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Introduction: Detection of drug-induced pro-arrhythmic risk is a primary concern for pharmaceutical com-
panies and regulators. Increased risk is linked to prolongation of the QT interval on the body surface ECG. Recent
studies have shown that multiple ion channel interactions can be required to predict changes in ventricular
repolarisation and therefore QT intervals. In this study we attempt to predict the result of the human clinical
Thorough QT (TQT) study, using multiple ion channel screening which is available early in drug development.
Methods: Ion current reduction was measured, in the presence of marketed drugs which have had a TQT
study, for channels encoded by hERG, CaV1.2, NaV1.5, KCNQ1/MinK, and Kv4.3/KChIP2.2. The screen was
performed on two platforms— IonWorks Quattro (all 5 channels, 34 compounds), and IonWorks Barracuda
(hERG & CaV1.2, 26 compounds). Concentration–effect curves were fitted to the resulting data, and used to

calculate a percentage reduction in each current at a given concentration. Action potential simulations were
then performed using the ten Tusscher and Panfilov (2006), Grandi et al. (2010) and O'Hara et al. (2011)
human ventricular action potential models, pacing at 1 Hz and running to steady state, for a range of con-
centrations. Results: We compared simulated action potential duration predictions with the QT prolongation
observed in the TQT studies. At the estimated concentrations, simulations tended to underestimate any observed
QT prolongation. When considering a wider range of concentrations, and conventional patch clamp rather than
screening data for hERG, prolongation of ≥5 ms was predicted with up to 79% sensitivity and 100% specificity.
Discussion: This study provides a proof-of-principle for the prediction of human TQT study results using data
available early in drug development. We highlight a number of areas that need refinement to improve the
method's predictive power, but the results suggest that such approaches will provide a useful tool in cardiac
safety assessment.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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1. Introduction

The problem of drug-induced pro-arrhythmic risk is now well
recognised, and substantial resources are currently allocated to
assessing this risk throughout drug development (Pollard et al., 2010).
This begins with the assessment of a new compound's affinity for
blocking the current carried by the hERG channel (ICH, 2005; Redfern
et al., 2003), typically including in-vitro/ex-vivo animal-based models
at mid-stage safety testing, before in-vivo assessment in a number of
species in late pre-clinical safety testing (Carlsson, 2006).

At present, the definitive assessment of clinical risk is usually consid-
ered to be provided by the human clinical Phase II/III Thorough QT [or
ECG] (TQT) study, as recommended by the ICH (2005) guidelines.
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1.An overview of the steps involved in this study. Ion channel concentration-effect data are taken from a number of screening sources, then used to calculate percentage reduction for
the parameters describingmaximum conductance of the currents in a human in-silico action potential model. Steady pacing at 1Hz is used to simulate an APD90 comparablewith QTc. The
process is repeated across a range of concentrations, and compared with the TQT study result at the relevant estimated concentration. The various steps are discussed in Methods
subsections 2.1–2.5.

1 These simulations were performed by the Oxford Cardiac ElectrophysiologyWeb Lab
(https://chaste.cs.ox.ac.uk/FunctionalCuration), an open online resource for exploring the
behaviour of a range of action potential models, under a range of simulated experimental
protocols. Users can also upload a new model and subject it to the existing protocols, or
examine the response of the existing models to a new protocol.
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Block of hERG has long been associated with prolongation of ventric-
ular repolarisation and increased pro-arrhythmic risk (Sanguinetti &
Tristani-Firouzi, 2006). The value of hERG 50% inhibitory concentra-
tions (IC50s) for predicting TQT results was assessed by Gintant
(2011): using a safety margin value of 45 (free plasma concentration
should be 45 times smaller than IC50) was 64% sensitive and 88% spe-
cific for TQT prolongation of ≥5 ms.

It has been suggested that multiple-ion-channel effects should be
considered to provide amore accurate assessment of pro-arrhythmic
risk (Kramer et al., 2013; Mirams et al., 2011), and that simulations
based on mathematical models for the electrophysiology of cardiac
myocytes could be used to integrate information on how a com-
pound affects different ion channels (Fletcher et al., 2011; Gintant,
2012; Mirams, Davies, Cui, Kohl, & Noble, 2012; Mirams & Noble,
2011).

A recent Comprehensive in-vitro Pro-arrhythmia Assay (CiPA)
initiative led by the US Food & Drug Administration, the Cardiac
Safety Research Consortium (www.cardiac-safety.org), the Health
and Environmental Sciences Institute (www.hesiglobal.org), and
the Safety Pharmacology Society (http://safetypharmacology.org)
aims to use this type of approach to provide accurate mechanistic
predictions of pro-arrhythmic risk (Sager, Gintant, Turner, Pettit, &
Stockbridge, 2014). In this study we aim to evaluate howwell action
potential simulations, based upon cardiac ion channel screening
data, could predict the result of the TQT study. In doing so, we pro-
vide a feasibility study for the in-silico aspects of the CiPA initiative,
and highlight some issues that are going to be important for its
success.

