
Research Article
Lightweight Pattern Matching Method for DNA Sequencing in
Internet of Medical Things

J. A. M. Rexie ,1 Kumudha Raimond,1 Mythily Murugaaboopathy,1 D. Brindha,1

and Henock Mulugeta 2

1Department of Computer Science and Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India
2Computer Engineering, Cybersecurity and AI School of Information Technology and Engineering (SiTE),
Addis Ababa Institute of Technology, Addis Ababa, Ethiopia

Correspondence should be addressed to J. A. M. Rexie; rexievimalphd@gmail.com and Henock Mulugeta; henock.mulugeta@
aait.edu.et

Received 23 May 2022; Revised 28 June 2022; Accepted 29 July 2022; Published 8 September 2022

Academic Editor: Vijay Kumar

Copyright © 2022 J. A. M. Rexie et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An area of medical science, that is, gaining prominence, is DNA sequencing. Genetic mutations responsible for the disease have
been detected using DNA sequencing. *e research is focusing on pattern identification methodologies for dealing with DNA-
sequencing problems relating to various applications. A few examples of such problems are alignment and assembly of short reads
from next generation sequencing (NGS), comparing DNA sequences, and determining the frequency of a pattern in a sequence.
*e approximate matching of DNA sequences is also well suited for many applications equivalent to the exact matching of the
sequence since the DNA sequences are often subject tomutation. Consequently, recognizing pattern similarity becomes necessary.
Furthermore, it can also be used in virtually every application that calls for pattern matching, for example, spell-checking, spam
filtering, and search engines. According to the traditional approach, finding a similar pattern in the case where the sequence length
is ls and the pattern length is lp occurs in O (ls∗ lp). *is heavy processing is caused by comparing every character of the sequence
repeatedly with the pattern. *e research intended to reduce the time complexity of the pattern matching by introducing an
approach named “optimized pattern similarity identification” (OPSI). *is methodology constructs a table, entitled “shift beyond
for avoiding redundant comparison” (SBARC), to bypass the characters in the texts that are already compared with the pattern.
*e table pertains to the information about the character distance to be skipped in the matching. OPSI discovers at most spots of
similar patterns occur in the sequence (by ignoring èmismatches). *e experiment resulted in the time complexity identified asO
(ls. è). In comparison to the size of the pattern, the allowed number of mismatches will be much smaller. Aspects such as scalability,
generalizability, and performance of the OPSI algorithm are discussed. In comparison with the hamming distance-based ap-
proximate pattern matching algorithm, the proposed algorithm is found to be 69% more efficient.

1. Introduction

Pattern matching is of two kinds based on the scenario for
which it is applied: exact pattern matching (EPM) and ap-
proximate pattern matching (APM). An EPM is highly needed
for the scenario in which the accuracy expected is 100%. For
instance, when there is a search of a record in a database using a
key value, exact matching is mandatory. Equally, APM finds its
application in the fields like Bioinformatics, web search en-
gines, text mining, intrusion detection system [1], and spam
filtering. One of the interesting applications of string matching

is text mining and which is discussed in [2] for extracting
health-related information from Twitter messages.

In Bioinformatics, identifying similar patterns has a
major part in sequence alignment, sequence assembly, a
search of patterns in a DNA sequence, sequence comparison,
and many more. For detecting a similar pattern, EPM has to
be modified to ignore a few mismatches. *e mismatch may
be an insertion of a new character or deletion of a character
or substitution by another character.

*e problem of finding EPMwas approached in different
aspects and given solutions. *e objective of the different

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 6980335, 16 pages
https://doi.org/10.1155/2022/6980335

mailto:rexievimalphd@gmail.com
mailto:henock.mulugeta@aait.edu.et
mailto:henock.mulugeta@aait.edu.et
https://orcid.org/0000-0001-8785-2385
https://orcid.org/0000-0002-0467-8121
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6980335

tries on the same problem is to reduce the computation time
taken for the solution. *e time complexity for the worst
case is in the order of the product of the length of the se-
quence and the pattern. Among the many solutions, the
algorithm given by Knuth‒Morris‒Pratt (KMP) [3] proved
to be having a linear time complexity, i.e., in the order of the
length of the sequence alone. *e proposed approach, op-
timized pattern similarity identification (OPSI), aims at
finding the pattern similarity which needs to allow a few
permissible counts of mismatches. *e algorithm applies a
similar computation of shift value as the KMP algorithm in
the preprocessing stage. *en, in the proceeding stages, the
algorithm identifies the pattern similarity with less than è
mismatches.

