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ABSTRACT: Small molecules play a critical role in modulating biological
systems. Knowledge of chemical−protein interactions helps address
fundamental and practical questions in biology and medicine. However,
with the rapid emergence of newly sequenced genes, the endogenous or
surrogate ligands of a vast number of proteins remain unknown. Homology
modeling and machine learning are two major methods for assigning new
ligands to a protein but mostly fail when sequence homology between an
unannotated protein and those with known functions or structures is low. In
this study, we develop a new deep learning framework to predict chemical
binding to evolutionary divergent unannotated proteins, whose ligand cannot be reliably predicted by existing methods. By
incorporating evolutionary information into self-supervised learning of unlabeled protein sequences, we develop a novel method,
distilled sequence alignment embedding (DISAE), for the protein sequence representation. DISAE can utilize all protein sequences
and their multiple sequence alignment (MSA) to capture functional relationships between proteins without the knowledge of their
structure and function. Followed by the DISAE pretraining, we devise a module-based fine-tuning strategy for the supervised
learning of chemical−protein interactions. In the benchmark studies, DISAE significantly improves the generalizability of machine
learning models and outperforms the state-of-the-art methods by a large margin. Comprehensive ablation studies suggest that the use
of MSA, sequence distillation, and triplet pretraining critically contributes to the success of DISAE. The interpretability analysis of
DISAE suggests that it learns biologically meaningful information. We further use DISAE to assign ligands to human orphan G-
protein coupled receptors (GPCRs) and to cluster the human GPCRome by integrating their phylogenetic and ligand relationships.
The promising results of DISAE open an avenue for exploring the chemical landscape of entire sequenced genomes.

■ INTRODUCTION

Small molecules like metabolites and drugs play an essential role
in modulating physiological and pathological processes. The
chemical modulation of a biological system results from its
interaction with biomolecules, largely proteins. Thus, the
genome-wide identification of chemical-protein interactions
(CPI) will not only address many fundamental questions in
biology (e.g., microbiome-host interaction mediated by the
metabolite) but also provide new opportunities in drug
discovery and precision medicine.1 Despite tremendous
advances in genomics, the function of a vast number of proteins,
particularly their ligands are to a great extent unknown. Among
the approximately 3000 druggable genes that encode human
proteins, only 5% to 10% have been targeted by an FDA-
approved drug.2 The proteins that miss ligand information are
orphan proteins in biology or considered as unlabeled data in
terms of machine learning. It is a great challenge to assign ligands
to orphan proteins, especially when they are significantly
dissimilar from proteins with known structures or functions.
Many experimental approaches have been developed to
deorphanize the orphan proteins such as G-protein coupled
receptors (GPCRs).3 However, they are both costly and time-

consuming. Great effort has been devoted to the development of
computational approaches, which may provide an efficient
solution to generate testable hypotheses for elucidating the
ligand of orphan proteins.
With the increasing availability of solved crystal structures of

proteins, homology modeling and protein−ligand docking are
major methods for the effort in deorphanization.4 However, the
quality of homology models significantly deteriorates when the
sequence identity between query and template is low. When a
homology model with an acceptable quality is unavailable,
structure-based methods, either physics-based or machine
learning-based,5 could be unfruitful. Moreover, protein−ligand
docking suffers from a high rate of false positives because it is
incapable of accurately modeling conformational dynamics,
solvation effect, crystallized water molecules, and other physical
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phenomena. Considering that around half of Pfam families do
not have any structure information,6 it is necessary to develop a
new sequence-based machine learning approach to deorphani-
zation, especially for the proteins that are not close homologues
of or even evolutionarily unrelated to the ones with solved
crystal structures or known ligands.
Many machine learning methods have been developed to

predict CPIs from protein sequences. Early works relied on
feature engineering to create a representation of protein and
ligand then use classifiers such as support vector machine7 and
matrix factorization89 to make final prediction. End-to-end deep
learning approaches have recently gained momentum.1011

Various neural network architectures, including Convolutional
Neural Network (CNN),1213 seq2seq,1415 and Transformer,16

have been applied to represent protein sequences. These works
mainly focused on filling in missing CPIs for the existing drug
targets. When the sequence of orphan protein is significantly
different from those used in the database or training data, the
performance of many existing machine learning methods
deteriorates significantly.8 As a result, existing machine learning
methods are incapable of predicting genome-scale CPIs.
The failure of the machine learning method primarily comes

from its generalization problem. The machine learning model is
confined by its training data and cannot reliably predict new
cases that are out of the domain of training data. Reducing data
bias may lessen but not solve the problem. TransformerCPI16

addressed the data bias that comes from the chemicals, since the
known pairs of interactions involve far more unique chemicals
than unique proteins. But TransformerCPI did not confront the
fundamental generalization problem on genome-wide CPI
predictions, i.e., predicting ligand binding to remote orphan
proteins. The fields of computer vision and natural language
processing (NLP) have explored the generalization problem
from several aspects. a major breakthrough is pretraining. Since
the wide acknowledgment of the power of attention
mechanism,52 a series of attention-based pretrained language
models such as BERT,29 ALBERT,17 ROBERTA,53 etc. kept
breaking records on most NLP benchmark tasks. The basic idea
of pretraining is to train a model on a huge unlabeled corpus,
which includes far more “vocabulary” than a downstream task
data set. Due to the close analogue between protein sequence
and human language, many laboratories have developed
pretrained protein language models, such as TAPE,56