2. Methods

An overview of the procedure used in this study is shown in Fig. 1,
and we outline the steps in the sections below.

2.1. Screening

A methods description for the IonWorks Quattro screening per-
formed at AstraZeneca (AZ) on all five channels, for 34 compounds,
can be found in Elkins et al. (2013) and Supplementary Material
S1.2.1.We refer to this dataset as theQuattro (Q) dataset. Amethods de-
scription for a second screening performed at GlaxoSmithKline (GSK)
using IonWorks Barracuda for HERG and CaV1.2 (together with a sec-
ond Quattro screen for NaV1.5 and KCNQ1) for 26 compounds can be
found in SupplementaryMaterial S1.2.2; this is referred to as the Barra-
cuda & second Quattro (B&Q2) dataset. All of the methods descriptions
have also been entered into the Minimum Information about a Cardiac
Electrophysiology Experiment database (MICEE: www.micee.org,
Quinn et al. (2011)).

Compound induced current inhibition is characterisedusing concen-
tration–effect curves. These curves describe how an ‘effect’ or ‘response’
R depends on a ‘dose’ or compound ‘concentration’ [C]. In this case, the
peak ionic current following a voltage step is recorded repeatedly, and
the proportion of peak current that remains after addition of a certain
concentration (or dose) of a compound is the recorded effect (or re-
sponse). Such curves are well described by the Hill function (Hill, 1910):

R C½ �ð Þ ¼ IC50½ �n
C½ �n þ IC50½ �n ¼ 1þ C½ �

IC50½ �
� �n� �−1

: ð1Þ

Here, [C] is the concentration, and there are two parameters: [IC50],
the half-maximal inhibitory concentration; and the Hill coefficient n.
In previous work (Beattie et al., 2013; Elkins et al., 2013) we found little
benefit, if not just additional uncertainty, in considering the Hill coeffi-
cients from these data sources; so in this study we assume that n = 1,
and fit IC50 values only.

2.2. Action potential models

Weuse three of the latest human ventricular action potentialmodels
— ten Tusscher and Panfilov (2006), Grandi, Pasqualini, and Bers
(2010), and O'Hara, Virág, Varró, and Rudy (2011). These models were
chosen as they are all candidates for use in in-silico action potential
modelling for cardiac safety, and it will be valuable to examine the con-
sistency of their predictions.

The ten Tusscher andPanfilov (2006)model contains a limited num-
ber of differential equations (17) and outer membrane currents (12),
and is a refinement of the ten Tusscher, Noble, Noble, and Panfilov
(2004)model. Themodelwas developed to provide realistic conduction
velocity restitution and to integrate the latest human data at the time. It
has been very widely used for a range of studies and has proved robust:
making good predictions in a number of situations.

The Grandi model is a human-tailoring of the Shannon, Wang,
Puglisi, Weber, and Bers (2004) rabbit model, which features detailed
calciumhandling. It aimed to improve the balance of repolarizing potas-
sium currents, and to capture reverse-rate dependence of IKr block. This
model is more complex than ten Tusscher, with 14 outer-membrane
currents many of which are divided into two for the cleft and bulk sar-
colemmal spaces. There are a correspondingly larger number of equa-
tions (39).

The O'Hara model is a more recent human ventricular model, much
of it was built ‘from scratch’ using data from human hearts. The O'Hara
et al. (2011) paper shows improved APD dependence on pacing rate in
this model relative to the others. This model has 41 differential equa-
tions, again there are 14 types of outer membrane currents, including
late sodium.

Having been parameterised by different datasets, these models may
represent some of the underlying variation between cells, locations in
the heart, or indeed individuals, that could be reflected in the variation
observed in the TQT study.

In Fig. 2 we show basic properties of these models, in terms of re-
sponse to blockade of certain ion channels, at steady 1 Hz pacing.1
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Fig. 2. The behaviour of the three human ventricular action potential models used in this study under single current block. Each panel shows the steady state 1 Hz action potential under
control (bold line), and increasing degrees of block, from0% to 100% in steps of 10%. Rows: block of IKr, IKs, ICaL, INa, Ito or IK1; columns: ten Tusscher and Panfilov (2006), Grandi et al. (2010)
or O'Hara et al. (2011) models. Arrows indicate the effect on the action potential waveform of increasing channel block.
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Fig. 2 highlights some differences between model behaviours. On the
top row we see that the O'Hara model responds more dramatically to
block of IKr than the other models: the action potential becomes mark-
edly prolonged, and at 100% IKr block the cell fails to repolarise and re-
mains at depolarised potentials. In contrast, the ten Tusscher model
shows a large prolongation under IKs block, whereas the other models
show little response. Note that the models may show a larger response
under simulated IKs block in conditions of β-adrenergic stimulation
(Severi, Corsi, Rocchetti, & Zaza, 2009), which is not included in this
study. Under IK1 block the models also exhibit a range of responses:
the ten Tusscher model resting potential rises to the point that the
model becomes self-excitatory and the action potential at 100% block
is reminiscent of a stem-cell derived cardiomyocyte or a sino-atrial
node cell; the Grandi model shows a large increase in resting potential
and also an increase in APD; and the O'Hara model shows a slight in-
crease in APD90.