In medicine, a term called next-generation sequencing
(NGS) refers to a high throughput method of sequencing.
*e sequencing technologies have the fundamental char-
acteristic of extensively parallelizing DNA molecule se-
quencing in flow cells [4]. After the alignment or assembly of
short or long reads, DNA sequences can be utilized for any
application. *e short read is a part of the DNA sequence of
length 100 to 300 base pairs produced by NGS technology
[5]; and, long read lengths range from 500 bp to 800 bp [6].
NGS technologies have advanced to generate genomes that
are longer than these lengths. *e reads are mapped to the
reference genome using bioinformatics analysis [7]. *ere
are many DNA alignment algorithms proposed for merging
the short reads into a single read and these algorithms are
mainly divided into assembly and alignment of NGS data.
Assembly of the short reads will be done in the absence of
reference sequence [8, 9]; alignment will be done with the
reference sequence as given in [10–13].

Read alignment is affected by some sequencing tech-
nology parameters, including the read length and error rate.
It is essential to determine the actual location of each read,
according to the reference. *e exact location cannot be
determined in advance, so the matching has to be done
approximately [14]; the match must take into account a few
mismatches and missing pieces within the reference se-
quence. *e use of approximate matching would be un-
necessary if there were no repeats in a genome and no errors
introduced by a sequencing experiment. As long as there are
sufficient read lengths relative to the genome size, exact
matching can be applied to determine where the true lo-
cations are. Unfortunately, both assumptions are inaccurate:
Eukaryotic genomes contain repeated elements, and each
sequencing process has errors inherent in it [15]. *e true
location of a read is not accessible if it lies entirely within a
perfectly identical repeat sequence. *ere are exceptions to
this. Moreover, errors can occur in the reads, so the string
matching needs to be approximated. *ere are two types of
error models commonly used: 1. *e hmamming distance
manages the mismatches between sequence reads and the
genomic region of interest, and 2. *e edit distance takes
into account indels and mismatches [16].

An alternate option to applying the edit distance, which
handles all mismatches, insertions, and deletions equally, is
to employ the weighted edit distance, which allows for the
differentiation between mismatches and insertions, by

assigning weights to errors. Even position-specific errors can
be weighted differently when a weighted edit distance is
developed by taking quality values into account. *e quality
value represents the probability that the base call will be
mistaken [17]. Apart from these error models, affine gap can
also be applied to longer indels, but at the expense of in-
creased computational costs [18].

1.1. Motivation. *ere are similarities in genetic sequences
among organisms (but different from one another). Because
of point mutations, only a few positions are different be-
tween the organisms. *ese mutations can be nucleotide
substitutions (another letter in the sequence) or insertions or
deletions of some nucleotides. *ese sequence comparisons
have been used to answer many biological questions, in-
cluding the study of new Coronavirus strains, the prediction
of genetic diseases, and the identification of cancerous cells.
In order to do this, algorithms must be applied to align the
sequences. For two sequences, this may not be a problem,
but for hundreds or thousands, it may involve substantial
computational effort.

Genome sequencing is a big reason for the current
progress in genetics. Alternatively, it is known as a massively
parallel sequencer. *ese technologies involve breaking the
genetic sequence (that has a few billion nucleotides in an
individual) into hundreds of nucleotides-long pieces and
simultaneously sequencing them. *en, one has to reas-
semble the sequences, either by comparing the reads with a
sequence for an organism, that is, similar (sequence map-
ping) or by assembling the reads based on similarity (se-
quence assembly). It is possible to achieve this throughmany
sophisticated bioinformatic tools, including BWA [19],
bowtie2 [20], TopHat [21], and Megahit [21], for example.