ProtTrans,54 and ESM.55 For example, TAPE uses Pfam,22 a
database of thirty-one million protein domains, as the
pretraining corpus. It is used on downstream tasks such as
secondary structure prediction and contact prediction through
fine-tuning and proved to improve downstream task perform-
ance. However, pretrained protein language models have not
been applied to genome-wide CPI predictions. Moreover,
biological information that is crucial to protein biochemical
functions has not been fully incorporated into the protein
sequence pretraining.
To extend the scope of state-of-the-art for the prediction of

chemical binding to orphan proteins in entire sequenced
genomes, we propose a new deep learning framework for
improving protein representation learning so that the relation-
ships between remote proteins or even evolutionary unrelated
proteins can be detected. Inspired by the success in self-
supervising learning of unlabeled data in NLP,17 and its
application to biological sequences,18−20 we propose a new
protein representation method, distilled sequence alignment
embedding (DISAE), for the purpose of deorphanization of

remote orphan proteins. Although the number of labeled
proteins that have known ligands is limited, DISAE can utilize all
available unlabeled protein sequences without the knowledge of
their functions and structures. By incorporating biological
knowledge into the sequence representation, DISAE can learn
functionally important information about protein families that
span a wide range of protein space. Furthermore, we devise a
module-based pretraining-fine-tuning strategy using AL-
BERT.17 To our knowledge, it is the first time to apply a
pretrained-fine-tuned protein sequence model for addressing
the challenge of deorphanization of novel proteins on a genome-
scale. Compared with state-of-the-art methods represented by
TransformerCPI58 and TAPE,59 DISAE is innovative in many
aspects: learning task, protein descriptor, chemical descriptor,
model architecture, and training procedure.
In the benchmark study, DISAE significantly outperforms

other state-of-the-art methods for the prediction of chemical
binding to dissimilar orphan proteins by a large margin. The
success of DISAE mainly comes from the use of multiple
sequence alignment (MSA) and distilled sequence. Further-
more, the interpretability analysis of DISAE suggests that it
learns biologically meaningful information. We apply DISAE to
the deorphanization of G-protein coupled receptors (GPCRs).
GPCRs play a pivotal role in numerous physiological and
pathological processes. Due to their associations with many
human diseases and high druggabilities, GPCRs are the most
studied drug targets.21 Around one-third of FDA-approved
drugs target GPCRs.21 Despite intensive studies in GPCRs, the
endogenous and surrogate ligands of a large number of GPCRs
remain unknown.3 Using DISAE, we can confidently assign 649
orphan GPCRs in Pfam with at least one ligand; 106 of the
orphan GPCRs find at least one approved GPCR-targeted drugs
as ligand with an estimated false positive rate lower than 0.05.
These predictions merit further experimental validations. In
addition, we cluster the human GPCRome by integrating their
sequence and ligand relationships. The promising results of
DISAE open an avenue for exploring the chemical landscape of
all sequenced genomes. The code of DISAE is available on
GitHub (https://github.com/XieResearchGroup/DISAE).

■ METHODS
Overview ofMethodology. As illustrated in Figure 1A, the

proposed method is designed to predict chemical binding to
remote orphan proteins that do not have detectable relation-
ships to annotated (i.e., labeled) proteins with known structures
or functions. It is different frommost of current works that focus
on the assignment of functions to proteins that are homologous
to annotated proteins. Our methodmainly consists of two stages
(Figure 1B,C). The first stage is for unsupervised learning of
protein representations using only sequence data from all
nonredundant sequences in Pfam-A families22 but without the
need of any annotated structural or functional information. We
develop a new algorithm, DISAE, for the self-supervised leaning
(a special form of unsupervised learning) of protein
representation. In contrast to existing sequence pretraining
strategies that use original protein sequences as input,18−20

DISAE distills the original sequence into an ordered list of
triplets by excluding evolutionarily unimportant positions from a
MSA (Figure 1B). The purpose of sequence distillation is 2-fold:
improving efficiency for the sequence pretraining, in which long
sequences cannot be handled and reducing the noise in the input
sequence. Then long-range residue−residue interactions are
learned via the self-attention in the Transformer module of
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ALBERT. A self-supervised masked language modeling (MLM)
approach is used at this stage. In the MLM, 15% triplets are
randomly masked and assumed to be unknown. Then, the
remaining triplets are used to predict what the masked triplets
are. In the second stage, a supervised learning model is trained to
predict if a chemical and a protein interact using the knownCPIs
that are collected from chemical genomics databases.23−26 The
input of the supervised learning includes both the representation
of chemical structures from neural fingerprint27 and the
pretrained protein sequence embedding from the first stage.
We develop a module-based fine-tuning strategy to balance the
information learned from the unsupervised and the supervised
stages, and apply an attention pooling28 to model the interaction
between chemical substructures and protein residues. More
details in the sequence representation learning, the architecture
of neural network, benchmark data sets, training and evaluation

procedure, and data analysis can be found in the section of
Method.

[Input of DISAE] Protein Sentence Representation
from Distilled Sequence Alignment. A protein sequence is
converted into an ordered list of amino acid fragments (words)
with the following steps, as illustrated in Figure 1B.

1. Given a sequence of interest S, anMSA is constructed by a
group of similar sequences to S. In this paper, the
precomputed alignments in Pfam22 are used.

2. Amino acid conservation at each position is determined.

3. Starting from the most conserved positions that are
defined in the Pfam, a predefined number of positions in
the alignment are selected by the ranking of conservation.
In this study, the number of positions is set as 210. The
length of the positions was not optimized.

Figure 1. (A) Comparison of the scope of this study with that of current works. In existing methods, only annotated proteins (labeled data) are used in
the model training. They work well when an orphan protein is homologous to the annotated protein but mostly fail when the orphan protein is
dissimilar from the annotated protein. By contrast, this study uses both annotated and orphan proteins in a self-supervised-learning-fine-tuning
framework and thus extends the scope to genome-wide remote orphan proteins that are out of the reach of state-of-the-art. (B) Illustration of protein
sequence representation from distilled sequence alignment. The high andmedium conserved positions are marked as red and orange, respectively. (C)
Architecture of deep learning model for the whole-genome CPI prediction.
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4. A word, either a single amino acid or a triplet of amino
acids in the sequence, is selected at each position. The
triplet may include gaps.