All three models show a shortening of action potential under ICaL
block. The largest effect for moderate degrees of ICaL block is observed
using the Grandi model. Block of INa or Ito appears to have small effects
on action potential duration at up to 80% block in ten Tusscher and
O'Hara models, but a small prolongation can occur in both cases in the
Grandi model.

2.3. Modelling ion channel block

Some early studies have been undertaken to establish binding kinet-
ics for drug interactionswith the ion channels (Di Veroli, Davies, Zhang,
Abi-Gerges, & Boyett, 2012; Moreno et al., 2011). At present these

image of Fig.�2


Table 1
All pIC50 values (−log10 of IC50 values in Molar) used for simulation inputs in this study,
measured for Quattro (Q), Barracuda (B) as part of this study, and for Manual patch
(M) from literature/regulatory submission documents. Q2 refers to a second independent
Quattro screening. A zero entry indicates that a pIC50 ≤ 0 was fitted to the data, as
discussed in the main text.

Compound hERG CaV1.2 NaV1.5 KCNQ1 Kv4.3

Q B M Q B Q Q2 Q Q2 Q

Alfuzosin 4.7 4.9 3.9 3.7 0.0 3.7 2.8 3.9 0.0 3.0
Alvimopan 1.2 – 3.1 5.3 – 3.6 – 4.3 – 0.0
Ambrisentan 2.1 0.0 3.3 2.6 0.0 2.9 3.0 3.3 4.2 3.6
Darifenacin 5.8 – 7.1 2.8 – 5.8 – 4.7 – 4.9
Darunavir 4.2 4.0 3.8 0.0 2.8 4.4 4.0 3.5 4.3 4.0
Dasatinib 4.3 4.3 4.8 3.4 3.6 4.0 3.4 3.6 0.0 3.5
Deferasirox 0.0 0.0 2.4 3.0 0.0 4.1 3.3 0.0 0.0 4.3
Desvenlafaxine 1.7 0.0 3.6 0.0 0.0 3.7 3.5 0.0 0.0 2.3
Dofetilide 6.9 6.2 8.0 3.8 0.0 3.5 3.2 3.6 3.8 0.0
Doripenem 2.1 – 2.3 5.7 – 2.8 – 3.5 – 0.0
Duloxetine 5.0 5.2 5.3 4.0 4.6 5.1 4.8 5.0 0.0 4.0
Eltrombopag 0.0 2.8 6.2 0.0 0.0 3.8 3.5 0.0 0.0 2.8
Etravirine 3.4 4.6 3.8 0.0 0.0 3.3 2.4 2.9 0.0 2.5
Everolimus 1.8 3.1 3.3 0.0 0.0 3.2 3.7 4.0 0.0 2.0
Lacosamide 0.0 – 1.3 4.3 – 3.3 – 3.6 – 0.0
Lamotrigine 3.4 3.6 3.6 2.8 2.9 4.0 4.4 3.8 0.0 0.0
Lapatinib 1.0 3.2 6.0 2.7 1.8 2.5 0.0 3.6 0.0 0.0
Maraviroc 3.9 4.1 4.4 0.0 0.0 3.0 3.2 4.2 0.0 0.0
Moxifloxacin 3.4 0.0 4.1 3.4 0.0 4.4 3.6 3.8 3.4 0.0
Nebivolol 5.2 5.2 6.5 0.0 4.8 5.2 5.1 4.8 4.4 4.3
Nelfinavir 1.5 3.3 4.9 0.0 0.0 4.1 3.3 4.1 0.0 2.3
Nilotinib 4.2 0.0 6.9 3.7 2.5 3.0 2.3 3.4 0.0 2.5
Paliperidone 6.0 5.9 5.9 3.4 3.0 4.6 3.8 3.6 0.0 4.2
Palonosetron 5.4 – 5.7 3.4 – 4.7 – 4.3 – 0.0
Raltegravir 2.5 3.5 2.8 0.0 0.0 3.5 2.8 4.6 0.0 2.3
Sildenafil 3.8 4.0 4.5 4.0 0.0 3.3 2.9 3.4 3.8 3.3
Silodosin 4.6 – 5.1 3.1 – 4.2 – 3.6 – 3.5
Sitagliptin 3.0 3.3 3.8 1.0 0.0 3.1 3.2 3.5 0.0 1.0
Solifenacin 5.8 – 6.6 5.2 – 5.2 – 4.5 – 4.3
Sunitinib 5.0 5.1 6.6 4.1 3.7 4.8 4.4 4.2 0.0 4.3
Tadalafil 4.1 3.9 4.0 0.0 3.4 3.9 3.8 3.8 3.6 0.0
Telbivudine 2.3 – 0.8 0.0 – 2.5 – 3.6 – 0.0
Tolterodine 6.9 6.8 7.9 0.0 4.6 5.2 4.5 4.1 0.0 4.9
Vardenafil 3.5 4.1 4.5 4.8 3.6 2.6 3.7 3.2 0.0 4.1
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studies are mostly proof-of-principle; we are not aware of any phar-
maceutical company parameterising mathematical models of cardi-
ac ion channels and drug kinetics routinely. As a result, we use a
conductance-blockmodel for ion channel block, but note that capturing
the kinetics of drug/ion channel interaction may become more impor-
tant in predicting pro-arrhythmia rather than QT prolongation.