Blasting is the process of finding out what sequence
belongs to a particular gene of a given organism by com-
paring the sequence to a large database. *e BLAST [22]
program is one of the many tools available to do this.

*e crucial component of the algorithm in these entire
DNA sequencing applications is pattern matching. Exact
matches will not always yield the best results. Because of the
source material and the process by which the sequences were
created, there may be errors in the sequences. Even if the
sequence and pattern are not identical, it will still be efficient
to compare them, as long as the count of mismatched
characters does not exceed a given threshold [23, 24]. *e
performance of the alignment algorithms is influenced by
the performance of the pattern matching process. *e im-
pact on time motivated us to propose a time-optimized
algorithm for approximate pattern matching.

*e applications, which are depending on the similarity
between the DNA sequences, greatly rely on the sequence
alignment algorithms. Among these applications is the
manufacture of drugs against Coronavirus. [25] Developed a
method for aligning two Coronavirus sequences and iden-
tifying where mutations may have been occurring in the viral
DNA. In the process of producing medicines to treat dis-
eases, this information can be used. Furthermore, alignment
algorithms are used for the correction of reading errors

2 Computational Intelligence and Neuroscience

[26, 27]. KMP algorithm for pattern recognition, it helps to
reduce the worst-case complexity, thus it helps to produce
better alignment and better accuracy classification in the
field of DNA sequence classifications [28]. To lower the
make span rate, it is thought that the Internet of Health
*ings (IoHT) schedule must be balanced. For the optimum
hybrid moth flame optimization (HMFO) job scheduling for
cloud computing integrated with the IoHT environment
over e-healthcare systems, we created a smart model tech-
nique in this study. Due to the anomalous changes in node
energy levels, mobile nodes offer unreliable communication
among themselves. It is so challenging to control such node
actions that target node fails to gather packets [29–38].

*e paper is organized as follows: Section 2 contains a
literature survey; the EPM andOPSI algorithm are presented
and demonstrated with examples in Section 3; Section 4
presents the result and discussion of OPSI algorithm, and
Section 5 concludes the work presented.

2. Related Work

*e focus of inventions of new pattern matching algorithms
is to optimize the count of comparisons between the
characters of the text and the pattern. Pattern matching can
be mainly of two varieties, such as EPM and approximate
pattern matching. *e EPM problem is to find the occur-
rences of a pattern of length lp in a text of length ls. Let the
substring of length lp in the text be called a window.

In the Brute Force approach [39], the pattern is aligned
with the first window (i.e., the first lp characters of text). Each
character in the window is compared with the respective
characters of the pattern. When a mismatch occurs, the
window shifts by one position, i.e., the window starts at the
second character and ends at the lp+ 1st character of the text.
*e character comparison continues between the window
and the pattern. Since there is no preprocessing of the text or
the pattern, this approach has the time complexity ofO (nm)
for the worst-case combination of text and pattern.

*ere are pattern matching algorithms using the hash-
based method. One of the methods proposed earlier using
hashing is the Rabin‒Karp algorithm [40]. *e advantage of
hash-based methods is that it encodes the characters into
integers. Since the comparison has to be done only on the
hash code and not on the strings, the comparison of
numbers is time-efficient. However, the time complexity of
the algorithm is O (mn); also, the computation of the hash
code is complex in the Rabin‒Karp algorithm. To improvise
efficiency, Zhao and Liu [41] suggested an algorithm that
considers a partial number of bits in the binary represen-
tation of the character to compute the hash code.

Levenshtein algorithm is incorporated into the Rabin‒
Karp algorithm and was proposed as revised Rabin‒Karp
algorithm [42]. Hash distances are calculated for both
patterns and text, resulting in an improved level of accuracy.
Pattern and text are input parameters into the algorithm,
and the Rabin‒Karp hash value is used as the output pa-
rameter. *e Levenshtein method is applied to determine
whether the sequence is similar. A similarity level is cal-
culated by Levenshtein by comparing two input reads. And

also, it is used to calculate the minimum effort needed to
transform one input data to another string by doing min-
imum modifications. Using the combination of improved
Rabin‒Karp algorithm, a Levenshtein algorithm, and ad-
ditional check of quotient, it leads to improved accuracy and
efficiency. However, the issue faced by hash-based algo-
rithms is the collisions, i.e., more than one string is gen-
erating the same hash code.