5. Finally, all selected words from the sequence form an
ordered list following the sequence order, i.e., the
sentence representation of the protein.

The rationale for the distilled MSA representation is to only
use functionally or evolutionarily important residues and ignore
others. It can be considered a feature selection step. In addition,
the use of MSA will allow us to correlate the functional
information with the position encoding. Given a protein family,
the residue positions will have a unified representation, thus
facilitate the modeling of pairwise protein residue-ligand
substructure interactions through the attention. The distilled
sequence will not only reduce the noise but also increase the
efficiency in the model training since the memory and time
complexity of language model is O (n2). It is noted that we use
the conservation to select residues in a sequence because it is
relevant to protein function and ligand binding. Other criteria
(e.g., coevolution) could be used depending on the downstream
applications (e.g., protein structure prediction).
[Pretraining of DISAE] DISA) Using ALBERT. It has been

shown that NLP algorithms can be successfully used to extract
biochemically meaningful vectors by pretraining BERT29 on 86
billion amino acids (words) in 250 million protein sequences.39

A recently released light version of BERT, called ALBERT,17

boasts significantly lighter memory uses with better or
equivalent performances compared to BERT.29 We extend the
idea of unsupervised pretraining of proteins using ALBERT
algorithm using distilled MSA representation. The distilled
ordered list of triplets is used as the input for ALBERT
pretraining. In this work, only the masked language model
(MLM) is used for the pretraining.
[Fine-Tuning] Architecture of Deep Learning Model

for Whole-Genome CPI Prediction. The deep learning
model for the whole-genome CPI (chemical protein inter-
action) prediction is mainly composed of three components, as
shown in Figure 1C, protein embedding by DISAE, chemical
compound embedding, and attention pooling with multilayer
perceptron (MLP) to model CPIs. DISAE is described in the
previous section. Note that once processed through ALBERT,
each protein is represented as a matrix of size 210 by 312, where
each triplet is represented by a vector of length 312. During
protein−ligand interaction prediction task, the protein embed-
ding matrix is compressed using ResNet.40 Once processed
through ResNet layers, each protein is represented as a vector of
length 256, which contains compressed information for the
whole 210 input triplets for the corresponding protein.
Neural molecular fingerprint41 is used for the chemical

embedding. A small molecule is represented as a 2D graph,
where vertices are atoms and edges are bonds. We use a popular
graph convolutional neural network to process ligand
molecules.27

The attentive pooling is similar to the design in ref 11, For
each putative chemical−protein pair, the corresponding
embedding vectors are fed to the attentive pooling layer,
which in turn produces the interaction vector.
More details on the neural network model configurations can

be found in Tables S2−S4 in the Supporting Information.
[Fine-Tuning] Module-Based Fine-Tuning Strategy.

When applying ALBERT to a supervised learning task, fine-
tuning17 is a critical step for the task-specific training following

the pretraining. Pretrained ALBERT has already learned to
generate protein representation in a meaningful way. However,
it is also a design choice whether to allow ALBERT to be
updated and trained together with the other components of the
classification system during the fine-tuning.1742 Updating
ALBERT during the fine-tuning will allow the pretrained
protein encoder to better capture knowledge from the training
data while minimizing the risk of significant loss of knowledge
obtained from the pretraining. Hence, to find the right balance,
we experiment with ALBERT models that are partially
unfrozen.42 To be specific, major modules in the ALBERT
model, embedding or transformer,43 are unfrozen separately as
different variants of the model. The idea of “unfrozen” layers is
widely used in NLP, e.g., ULMFiT42 where model consists of
several layers. As training proceeds, layers are gradually unfrozen
to learn the task-specific knowledge while safeguarding knowl-
edge gained from pretraining. However, this is not straightfor-
wardly applicable to ALBERT because ALBERT is not a linearly
layered-up architecture. Hence, we apply a module-based
unfrozen strategy.

Experiments Design.The purpose of this study is to build a
model to predict chemical binding to novel orphan proteins.
Therefore, we design experiments to examine the model
generalization capability to the data not only unseen but also
from significantly dissimilar proteins. We split training/
validation/testing data sets to assess the performance of
algorithms into three scenarios: 1. The proteins in the testing
data set are significantly different from those in the training and
validation data set based on the sequence similarity. 2. The
ligands in the testing data are from a different gene family from
that in the training/validation data. 3. The whole data set is
randomly split like most of the existing work.
We use Long−Short-term Memory (LSTM),44 Trans-

formerCPI, and TAPE as baselines, as shown in Table 1. Two
variants of LSTM models are tested to compare with the above
three groups of experiments: LSTM with distilled triplets and
distilled singlets. For the LSTM and TAPE baselines, we only
replace the pretrained ALBERT module with LSTM or TAPE,
but other components of the whole architecture are the same, as
in Figure 1C). For the TransformerCPI baseline, we test the
original model of TransformerCPI on our data sets.
To examine the effect of different pretraining-fine-tuning

algorithms, we organize experiments in three categories of
comparisons, as shown in Table 1:

1. The effect of vocabulary: Taking protein sequence as a
sentence, its vocabulary could be built in many ways. We
compare the use of the singlet with the triplet of
vocabulary.

2. The effect of pretraining: We assess how unlabeled
protein sequences affect the performance of the
classification. We compare ALBERT pretrained on
whole Pfam alone against one pretrained on GPCRs
alone and one without pretraining.