The conductance-block model makes a quasi-steady-state approxi-
mation for compound binding, and assumes that binding can occur in
any channel conformation and that kinetics of channel activity are
unaltered after binding (see Brennan, Fink, & Rodriguez, 2009, for a
review). Using these approximations, the maximum conductance of a
given channel gj, is given by the following function of drug concentra-
tion:

g j ¼ 1þ C½ �
IC50½ �

� �n� �−1
g j; ð2Þ

where the terms on the right hand side are: the degree of ion-channel
block (as given by Eq. (1)) and themaximal conductance of the channel
in control conditions (g j).

We model block of the following currents:

• IKr — rapid delayed inward rectifying potassium current; screened
using hERG.

• IKs — slow delayed inward rectifying potassium current; screened
using KCNQ1/MinK.

• INa — fast sodium current; screened using NaV1.5.
• ICaL — long-lasting type calcium current; screened using CaV1.2.
• Ito — transient outward potassium current; screened using Kv4.3/
KChIP2.2.

These direct relationships between currents and the genes that are
over-expressed to screen themare an approximation. Themathematical
models of the currents are generally derived frommyocyte data, which
may include additional ion channels/subunits and regulatory modifica-
tions, that the screening cell lines do not possess. For example, in the
past, differences were observed between KCNQ1 and IKs (Silva & Rudy,
2005), and now theMinK subunit is expressed alongside themain chan-
nel to produce a more ‘native’ myocyte-like current. Of particular rele-
vance here is the observation that fast Ito (Kv4.3) is molecularly
distinct from slow Ito (Kv1.4) (Niwa & Nerbonne, 2010). Of the three
models we consider, O'Hara and ten Tusscher do not include separate
fast/slow Ito currents, and so the whole current conductance is reduced
when applying Eq. (2). The Grandi model does have a distinct fast Ito
current, and so its conductance is altered directly. Models that have sep-
arate Ito components may be better for predictions based on screening
Kv4.3 in future.

We performed the simulation study three times in parallel, based on
the following datasets: Quattro 5 channel (Q); Barracuda & Quattro 4
channel (B&Q2); and a third variant using the Quattro 5 channel screen
but with hERG manual patch clamp IC50 values replacing the Quattro
screeningdata. Themanual data are taken from ICH-S7BGood Laborato-
ry Practice (GLP) studies featured in regulatory submission documents,
and gathered by Gintant (2011). We refer to the third dataset as the
Manual & Quattro (M&Q) dataset.

2.4. Simulation study

Note that QTc is designed to be equal to QT at 1 Hz, so in the simula-
tionswe pace cells at 1Hz (using the squarewave stimulus currentwith
magnitude and duration as defined in the models' CellML
implementations, see below). We begin with a control simulation, pac-
ing themodel until it reaches a pseudo-steady state (see Supplementary
Material S1.3 for details on steady state detection). Compound concen-
tration is then increased from 1 nM to 100 μM, taking 20 increments
equally spaced on a log10 scale. At each concentration, the data shown
in Table 1 is used with Eqs. (1) & (2) to impose a new maximal
conductance value for each of the screened ion currents. We then con-
tinue pacing until a new steady state is reached, and evaluate the action
potential duration at 90% repolarisation (APD90). The process is repeat-
ed with all permutations of mathematical model and dataset, giving a
total of nine concentration–APD curves per compound.

We use the method outlined in Elkins et al. (2013) to quantify the
uncertainty on our APD90 predictions due to assay variability. In brief,
we characterise variability associated with ion channel screens by ex-
amining the pIC50 distribution from the relevant control assays. A Bayes-
ian inference scheme then produces a probability distribution for the
mean of a large number of independent repeats. pIC50 values are then
sampled from this distribution at random, and simulations are repeated
with these values to build up a distribution of possible outcomes (as
displayed in e.g. Figs. 3 & 4). The resulting intervals show where there
is 95% probability that the simulation prediction lies, based on the vari-
ability we measured in the control screens for each channel.
2.4.1. Software implementation
CellML is a machine-readable XML-based markup language used to

describe models' ordinary differential equations, initial conditions and
parameters (Lloyd, Lawson, Hunter, & Nielsen, 2008). The ten
Tusscher and Panfilov (2006), Grandi et al. (2010), and O'Hara et al.
(2011)models were downloaded from the Physiome Project repository
(https://models.physiomeproject.org/electrophysiology). The epicardi-
al variants of ten Tusscher and Panfilov (2006) and Grandi et al.
(2010) were used, with the endocardial variant of O'Hara et al. (2011)
(as this model was primarily parameterised with endocardial data).

