs, in a
sequential manner. XGBoost optimizes a differentiable loss
function by iteratively adding trees that minimize the loss. It
employs various techniques such as regularization, parallel

processing, and weighted quantile sketching for efficient and
accurate predictions. XGBoost has become a standard
algorithm in many machine learning applications.51−54

AdaBoost, short for adaptive boosting, is another popular
boosting algorithm that combines weak learners to create a
strong learner. It assigns weights to the training instances and
adjusts these weights in each iteration to focus on the
misclassified samples. AdaBoost places more emphasis on
difficult examples, enabling the model to improve its
performance iteratively. The final prediction is a weighted
combination of weak learners. AdaBoost is robust against
overfitting and can be used for both classification and
regression tasks.55−57

GB is a general boosting framework that combines multiple
weak learners to create a strong learner. It minimizes a loss
function by iteratively adding new models that fit the negative
gradient of the loss function. GB algorithms, such as XGBoost
and AdaBoost, sequentially train models to correct the
mistakes made by previous models. The final prediction is a
weighted sum of the predictions from all of the models. GB
algorithms are highly effective and have achieved state-of-the-
art results in various machine learning tasks.
VR is an ensemble learning technique, where multiple

regression models are combined to make predictions. Each
individual regression model in the ensemble provides its own
prediction, and the final prediction is determined by
aggregating the results from all of the models. This aggregation
can be done using different strategies, such as averaging the
predictions or taking the majority vote. By combining the
predictions from multiple models, VR leverages the diversity of
the models to improve prediction accuracy and robustness. It is
particularly useful when the individual regression models have
different strengths and weaknesses, as the ensemble can
compensate for individual model limitations and provide more
accurate and reliable predictions.58−60 Figure 4 shows the
architecture of the VR.

3. RESULTS AND DISCUSSIONS
The study’s objective is to create machine learning models
capable of predicting the foam rheology model parameters. To
identify influential factors affecting foam rheology, input
parameters were chosen by using laboratory tests. Further-
more, a comprehensive series of numerical experiments was
carried out to identify the most effective machine learning
models. To convert categorical variables into a numerical form,
one-hot encoding was employed. This approach assigns binary
values like “0” and “1” to input parameters, where “0”
represents the absence of a specific quantity and “1” indicates
its presence.
In this research, we leveraged the concept of a learning curve

as a valuable tool for evaluating the performance and
effectiveness of our machine learning models. The learning
curve has allowed us to gain insights into how the model’s
performance evolves with the increase in the size of the
training data set. We visually represented this learning curve by
plotting the model’s performance in terms of RMSE on the
vertical axis against the varying sizes of the training data set on
the horizontal axis, as depicted in Figure 5. To create the
learning curve, we divided our complete data set into several
subsets of different sizes. These subsets were then further
divided into a training set, utilized for model training, and a
separate validation set, employed to assess the model’s
performance. We systematically expanded the training set

Table 3. Meaning of Features and Their Nomenclature

feature
type of
variable physical meaning units

TTM categorical presence or absence of TTM
surfactant

T13 categorical presence or absence of T13
surfactant

C12 categorical presence or absence of C12
surfactant

Armogel O categorical presence or absence of
Armogel O surfactant

CAS 50 categorical presence or absence of CAS
50 surfactant

Armovis categorical presence or absence of
Armovis surfactant

Armovis-TTM categorical presence or absence of
Armovis-TTM surfactant

DI categorical presence or absence of DI
SW categorical presence or absence of SW
FW categorical presence or absence of FW
PW categorical presence or absence of PW
CO2 categorical presence or absence of CO2

N2 categorical presence or absence of N2
surfactant
concentration
(wt %)

numerical weight % of the surfactant
used

wt %

chelating agent
(wt %)

numerical weight % of the chelating
agent used

wt %

corrosion
inhibitor (wt %)