3. The effect of fine-tuning: We compare three ALBERT
models: ALBERT all unfrozen, ALBERT frozen embed-
ding, and ALBERT frozen transformer.43 All these modes
are pretrained on the whole Pfam.

Data Set. Our task is to learn from large-scale CPI data to
predict unexplored interactions. The quality and quantity of the
training samples are critical for biologically meaningful
predictions. Despite continuous efforts in the community, a
single data source typically curates an incomplete list of our
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knowledge of protein−ligand activities. Thus, we integrated
multiple high-quality, large-scale, publicly available databases of
known protein−ligand activities. We extracted, split, and
represented protein−ligand activity samples for training and
evaluation of machine learning-based predictions.

• Sequence data for ALBERT pretraining

Proteins sequences are first collected from Pfam-A22 database.
Then, sequences are clustered by 90% sequence identity, and a
representative sequence is selected from each cluster. The
40 282 439 sequences (including 138 288 GPCR) are used for
the ALBERT pretraining. To construct protein sentences from
the distilled sequence alignment, the original alignment and
conservation score from each Pfam-A family are used. As a
comparison, the 35 181 GPCR sequences only from the GPCR
family PF00001 are used to pretrain a separate ALBERT model.
We used Pfam alignments directly. From the consensus

alignment sequence, we collected positions of high-confidence
and low-confidence conserved amino acids together with
conservatively substituted ones. We picked these positions
from each of sequences. As a result, each sequence is represented
by 210 amino acids, which may contain gaps. The 210 amino
acids are then treated as a sentence of triplets. The triplets are
used to train the ALBERTmodel with the following parameters:

maximum sequence length = 256, maximum predictions per
sentence = 40, word masking probability = 0.15, and duplication
factor = 10. Note that the order of a pair of sequences may not be
biologically meaningful. Thus, we did not apply the next
sentence prediction task during the pretraining.

• Binding assay data for supervised learning

We integrated protein−ligand activities involving any GPCRs
from ChEMBL23 (ver. 25), BindingDB24 (downloaded Jan 9,
2019), GLASS25 (downloaded Nov 26, 2019), and DrugBank26

(ver. 5.1.4). Note that BindingDB also contains samples drawn
from multiple sources, including PubChem, PDSP Ki, and U.S.
patent. From ChEMBL, BindingDB, and GLASS databases,
protein−ligand activity assays measured in three different unit
types, pKd, pKi, and pIC50 are collected. Log-transformation was
performed for activities reported in Kd, Ki, or IC50. For
consistency, we did not convert it into different activity types.
For instance, activities reported in IC50 are converted only to
pIC50, but not any other activity types. The activities on a log-
scale were then binarized based on the thresholds of activity
values. Protein−ligand pairs were considered active if pIC50 >
5.3, or pKd > 7.3 or pKi > 7.3 and inactive if pIC50 < 5.0, pKd < 7.0
or pKi < 7.0 respectively.

Table 1. Test Set Performance under Three Benchmark Settings Are Evaluated in ROC-AUC and PR-AUCa

ROC-AUC

benchmark

goal of comparison model dissimilar GPCR kinase inhibitor random

DISAE ALBERT frozen transformer (distilled triplets) 0.725 0.690 0.889
the effect of pretraining ALBERT frozen transformer (pretrained on GPCR) 0.441 0.849
the effect of distilled sequence ALBERT frozen transformer (distilled singlets) 0.583 0.656
the effect of fine-tuning ALBERT frozen embedding 0.585 0.889

ALBERT all unfrozen 0.680 0.891
baseline against ALBERT TransformerCPI (full sequence) 0.570 0.680 0.896

TransformerCPI (distilled singlets) 0.645 0.682 0.897
TAPE (full sequence) 0.610 0.640 0.825
TAPE (distilled singlets) 0.680 0.619 0.829
LSTM (full sequence) 0.524 0.662 0.911
LSTM (distilled singlets) 0.652 0.642 0.907
LSTM (distilled triplets) 0.476 0.667 0.908

PR-AUC

benchmark

goal of comparison model dissimilar GPCR kinase inhibitor random

DISAE ALBERT frozen transformer (distilled triplets) 0.589 0.673 0.783
The effect of pretraining ALBERT frozen transformer (pretrained on GPCR) 0.215 0.728
the effect of distilled sequence ALBERT frozen transformer (distilled singlets) 0.370 0.477
the effect of fine-tuning ALBERT frozen embedding 0.278 0.783

ALBERT all unfrozen 0.418 0.785
baseline against ALBERT TransformerCPI (full sequence) 0.300 0.620 0.782

TransformerCPI (distilled singlets) 0.350 0.624 0.778
TAPE (full sequence) 0.300 0.610 0.684
TAPE (distilled singlets) 0.387 0.584 0.698
LSTM (full sequence) 0.262 0.628 0.803
LSTM (distilled singlets) 0.372 0.614 0.798
LSTM (distilled triplets) 0.261 0.590 0.804