https://models.physiomeproject.org/electrophysiology


Fig. 3. Simulated change in action potential duration (90%) plotted against (free plasma) concentrations. Models: Blue— O'Hara; red— ten Tusscher; green— Grandi. Three data sources
are shown for: ‘Q’ (Quattro); ‘B & Q2’ (Barracuda & Quattro); ‘M&Q’ (Manual hERG & Quattro), as per Table 1. Estimated 95% credible regions are shown around each line which capture
uncertainty due to screening assay variability. The clinical study result is shownwith a black dashed horizontal line for the largest dose in the TQT study; the estimated free plasma con-
centration associatedwith this is shownwith a vertical dashed black line, and their intersectionwith a red circle. The 5ms ‘cut-off’, used in contingency table calculations, is shownwith a
horizontal blue dotted line.

Fig. 4. Simulated change in action potential duration (90%) plotted against (free plasma) concentrations. Legend as per Fig. 3.
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PyCML was used to convert the CellML format into C++ code
(Cooper, Corrias, Gavaghan, & Noble, 2011). The CellML files were
tagged with metadata denoting the conductances of interest (Cooper,
Mirams, & Niederer, 2011), which results in auto-generated methods
for changing the channel conductances in the resulting C++ code.
The equations were solved using the adaptive time-stepping CVODE
solver (Hindmarsh et al., 2005), with relative and absolute tolerances
of 10–6 and 10–8 respectively, and a maximum time step of less than
the stimulus duration. Adaptive time-stepping solvers offer significant
speed and accuracy improvements over ‘traditional’ fixed time step
solvers for numerically stiff systems such as cardiac action potential
models. The software is a custom-made program based on the open-
source Chaste library (Mirams et al., 2013) and its ApPredict (action po-
tential prediction) module.

For the interested reader we have made the following resources
available: the IC50 datasets, the action potential simulation software;
and the scripts for generating the figures presented in this article.
These can be downloaded as a ‘bolt-on project’ for Chaste (written to
work with version 3.2) from http://www.cs.ox.ac.uk/chaste/download.
Further instructions on downloading and using the code can be found
in Supplementary Material S1.3.

2.5. Thorough QT study results

Calculated free plasma concentrations during the TQT study are
given in a separate spreadsheet (Supplementary Material S2), based
on data gathered for the Gintant (2011) study. The spreadsheet imple-
ments the necessary calculations for calculatingmolar free plasma esti-
mates from maximum plasma concentration (‘Cmax’), percent plasma
binding, and molecular weight. The equations used for calculations are
given in Supplementary Material S1.4. The change in QT that was used
for comparison with simulation predictions is the mean change in
QTc, at the highest dose tested in the TQT study, as reported in
Gintant (2011).

3. Results

In this section we present the results of the ion channel screening,
followed by the simulations based upon those screens, and then analyse
their predictions of TQT results.

3.1. Ion channel screening

Table 1 shows the pIC50 values (–log10 of IC50 values in Molar) fitted
to the concentration effect points from each ion channel screen.We also
display the manual hERG patch clamp values taken from Gintant
(2011), which were collated from regulatory submission document
GLP studies (ICH, 2005). Note that an IC50 N 106 μM (or equivalently
pIC50 b 0) would indicate a very weak (or no) compound effect on an
ion current. When this was the case, we have ‘rounded’ and we show
this in Table 1 as pIC50 = 0 for clarity. N.B. using pIC50 = 0 corresponds
to just 0.01% channel block at our top concentration of 100 μM, and so
these values were also used in the simulations, even when we suspect
no activity at the channel.

When we compare the independent screens shown in Table 1, cer-
tain screens are very consistent (e.g. pIC50 of 6.0, 5.9 and 5.9 for hERG
with Paliperidone), whilst others show wide variation (e.g. 5.0 and 0.0
for KCNQ1 with Duloxetine). Further screening of this type using a
wider variety of assays would be valuable to establish the most reliable
platforms.

3.2. Action potential simulation results

Figs. 3 and 4 show a summary of the action potential prolongation
results for a subset of the compounds, based upon the three different
datasets. These compounds were selected to indicate representative
cases where the simulations underestimate the TQT study results
(Fig. 3), and cases where the predictions are more accurate (Fig. 4). Re-
sults for all of the individual compounds are shown in Supplementary
Material S1.1.

In Fig. 3 we see the results for Alfuzosin and Lapatinib. The lines and
shaded regions denote the three different model predictions, and the
red circle (highlighted with black dashed lines) is the TQT result. In
the case of Alfuzosin the models are not predicting any change in
APD90 at the estimated TQT concentration (b10–2 μM), but a correct
prolongation is predicted at much higher concentrations. For this com-
pound, the predictions are similar with all three datasets, with possibly
the Barracuda set closest to TQT. Fig. 3 also shows results for Lapatinib.
The Q and B&Q2 results similarly underestimate block, but in this case
usingmanual patch hERG IC50 values significantly improves predictions,
due to a stronger hERG block (see Table 1).