numerical weight % of the corrosion
inhibitor used

wt %

temperature (°C) numerical temperature at which
measurements were
conducted

°C

pressure (psi) numerical pressure at which
experiments were
conducted

psi

n numerical Newtonian constant
K numerical consistency index m·pa·sn

τy numerical yield stress m·Pa
μp numerical pseudoplastic viscosity cp
Koc numerical orifice viscosity m·Pa
Kc numerical Casson viscosity m·Pa·s
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size and observed how the model’s performance responded
when applied to the test set. The insights drawn from the
learning curve indicated that achieving a training set size of 39
experimental points led to reduced RMSE values in both the
training and cross-validation phases, corresponding to 76% of
the data set. Consequently, we made t he decision to split the
overall data set into three subsets for our machine learning
modeling: 76% for training (including 10% for validation) and
24% for testing. To maintain consistency in our modeling
approach, we implemented data stratification using the train-
test split function from the open-source scikit-learn library in
Python. Additionally, we introduced a random seed function to
ensure the reproducibility of our results. Furthermore, we
applied a cross-validation technique to enhance the accuracy of
our machine learning models. This involved dividing the
training data set into subsets referred to as “k folds”.
We started with the prediction of Kc using these seven ML

techniques. The DT was utilized, employing the squared error

criterion to determine the quality of splits and allowing the tree
to grow without a maximum depth constraint. The RF
regressor consisted of 100 DTs with a maximum depth of 100
and a minimum of 2 samples required for splitting. The KNN
regressor used 6 neighbors for prediction with uniform weights
and employed the Euclidean distance metric. The SVR model
employed an RBF kernel with polynomial features up to degree
3, determined the gamma parameter automatically, and set the
error tolerance to 0.001. The GBR model included 500
estimators, a learning rate of 0.3, and a maximum depth of 2
for each DT. The AGB model used 500 DTs with a maximum
depth of 115, required a minimum of 4 samples for splitting,
and had a learning rate of 0.1. XGB employed 500 boosting
rounds, minimized the mean squared error, set regularization
parameters (λ and α) to control regularization strength, and
utilized a gamma value of 0.1. The “max_depth” was set to
100, and the learning rate was 0.3. These models were carefully
configured to ensure accurate predictions and capture complex

Table 4. Statistical Analysis of the Entire Dataset

parameters average standard deviation minimum 25% 50% 75% maximum

TTM 0.254902 0.440143 0 0 0 0.5 1
T13 0.176471 0.385013 0 0 0 0 1
C12 0.117647 0.325396 0 0 0 0 1
Armogel O 0.098039 0.300327 0 0 0 0 1
CAS 50 0.098039 0.300327 0 0 0 0 1
Armovis 0.098039 0.300327 0 0 0 0 1
Armovis-TTM 0.156863 0.36729 0 0 0 0 1
DI 0.176471 0.385013 0 0 0 0 1
SW 0.215686 0.41539 0 0 0 0 1
FW 0.137255 0.34754 0 0 0 0 1
surfactant concentration (wt %) 0.46 0.503457 0 0 0 1 1
chelating agent (wt %) 1.09 0.314448 0.5 1 1 1 2
corrosion inhibitor (wt %) 11.1 6.646312 0 3.75 15 15 15
temperature (°C) 120.3922 24.32783 100 100 100 150 150
CO2 0.941176 0.237635 0 1 1 1 1
N2 0.058824 0.237635 0 0 0 0 1
pressure (psi) 1088.235 311.5427 1000 1000 1000 1000 2500
n 0.75559 0.076854 0.5526 0.7279 0.7663 0.8033 0.9059
K 106.8088 115.9883 8.554606 48.56539 73.62071 113.5579 690.5577
τy 1602.799 1197.475 225.09 871.255 1196.1 1921.3 5789.3
μp 14.06207 5.902646 2.9943 9.2906 13.983 17.819 30.752
Koc 475.9542 417.8331 31.70816 221.0037 362.4074 545.529 1907.069
Kc 10.9015 4.373568 1.712172 7.301894 10.79188 14.01136 21.0424

Figure 4. Model architecture of the voting regression.
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relationships in the data. The VR employed combines four
different models: XGB, AGB, GBR, and RF. Each model
contributes to the final prediction by assigning a weight to its
output based on its performance. The VR aggregates the
predictions from these models and calculates the average as the
final prediction. Figure 6 shows the comparison of seven
machine learning techniques, including DT, RF, XGB, AGB,
GB, SVR, and VR in terms of RMSE and R2 scores on the

testing data set to predict Kc. The XGB technique out-
performed other ML methods by displaying a lower RMSE and
higher R2 values. The XGB resulted in a RMSE of 0.90 and R2

of 0.941. Figure 7 shows the contribution of each feature in the
ML models mentioned above to predict Kc. From Figure 7, it
can be observed that almost all features contribute in the XGB
model prediction while other ML techniques such as DT, RF,
GB, and Adaboost are unequally depending on some features.