aALBERT pretrained transformer-frozen model outperforms other models, and its performance is stable across all settings. Hence, it is
recommended as the optimal configuration for the pretrained ALBERT model. Four variants of DISAE models are compared to the frozen
transformer one. Unless specified in the parentheses, ALBERT is pretrained on whole Pfam proteins in the form of distilled triplets. The four
DISAE variants are organized into three groups based on the goal of comparison. Three state-of-the-art models TAPE, TransformerCPI and LSTM
are compared with the ALBERT pretrained models as baselines. Protein similarity based splitting uses a threshold of similarity score of 0.035
(Figure 2).
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In the above equations, m and n are the total number of
unique proteins and ligands, respectively. A1 (i, j), A2 (i, j), and
A3 (i, j) is the list of all activity values for the ith protein and jth
ligand in pIC50, pKd, and pKi, respectively. |A| denotes the
cardinality of the set A. Note that there are gray areas in the
activity thresholds. Protein−ligand pairs falling in the gray areas
were considered undetermined and unused for training. If
multiple activities were reported for a protein−ligand pair, their
log-scaled activity values were averaged for each activity type and
binarized accordingly. In addition, we collected active protein−
ligand associations from DrugBank and integrated with the
binarized activities mentioned above. Inconsistent activities
(e.g., protein−ligand pairs that appear both active and inactive)
were removed. There is a total of 9705 active and 25175 inactive
pairs, respectively, in the benchmark set.
Benchmark. To test the model generalization capability, a

protein similarity-based data splitting strategy is implemented.
First, pairwise protein similarity based on bit-score is calculated
using BLAST45 for all GPCRs in the data set. The similarity
between proteini and proteinj is defined as

= *

i j

i j i i j j

similarity score( , )

bit score( , )/ bit score( , ) bit score( , )

Then, according to the similarity distribution, a similarity
threshold is set for splitting. The bit-score similarity threshold is
0.035. The sequences are clustered such that the sequences in
the testing set are significantly dissimilar from those in the
training/validation set, as shown in Figure 2. After splitting,
there are 25 114, 6278, and 3488 samples for training, validation,
and testing, respectively. Distribution of protein sequence
similarity scores can be found in Figure S8.
Ensemble Model for the GPCR Deorphanization. All

annotated GPCR-ligand binding pairs are used to build
prediction models for the GPCR deorphanization. To reduce

overfitting, an ensemble model is constructed using DISAE.
Following the strategy of cross-validation,46 three DISAE
models are trained. Like benchmark experiments, a hold-out
set is selected based on protein similarity and is used for the early
stopping at the preferred epoch for each individual model. Max-
voting47 is invoked to make final prediction for the orphan
human GPCRs.
To estimate the false positive rate of predictions on the

orphan-chemical pairs, a prediction score distribution is
collected for known positive pairs and negative pairs of testing
data. If the prediction score of orphan pairs has the same
distribution as that of the testing data, for each prediction score,
a false positive rate can be estimated based on the score
distribution of true positives and negatives.

SHAP Analysis. Kernel SHAP30 is used to calculate SHAP
values for distilled protein sequences. It is a specially weighted
local linear regression to estimate SHAP values for any model.
The model used is DISAE that fine-tunes the ALBERT frozen
transformer and is pretrained on whole Pfam in distilled triplets
under the remote GPCR setting. The data used is the testing set
generated under the same remote GRPC setting. Although the
whole input features to the classifier consist of both distilled
protein sequence and chemical neural fingerprint, only protein
feature is of interest. Hence, when calculating the base value (a
value that would be predicted if we do not know any features)
required by SHAP analysis, all testing set protein sequences are
masked with the same token, while chemical neural fingerprint
remains untouched. Therefore, the base value is the average
prediction score without protein feature and solely relying on
chemical features. Since the distilled sequences are all set to be of
length 210, the SHAP values are the feature importance for each
of the 210 positions.

Statistical Test. To assess the statistical significance of the
difference between the performance of DISAE and those of
baselines, 200 test samples are randomly sampled with
replacement from the dissimilar protein benchmark. For each
set of 200 samples, the ROC-AUC and PR-AUC of DISAE,
TAPE, and TransformerCPI models are calculated, respectively.
Student’s t tests are carried out to compare the distribution of

Figure 2. Distribution of sequence alignment percentage and
percentage of sequence identity between proteins in the testing set
(query) and those in the training/validation set (template) in the
dissimilar protein benchmark.
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ROC-AUC and PR-AUC of the DISAE model with those of
TAPE and TransformerCPI models, respectively.
Hierarchical Clustering of the Human GPCRome. The

pairwise distance between two sequences is determined by the
cosine similarity of the DISAE embedding vector after
pretraining-fine-tuning, which incorporates both sequence and
ligand information. The R package “ape” (Analyses of
Phylogenetics and Evolution)48 and treeio49 are used to convert
a distance matrix of proteins into a Newick tree format. The
ggtree5051 package is used to plot the tree in a circular layout.

■ RESULTS
Pretrained DISAE Triplet Vector Is Biochemically

Meaningful.When pretraining the DISAE model with masked
triplets of proteins, the masked word prediction accuracy
reached 0.982 and 0.984 at the 80 000th and the 100 000th
training step, respectively. For comparison, the pretraining

accuracy when using BERT29 was 0.955 at 200 000th training
step. This differencemay be due to the larger batch sizes possible
in ALBERT, in contrast to BERT. DISAE pretraining is
subsequently used for the CPI prediction. To evaluate whether
the pretrained DISAE vector is biochemically meaningful, we
extracted the pretrained DISAE vector for all possible triplets.
We then used t-SNE to project the triplet vector in a 2D space.
As shown in Figure S1, the triplet vectors formed distinct
clusters by the properties of amino acid side chains in the third
amino acid of triplets, especially at levels 3 and 4. Triplets
containing any ambiguous or uncommon amino acids, such as
amino acid U for selenocysteine or X for any unresolved amino
acids, formed a large cluster that did not form a smaller group
(large group of black dots in each scatter plot), suggesting that
the information regarding such rare amino acids are scarce in the
pretraining data set. When there is no ambiguity in triplets, they
form clearly separated clusters, implying that the pretraining