In Fig. 4 we show two further examples, where simulation predic-
tions are more accurate. For Maraviroc the prediction is accurate for
all data sources, with a very small prolongation observed at the TQT
concentration. Sitagliptin is an example of prolongation being predicted
with reasonable accuracy by all the datasets, again theM&Qdataset pro-
viding the closest fit to TQT results.

The different models sometimes provide different predictions. This
is consistent with our observations of their single-channel block behav-
iour shown in Fig. 2. The 95% credible regions becomewide when there
is ‘overlap’ in the probability distribution of different ion channel pIC50
values, due to assay variability: for instance, hERG block could become
significant before, at the same time, or after CaV1.2 block. At the same
time, the different models are more/less sensitive to the different ion
channel blocks, and so a wide uncertainty based on assay variability is
also associated with divergence in model predictions. The Grandi et al.
(2010) model appears more likely to predict shortening than the
other two models, as one might expect by examining Fig. 2, since it is
relatively insensitive to IKr and IKs block, and highly sensitive to ICaL
block.

To separate these effects, and selectmodels that aremost reliable for
drug studies, will therefore require data with low variability.

3.2.1. Contingency tables
In Table 2 we use the O'Hara et al. (2011) model predictions, at the

estimated TQT concentration, and examinewhether or not 5ms prolon-
gation is observed in TQT vs. simulation. For clarity, not all results are
shown here in the main text; the full set of contingency tables can be
found in Supplementary Material S1.5. Results shown in Table 2 for
comparison of whether or not we achieve prolongation N5 ms at the
expected concentration using Quattro data are poor: there is a very
low sensitivity of 14%.

Examining the action potential vs. concentration curves for each
compound (see Figs. 3 & 4 and the full results in Supplementary
Material S1.1) suggests that low sensitivity is not due to models
being unable to predict prolongation, but rather to simulation pre-
dictions underestimating the APD prolongation at the estimated
TQT concentration.

To test this,we allowed ‘success’ to take amore relaxed definition: of
‘agreement within a fold-change’ in the estimated concentration. One
could interpret this as drawing ‘error bars’ around the TQT concentra-
tions, and acceptingmodel predictions fallingwithin these. Table 3 pre-
sents a second contingency table as an example, looking for agreement
within a 100-fold change in estimated TQT concentration. Increasing the
allowable concentration range can (by definition) only improve theper-
formance, but we do observe a significant increase in the sensitivity for
detection of 5 ms prolongation in TQT (and specificity of 100% in this
case).

3.2.2. Summary results
In Table 4 we summarise the sensitivity and accuracy of the models

for different ranges of the ‘allowable concentrations’, and we also

http://www.cs.ox.ac.uk/chaste/download


Table 2
A contingency table for O'Hara et al. (2011) model predictions based on the IonWorks
Quattro dataset. A match is defined as agreement at the estimated TQT concentration.

Thorough QTc change

≥5 ms <5 ms Totals

Simulated

1 Hz

APD

change

≥5 ms 2 1 3
Positive predictive

value 67%

<5 ms 12 19 31
Negative predictive

value 61%

Totals 14 20 34

Sensitivity

14%

Specificity

95%

Accuracy

62%
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compare the effect of using the gold-standard manual patch clamp for
hERG activity. As suggested by the Lapatinib example in Fig. 3, there is
a trend for improved model predictions when using the manual hERG
data.

For all models, predictions substantially improve bothwhen consid-
ering a wider concentration range, and when using the M&Q dataset
with GLP hERG IC50s. The worst performance is seen with the ten
Tusscher and Panfilov (2006) and Grandi et al. (2010) models, for the
Quattro data, when considering no range on the TQT concentration.
The best performance is seen with the O'Hara et al. (2011) at 10-fold
and 100-fold concentration windows and ten Tusscher and Panfilov
(2006) model at the 100-fold concentration window, both when using
the manual hERG dataset. In these cases we observe 79% sensitivity
and 91% accuracy; we also obtain 100% specificity (see full contingency
tables in Supplementary Material S1.5). This performance is an im-
provement on that found in Gintant (2011), based solely on hERG liabil-
ity (using the same manual patch data), where the best marker was
around 64% sensitive and 88% specific.

4. Discussion

In this study we have used ion channel screening data to simulate
changes to action potential duration, and compared this with results
of the human Thorough QT (TQT) study. At the estimated concentra-
tions in the TQT study, simulations did not predict the same degree of
prolongation as was observed in the study.

There are three leading possibilities for the observation that the sim-
ulations are underestimating TQT prolongation:

1. The concentrations estimated for the TQT study are underestimates.

2. Ion channel screens are underestimating compound-induced ion
current reduction.

3. The mathematical models are underestimating changes in APD.
Table 3
A contingency table for O'Hara et al. (2011) model predictions based on the IonWorks
Quattro dataset. A match is defined as agreement within 100-fold of the estimated TQT
concentration.