Figure 5. Example of learning curve with increasing training set sample size using XGB.

Figure 6. Comparison of different machine learning algorithms in terms of RMSE and R2 scores to predict Kc.
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The contributions from each feature are making the XGB
model more generalized, therefore, XGB was opted for the
prediction of the rest of the rheological parameters.
Using the above configuration of XGB, Figure 8a−f shows

the training and testing cross-plots for the prediction of Kc, Koc,
μp, τy, k and n. Table 5 provides information on the training
and testing accuracies of various rheological parameters using
the XGBoost algorithm. In the “Training” section of the table,
the values represent the accuracies of the model when trained
on a particular data set. The metrics used to evaluate the
model’s performance include AAPE, RMSE, MSE, Emax,
Emin, and R2. Each variable has corresponding values for each
of these metrics. The XGB model achieves an AAPE of 0.022
for Kc, 0.001 for Koc, 0.020 for μp, 0.000 for τy, 0.004 for k, and
0.012 for n. Similarly, the model achieves corresponding values
for MAE, RMSE, MSE, Emax, Emin, and R2 for each variable
during the training and testing phases. These values provide
insights into the performance of the XGBoost model in
predicting the rheological parameters. The lower the values for
AAPE, MAE, RMSE, and MSE, the better the accuracy of the
model. Conversely, higher values for R2 indicate a better fit of

the model to the data. It is important to compare the training
and testing accuracies to assess the model’s ability to generalize
to new, unseen data.

4. CONCLUSIONS
Based on the findings and discussions outlined in the paper,
the following conclusions can be drawn:

1. The study explored seven distinct machine learning
methodologies, including DT, RF, XGB, AdaBoost,
GBR, SVR, and VR. The objective was to enhance the
accuracy of predicting rheological properties. These
models were trained using operational features such as
pressure, temperature, and the proportions of various
additives.

2. Utilizing machine learning techniques, this study
effectively automated the prediction of rheological
properties using parameters extracted from labor-
intensive and time-consuming laboratory experiments.
These techniques enabled the development of effective
models for predicting rheological features.

Figure 7. Contributions of each feature in the respective ML models for the prediction of Kc. SVR, KNN, and VR do not support feature
importance measuring criteria.
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3. A substantial volume of data was meticulously generated
through extensive laboratory experiments, forming the
cornerstone for training the machine learning models.
This data set provided the necessary groundwork for the
models to discern the inherent patterns and connections

between input parameters and the foam rheological
parameters.

4. The outcomes of the study revealed that the XGB model
surpassed the other tested algorithms in terms of
predictive performance. This highlights the XGB

Figure 8. Training and testing predictions using XGB for (a) Kc, (b) Koc, (c) μp, (d) τp, (e) k, and (f) n.

Table 5. Training and Testing Accuracies of the Rheological Parameters Using XGB

variables AAPE MAE RMSE MSE Emax Emin R2

(a) training
Kc 0.022 0.202 0.256 0.066 0.572 −0.434 0.997
Koc 0.001 0.178 0.229 0.052 0.687 −0.373 1.000
μp 0.020 0.222 0.268 0.072 0.621 −0.484 0.998
τy 0.000 0.257 0.304 0.093 0.621 −0.587 1.000
k 0.004 0.210 0.280 0.078 0.744 −0.728 1.000
n 0.012 0.009 0.015 0.000 0.053 −0.032 0.954
(b) testing
Kc 0.104 0.761 0.940 0.883 1.793 −1.590 0.941
Koc 0.266 73.348 97.418 9490.250 67.134 −206.304 0.963
μp 0.139 1.284 1.557 2.423 2.700 −2.028 0.901
τy 0.234 332.260 403.171 162547.048 281.459 −913.532 0.867
k 0.039 4.445 6.999 48.986 17.236 −12.320 0.985
n 0.038 0.026 0.033 0.001 0.073 −0.055 0.870
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model’s exceptional capability in capturing the intricate
relationships between input parameters and output
parameters.
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