Figure 3. Performance comparison of DISAE, TAPE, and TransformerCPI. (A and B) ROC- and PR-curves for the prediction of ligand binding to
remote proteins. (C and D) ROC- and PR-curves for the classification on testing set in the cross-gene-family kinase inhibitor benchmark. All of the
models are trained on distilled triplets.
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process indeed allows the model to extract biochemically
meaningful feature vectors from the proteins as sentences. The
same clustering trends were also observed when triplets are
grouped by individual amino acids, rather than their
physicochemical properties of side chains (Figure S2).
DISAE Significantly Outperforms State-of-the-Art

Models for Predicting Ligands of Remote Orphan
Proteins. To evaluate the performance of DISAE for the
prediction of ligand of remote orphan proteins, we perform
experiments in a dissimilar protein benchmark. In this
benchmark, the proteins in the testing data (i.e., query proteins)
are significantly dissimilar from those in the training data (i.e.,
template proteins). As shown in Figure 2, the sequence identity
of protein pairs between the query and the template are all less
than 40%. The pairs with the percentage of alignment larger than
60% and the sequence identity larger than 30% only constitute
about 8.83% of total pairs. Thus, homology-based methods
cannot be applied to the majority of cases in benchmarking. We
first evaluate the performance of baseline models LSTM,
TransformerCPI, and TAPE in the dissimilar protein bench-
mark. In this conventional setting, the pretrained ALBERT
model in Figure1C is replaced by LSTM or pretrained TAPE. In
addition, there is no pretraining stage. Only labeled data are
directly applied to supervised learning. As shown in Figure 3A
and 3B, the performance of the conventional LSTMmodel with
full length protein sequence is nearly random, with its ROC-
AUC and PR-AUC being 0.524 and 0.262, respectively.
TransformerCPI with full length protein sequence has ROC-
AUC and PR-AUC 0.57 and 0.30, respectively; TAPE, 0.61,
0.30, respectively. It is clear that the attention mechanism and
the pretraining can improve the performance of CPI predictions.
As a comparison, DISAE has a ROC-AUC of 0.725 and a PR-
AUC of 0.589, respectively, significantly outperforming the
baselines. Furthermore, as shown in the inset of Figure 3A,
DISAE far exceeds the baseline models at the range of low false
positive rates. For example, at the false positive rate of 0.05, the
number of true positives detected by DISAE is almost 6 times
more than that correctly predicted by TransformerCPI or
TAPE. When the train/test set is split at random, i.e., there are
similar proteins in the testing set to those in the training set, the
performance of LSTM models is relatively better than DISAE,
TAPE, and TransformerCPI, as shown in Table 1. However, the
performance of the LSTMmodel significantly deteriorates when
the proteins in the testing set are different from those in the
training set. The ROC-AUC and PR-AUC drop 28.1% and
53.4%, respectively, with distilled singlets as input. Trans-
formerCPI also shows a similarly significant performance drop.
The ROC-AUC and PR-AUC decrease 28.1% and 55.0%,
respectively. On the contrary, DISAE could still maintain the
ROC-AUC ∼ 0.7 (a drop of 18.4%) and the PR-AUC ∼ 0.5 (a
drop of 24.8%). As expected, the performance drop of pretrained
TAPE is less severe than LSTM and TransformerCPI but worse
than DISAE. The ROC-AUC and PR-AUC reduce 17.8% and
44.6%, respectively, in the case of distilled singlet inputs. These
results suggest that the supervised learning alone is prone to
overfitting, as observed in the TransformerCPI and LSTM
models, thus cannot be generalized to modeling remote orphan
proteins. The pretraining of DISAE, which uses a large number
of unlabeled distilled sequences from MSAs, improves the
generalization power. The training curves in Figures S3−S5
further support the fact that DISAE is generalizable; thus, it can
reliably maintain its high performance when used for the
deorphanization of dissimilar proteins. When evaluated by the

dissimilar protein benchmark, the accuracy of training keeps
increasing with the increased epochs; and the performance of
DISAE is slightly worse than most models. However, the PR-
AUC of DISAE is relatively stable and significantly higher than
other models of testing data. These observations further support
the idea that DISAE can predict the ligand binding to novel
proteins. Although the pretrained TAPEmodel can also improve
generalizability, it is less powerful than DISAE because it
incorporates less domain-specific information than DISAE.
A series of t tests is carried out to provide further contrast of

the performance DISAE, TAPE and TransformerCPI. When
comparing DISAE with TransformerCPI, the p-value for the t
test of ROC-AUC and PR-AUC are p-value <1.29 × 10−64 and
p-value <2.67 × 10−77, respectively; when comparing DISAE
with TAPE, the p-value for the t test of ROC-AUC and PR-AUC
are p-value <1.07 × 10−40 and p-value <4.88 × 10−67,
respectively. Therefore, the advantage of DISAE over state-of-
the-art is statistically significant. The sampled ROC-AUC and
PR-AUC distributions are in Figure S9.

DISAE Outperforms State-of-the-Art Models for
Predicting Ligand Binding Promiscuity Across Gene
Families. We further evaluate the performance of DISAE and
compare it with the baseline TransformerCPI, TAPE, and
LSTM models on the prediction of ligand binding promiscuity
across gene families. Specifically, we predict the binding of new
kinase inhibitors to new GPCRs on the model that is trained
using only GPCR sequences that are not known to bind to
kinase inhibitors and chemicals that have not been annotated as
kinase inhibitors. In other words, all GPCRs that bind to kinase
inhibitors and all chemicals that are kinase inhibitors are
excluded from the supervised training set. In this situation, there
is no significant difference between the proteins in the testing set
and those in the training set. The major difference between
testing and training data comes from chemicals. Although the
kinase and the GPCRs belong to two completely different gene
families in terms of sequence, structure, and function, a few
kinase inhibitors can bind to GPCRs as an off-target. We use
these annotated GPCR-kinase inhibitor pairs as the test set.
Interestingly, although DISAE is not extensively trained using a
comprehensive chemical data set, DISAE outperforms the
LSTM, TransformerCPI, and TAPE. As shown in Figure 3C,D,
both the sensitivity and specificity of DISAE outperforms other
models. The ROC-AUCs of DISAE, TransformerCPI, and
TAPE model are 0.690, 0.68, and 0.64, respectively. Their PR-
AUCs are 0.673, 0.620, and 0.61, respectively. This observation
implies that the sequence pretraining captures certain ligand
binding site information across gene families. It is noted that it is
infeasible to apply a homology modeling-based method to infer
ligand binding promiscuity across gene families.