Thorough QTc change

≥5 ms <5 ms Totals

Simulated

1 Hz

APD

change

≥5 ms 10 0 10
Positive predictive

value 100%

<5 ms 4 20 24
Negative predictive

value 83%

Totals 14 20 34

Sensitivity

71%

Specificity

100%

Accuracy

88%
Belowwe discuss a number of reasons for why we believe these are
ranked in order of likelihood.

Firstly, we undertook a similar study using IonWorks Quattro data
and predicting changes to rabbit wedge QT using similar techniques
and models (Beattie et al., 2013). In the ex-vivo rabbit wedge study,
the concentrations of the compounds being perfused into thewedge tis-
sue are known fairly accurately. In that study we observed sensitivity
and specificity in the 70–80% ranges, in linewith that observedwhen in-
creasing the ‘concentration window’ in this study.

Secondly, our results show that using the manual patch clamp re-
sults from GLP regulatory submission documents substantially im-
proves our predictions. Gillie, Novick, Donovan, Payne, and Townsend
(2013) evaluated the IonWorks Barracuda screen for detection of
hERG block; whilst block was consistently detected, this modern
screeningmachine can report IC50s up to two orders of magnitude larg-
er than manual patch results (see Gillie et al., 2013, Figure 8).

On the third point, the Beattie et al. (2013) study consistently esti-
mated the concentration at which 10% prolongation of rabbit wedge
QT would occur (to around half an order of magnitude, see Figure 2 of
that paper). This suggests that the mathematical models are capable of
predicting small changes in prolongation of repolarisation with some
accuracy, when given similar data and evaluated against well-known
concentrations.

The different models provide different predictions, consistent with
what one may have predicted by looking at Fig. 2. The hERG pIC50 is
often the strongest affinity in the screening panel (Table 1). Together
with the O'Hara model's sensitivity to hERG block (Fig. 2), this means
that prolongation tends to be predicted at lower concentrations using
O'Hara thanwith the other models. In the case of multi-channel effects,
the Grandi model (which shows little prolongation under IKr and IKs
block) tends to show shortening more readily in the presence of any
ICaL blocking.

We tended to observe slightly better results with the O'Hara et al.
(2011) model, but whether this is an accurate representation of its in-
creased ability to predict drug effects is unclear: the model could be
performingwell by overestimating block effects at underestimated con-
centrations. The best results we found were with the O'Hara et al.
(2011) model, using manual hERG data, within a 10-fold concentration
window. Differences in the methods and data used for calibrating max-
imum ion channel conductance values during the original action poten-
tial model construction are likely to be the primary cause of different
predictions here, with different ion channel formulations also playing
a role. Further work is needed to refine the techniques used for model
calibration, perhaps including the gathering of further novel human-
based data.

4.1. Limitations/challenges

As discussed above, comparison of simulations with rabbit wedge
QT results (Beattie et al., 2013) using the same type of screening data
were more successful — perhaps because concentrations were known
more accurately in that preparation. Some human ex-vivo ventricular
wedge experiments, applying compounds at more accurately known
concentrations, would be valuable to clarify this.

In terms of using a cellular rather than tissue simulation, here we di-
rectly compared the absolute prolongation of APD90 with the absolute
change in QT interval. As part of the Beattie et al. (2013) study, we
performed a simulation study of one-dimensional pseudo-ECG QT
change and compared this with APD90 change. The results suggested
an excellent correspondence between APD and QT changes, and that a
ratio ofΔAPD90:ΔQT of 1:1.35 provides the line of bestfit.2 This suggests
that a simple rescaling of APD90 to improve prediction of QT may be in
order for future refinement.
2 Results are featured on a short blog article at http://mirams.wordpress.com/2014/03/
21/apd_vs_qt/.

http://mirams.wordpress.com/2014/03/21/apd_vs_qt/
http://mirams.wordpress.com/2014/03/21/apd_vs_qt/


Table 4
A summary of themodels' performancewith different datasets and ‘concentrationwindows’,
when aiming to predictwhether 5 ms prolongation is observed. Q—Quattro dataset,M&Q—

Quattro with manual hERG (see Table 1).

Conc.

range
Measure

O′Hara

Q

O′Hara

M&Q

TT′06

Q

TT′06

M&Q

Grandi

Q

Grandi

M&Q

At

TQT conc.

Sensitivity 14% 50% 0% 14% 0% 14%

Accuracy 62% 71% 50% 53% 59% 59%

10-fold

TQT conc.

Sensitivity 43% 79% 29% 64% 21% 64%

Accuracy 76% 91% 71% 85% 68% 85%

100-fold

TQT conc.

Sensitivity 71% 79% 50% 79% 29% 71%

Accuracy 88% 91% 79% 91% 71% 88%
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Note that the concentration used was assumed to be the free molar
concentration corresponding to the Cmax value. Using this concentration
ignores the timing of QT measurements, active metabolites, and any ef-
fects leading to compound accumulation in cardiac tissue, but these
data were not readily available.