Effect of Distilled Sequence Representation, Pretrain-
ing, and Fine-Tuning.To understand the contribution of each
component in DISAE to the performance, we conduct a series of
ablation studies as shown in Table 1 under the dissimilar protein
and cross-gene-family benchmarks. For the three major
pretraining-fine-tuning configurations of DISAE, distilled
triplets sequence representation, pretrained on whole Pfam,
and fine-tuned with frozen transformer (“ALBERT frozen
transformer” in Table 1), are recommended as the best
performed model for predicting ligands of remote orphan
proteins.

1. Triplet is preferred over singlet for predicting ligand
binding to remote proteins
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Under the same pretraining and fine-tuning settings, both
ROC-AUC and PR-AUC of the ALBERT pretrained model that
uses the distilled triplets are significantly higher than the those
when the distilled singlet is used. However, for the LSTMmodel,
the distilled singlet sometimes outperforms the distilled triplet.
This can be because the triplet encodes more relational
information on remote proteins than close homologues.

2. Distilled sequence outperforms a full sequence for remote
orphan proteins

Although the distilled sequence does not show clear
advantage over the full sequences on the prediction performance
in the kinase and randomly splitting benchmarks, it consistently
outperforms the full sequence in the dissimilar GPCR
benchmark for all four methods: DISAE, TAPE, Trans-
formerCPI, and LSTM. Because the distilled sequence is
derived from MSAs and functionally important residues, it
could be more informative than the full sequence when
predicting ligand binding. Even the distilled sequence alone
could improve the baselines: when trained on distilled singlets,
TransformerCPI, TAPE, and LSTM could improve ROC-AUC
by 13%, 11%, and 24% to 0.645, 0.68, and 0.652 and improve
PR-AUC by 17%, 29%, and 42% to 0.35, 0.387, and 0.372.

3. Pretraining on a larger data set is preferred

With the same fine-tuning strategy, frozen transformer, and
use of distilled triplets, the model that is pretrained overall Pfam
performs better than that pretrained on the GPCR family alone
in terms of both ROC-AUC and PR-AUC.

4. Partial frozen transformer is preferred

With the same pretraining on whole Pfam and fine-tuning on
the distilled triplets, the ALBERT pretrained transformer-frozen
model outperforms all other models that have only embedding
layers frozen or both transformer and embedding layers frozen.
DISAE Learns Biologically Meaningful Information.

Interpretation of deep learning is critical for its real-world
applications. To understand if the trained DISAE model is
biologically meaningful, we perform the model explainability
analysis using SHapley Additive exPlanation (SHAP).30 SHAP
is a game-theoretic approach to explain the output of any
machine learning model. Shapley values could be interpreted as
feature importance. We utilize this tool to get a closer look into
the internal decision making of DISAE’s prediction by
calculating Shapley values of each triplet of a protein sequence.
The average Shapley values of CPIs for a protein is used to
highlight important positions for this protein.
Figure 4 shows the distribution of several residues of 5-

hydroxytryptamine receptor 2B on its structure, which are
among 21 (10%) residues with the highest SHAP values. Among
them, 6 residues (T140, V208, M218, F341, L347, and Y370)
are located in the binding pocket. L378 is centered in the
functional conserved NPxxY motif that connects the trans-
membrane helix 7 and the cytoplasmic helix 8 and plays a critical
role in the activation of GPCRs.3132 P160 and I161 are the part
of intracellular loop 2, while I192, G194, I195, and E196 are
located in the extracellular loop 2. The intracellular loop 2
interacts with the P-loop of G-protein.33 It is proposed that the
extracellular loop 2 may play a role in the selective switch of
ligand binding and determine ligand binding selectivity and
efficacy3435.3637 The functional impact of other residues is
unclear. Nevertheless, more than one-half of the top 21 residues
ranked by SHAP values can explain the trained model. The
enrichment of ligand binding site residues is statistically

significant (p-value = 0.01). These results suggest that
prediction from DISAE can provide biologically meaningful
interpretations.

Application to the Hierarchical Classification and
Deorphanization of Human GPCRs. With the established
generalization power of DISAE, we use the ALBERT trans-
former-frozen model pretrained on whole Pfam in distilled
triplets form to tackle the challenge of deorphanization of
human GPCRs, due to its consistently excellent performance by
all evaluation metrics in the benchmarks.
We define the orphan GPCRs as those which do not have

known small molecule binders. 649 human GPCRs that are
annotated in Pfam families PF00001, PF13853, and PF03402
are identified as the orphan receptors.
Studies have suggested that the classification of GPCRs

should be inferred by combining sequence and ligand
information.38 The protein embedding of the DISAE model
after pretraining-fine-tuning satisfies this requirement. There-
fore, we use the cosine similarity between the embedded vector
of protein as a metric to cluster the human GPCRome, which
includes both nonorphan and orphan GPCRs. The hierarchical
clustering of GPCRs in the Pfam PF00001 based on embedding
vector or full sequence similarity is shown in Figure 5. Figures S6
and S7 show the hierarchical clustering of PF13853 and
PF03402, respectively. We also use family annotation from
GPCRdb57 as color coding for GPCRs in Figure 5 to show the
contrast between our embedding based clustering results and
sequence based clustering results. While the sequence based
clustering is generally clustering GPCRs from the same family
together, our clustering tends to rearrange some of them. In
general, DISAE embedding-based clustering results are more
like sequence-based clustering at a finer resolution. For example,
paralogs relaxin receptors RXFP1 and RXFP2 are the most
similar in sequence, they are also the most similar in the DISAE
embedding-based clustering. However, there are still inconstant
examples, for instance, dopamine receptors DRD2 and DRD3
are very similar in sequence but they are not so close in the
DISAE embedding tree. The divergence in the clustering of