There are many possible compound effects that were not being
screened for, and hence could not be picked up in in-silico predictions,
no matter how accurate the models. An example would be changes in
ion channel trafficking to the membrane, which are not screened for
as standard. Certain compounds may have known additional affects
that could explain inaccurate predictions: in the case of Alfuzosin
(Fig. 3) TQT prolongation may be caused by sodium channel activation
(Lacerda et al., 2008). This could be screened for, but isn't something
we have included here.

Of the 34 drugs studied, only three (Darifenacin, Desvenlafaxine,
Etravirine) had simulated predictions of prolongation instead of
shortening (of 2–7 ms) for all models and datasets. There were no
compounds for which simulations predicted shortening instead of
prolongation across all combinations. This proportion of 3/34 gives
an impression of the background rate of confounding compounds,
in which simulated predictions are highly inaccurate. These are
probably down to factors such as additional channel blocks, interac-
tion with nervous system etc. which make the simulated compound
effects an incomplete representation of the compounds' true actions.
The true proportion of drugs with off-target effects that we could not
capture could be lower, as predictions here may be inaccurate simply
due to underestimated channel potencies.

Because screening will always target a subset of components, later
experimental safety tests will remain crucial to detect off-target
and more subtle compound-induced effects. Stem-cell derived
cardiomyocytes are one possibility for largely replacing the role of
animal models for later-stage safety tests in the future. We agree
with the comment in Kleiman, Shah, and Morganroth (2014), that
“[computer models]… need to be standardized, regulated and widely
available before they are adopted to support sponsor and regulatory
decisions”.

4.2. Choosing ion channels to screen

It is sensible to ask “which ion channels shouldwe screen”?We con-
sider important factors in the answer to this in the sections below.

4.2.1. How much impact can each ion channel have?
For our output of interest, howmuch can block of a particular chan-

nel influence the predictions? In this case, we are interested in
predicting APD changes, it is evident from Fig. 2 that (depending on
the model choice) IKr, ICaL and perhaps IKs block could have large effects
on APD.
At the degree of block likely to be encountered, block of (solely) INa
and Ito have much less impact than those of the other channels, and so
a choice could be made not to screen these. But more mechanistic pre-
dictions of pro-arrhythmic risk, other than simply APD prolongation,
may be sensitive to the apparently-small changes we observed. Indeed,
sodium channel blockers have been seen to prolong the QRS complex,
potentially leading to increased pro-arrhythmic risk via conduction
slowing or block, rather than delayed repolarisation (Gintant, Gallacher,
& Pugsley, 2011). It is also worth noting that APD is not a linear function
of channel block — blockade of INa and Ito could have large effects when
another channel is also being blocked. A more ‘global’ evaluation of the
simulation output's sensitivity to each channel block (under the influ-
ence of different combinations of block on the other channels) would
be needed before concluding a channel cannot significantly influence
the outcome of interest.

In contrast, additional ion channels— such as IK1 — can have a large
effect on the action potential (Fig. 2). But these channels may not be
blocked by a large enough proportion of compounds to consider screen-
ing them as standard, as discussed below.

4.2.2. How likely is each channel to be blocked?
Some ion channels, pumps and exchangers are historically blocked

by very few compounds. The outcome of ‘missing an effect’ in these
rare cases is likely to be no more severe than progressing such a com-
pound to later, more expensive, safety testing, and picking up the effect
there. The economic cost of screening for additional effects on such ion
currents may therefore outweigh the cost of missing an ion current
effect.

There is also the variability, sensitivity and specificity of such screens
to consider. In the case of an ion channel being blocked by as few as 1 in
10,000 compounds, the chance of a positive screening result being a
‘false positive’ is likely to far outweigh the chance of it being a ‘true pos-
itive’. A cost benefit analysis could be performed for each ion channel
screening assay, based on: its variability, sensitivity and specificity; his-
torical compound liability; and the cost of ‘missing’ an adverse interac-
tion with this channel, and progressing to the next stage of testing.

4.3. Conclusions

The aim of our line of research, and the Comprehensive in-vitro Pro-
arrhythmia Assay (CiPA, Sager et al., 2014), is to provide more human-
relevant assessment of pro-arrhythmic risk as early as possible in drug
development. Instead of using animal-based experimental models,
more accurate predictions for human QT and pro-arrhythmic risk
could be obtained by using humanmathematical action potential simu-
lations, based on data from human ion channel protein screens, in the
near future. The performance of such simulations for cardiac safety as-
sessment is going to be sensitive to both the choice of action potential
model, and the choice of screening data.

There are layers of complexity that are ignored by simply screening
four or five ion channels and predicting a human body surface response
using these models. Yet the levels of success we observed here suggest
that the majority of biophysical processes which are contributing to
QT prolongation are captured by screening a handful of ion channels,
and are integrated appropriately by the mathematical models. This is
very encouraging for future refinement of this work, and extending
the approach to examine pro-arrhythmic risk mechanistically.
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