Figure 4. (A) Top and (B) side view of structure of 5-hydroxytrypt-
amine receptor 2B (UNIPROT id: 5HTB2_HUMAN, PDB ID: 4IB4).
The residues among those with the top 21 ranked SHAP values are
shown in dark green, blue, yellow, and light green colored CPK mode
for the amino acids in the binding pocket, NPxxY motif, extracellular
loop, and intracellular loop, respectively.
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dopamine receptors may come from their binding site
diversity.60

Table 2 provides examples of predicted approved-drug
bindings to the orphanGPCRs byDISAEwith a high confidence

(false positive rate <5.0 × 10−4). The complete list of orphans
human GPCRs paired with 555 approved GPCR-targeted drugs
is in Table S1. The predicted potential interactions between the
approved drug and the orphan receptor will not only facilitate
designing experiments to deorphanize GPCRs but also provide
new insights into the mode of action of existing drugs for drug
repurposing, polypharmacology, and side effect prediction.

■ DISCUSSION
Our comprehensive benchmark studies demonstrate that
DISAE can significantly improve the prediction of ligand
binding to remote orphan receptors. The performance gain of
DISAE comes from several major differences from state-of-the-
art methods. Compared with pretrained TAPE from Pfam,
which uses a single full protein sequence as the input, DISAE
uses distilled triplets derived from the MSA. Our analysis
suggests that all these components:MSA, distilled sequence, and
triplet representation contribute to the excellent performance of
DISAE. The MSA has two effects: capturing the evolutionary
relationships between proteins and allowing consistent position
encoding. The distilled sequence will not only reduce the
memory complexity during the training, which allows the use of
large batch size, but also improve the effectiveness of modeling
long-range residue−residue interactions through the self-
attention. Compared with the singlet residue representation,
the triplet representation may better model ligand binding
motifs. TransformerCPI is one of the best methods to date for
the CPI predictions. The major difference between Trans-
formerCPI and DISAE is that TransformerCPI does not use
protein pretraining. Consequently, although TransformerCPI
has an excellent performance when the test samples are similar
to the training data, its generalization power when applied to
dissimilar new samples is poor. Additionally, TransformerCPI
uses SMILES and takes it as a 1D sequence for the chemical
representation. In a high-level formulation, TransformerCPI is a

sequence to sequence “translation” and uses a transformer to
model CPIs. Instead DISAE uses a graph neural network to
model chemical structures and an attention pooling to model
protein residue-chemical substructure interactions. These
differences may also contribute to performance discrepancy.

■ CONCLUSION

Our primary goal in this paper is to address the challenge of
predicting ligands of orphan proteins that are significantly
dissimilar from proteins that have known ligands or solved
structures. To address this challenge, we introduce new
techniques for the protein sequence representation by the
pretraining of distilled sequence alignments, as well as module-
based fine-tuning using labeled data. Our approach, DISAE, is
inspired by the state-of-the-art algorithms in NLP. However, our
results suggest that the direct adaption of NLP may be less
fruitful. The successful application of NLP to biological
problems requires the incorporation of domain knowledge in
both the pretraining and fine-tuning stages. In this regard,
DISAE significantly improves the state-of-the-art in the
deorphanization of dissimilar orphan proteins. Nevertheless,
DISAE can be further improved in several aspects. First, more
biological knowledge can be incorporated into the pretraining
and fine-tuning at both the molecular level (e.g., protein
structure and ligand binding site information) and system level
(e.g., protein−protein interaction network). Second, in the
framework of self-supervised learning, a wide array of techniques
can be adapted to address the problem of bias, sparsity, and
noisiness in the training data. Put together, new machine
learning algorithms that can predict endogenous or surrogate
ligands of orphan proteins open a new avenue for deciphering
biological systems, drug discovery, and precision medicine.
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Figure 5. continued

Figure 5.Hierarchical clustering of human GPCRs in the Pfam PF00001 based on (A) cosine similarity between embedding vectors and (B) sequence
similarity. Nonorphan and orphanGPCRs are labeled with circle and triangles, respectively. Names of GPCRs are colored coded by the family to which
they belong.

Table 2. Example of Deorphanization Prediction fromDISAE
Ensemble Models

orphan receptor (uniprot
ID) Pfam drug drug target

A0A0C4DFX5 PF13853 Isoetharine ADRB1, ADRB2
A0A126GVR8 PF13853 Ganirelix GNRHR
A0A1B0GTK7 PF00001 Levallorphan OPRM1
A0A1B0GVZ0 PF00001 Xamoterol ADRB1, ADRB2
A0A286YFH6 PF13853 Degarelix GNRHR
A3KFT3 PF13853 Degarelix GNRHR
C9J1J7 PF00001 Levallorphan OPRM1
C9JQD8 PF00001 Lixisenatide GLP1R
E9PH76 PF00001 Ganirelix GNRHR
E9PPJ8 PF13853 Xamoterol ADRB1, ADRB2
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