Bloom filter supports a space-efficient data structure
based on hashing. Bloom filters were used for representing
the de Bruijn graph in less amount of space compared to the
space originally required for storing the graph [43]. De
Bruijn graph is applied for the assembly of DNA sequences
produced by NGS. Najam et al. [44] proposed a pattern
matching algorithm using multiple bloom filters. *e
method assures finding all positions of the pattern in the text
in the compressed text itself.

To improve the performance of the Brute Force ap-
proach of pattern matching, improvised algorithms were
proposed by preprocessing the pattern to take an optimized
shift of the window. *e KMP algorithm [3] and Boyer‒
Moore (BM) algorithm [45] preprocessed the pattern to
compute the shift position to be used to move the window
when there is a character mismatch. Boyer‒Moore combines
two approaches, bad character heuristic and good suffix
heuristic. Each of these heuristics can be used independently
of the other in order to find a pattern in a text. *e pattern is
processed and the two heuristics are mapped into different
arrays. *e pattern is shifted every time by the maximum
suggested by each of the two heuristics. Each step consists of
calculating the greatest offset suggested by the two heuristics.
In contrast to other patternmatching algorithms, the Boyer‒
Moore algorithm initiates the matching from the last
character of the pattern.

Bad character heuristics are easy to understand. Assume
that there is a character in a text that never occurs in a
pattern. *e pattern can be altered by changing the “bad
character” to begin matching form substrings next to this
character when it does not match (i.e., when a mismatch
occurs at this character). As an alternative, it is possible that
a bad character exists in the pattern; in this case, choose
among bad characters in the text. As a result, the shift is
likely to be higher than one.

Suffixes that have matched successfully are good suffixes.
A mismatch that has a negative shift in bad character
heuristics leads to an onward jump equal to the length of the
suffix found in the substring of the pattern matched until the
bad character. *e average case complexity of both algo-
rithms isO (ls). BM algorithm executes faster for an alphabet
set of average size and lengthy patterns. But for the pattern of
long length, preprocessing time is getting increased.

Reference [46] modified KMP algorithm to suit for
searching an encoded pattern in Huffman encoded text.
Since encoded contents are handled, there are chances for
false matches in encoded text, i.e., the match found may not
be an original match of the pattern in the text. He modified
the KMP algorithm to be adaptable for handling binary
strings. Also, since the BM algorithm is advisable for a larger
alphabet set, KMP is chosen for the binary string.

Computational Intelligence and Neuroscience 3

As an alternate to calculate shift positions for the
pattern, suffix trees were introduced and widely used in
pattern matching algorithms [47–49]. *e suffix tree is a
data structure that will have the starting positions of each
suffix of length one to the length of the text. An example is
shown in Figure 1(b) depicting the suffix tree for the text,
t � “CCACTGG.” *e suffix tree has to be created for the
whole text in which the pattern has to be searched. *e
amount of space needed for the suffix tree representation
may be around 10 to 20 bytes per character [48]. Since the
DNA sequence is very large in the range of billions, the
space needed for the suffix tree will be more. Hence, there
are many algorithms proposed for the compressed rep-
resentation of suffix trees. Also, suffix trees were converted
to suffix arrays to overcome the space issue faced by suffix
trees [50–52]; but at the same time, efficiency was retained.
*e suffix array represents similar index information as
the suffix tree but in the format of an array. *e com-
putation of the suffix array is exhibited in Figures 1(c) and
1(d).

*e suffix array of the text (t), “CCACTGG,” i.e., SA
(text) will be {7, 0, 5, 3, 1, 6, 4, 2}. Any pattern to be searched
in the text will be a prefix of any of the suffixes if the pattern
is present in the text. Hence, to search a pattern, the binary
search is applied, and the comparison of the pattern begins
with the suffix at the middle position of SA. For example, if
the pattern (p) to be searched is “GTA,” p is compared with t
[SA [3]], which is “GTGTA.” Since the comparison fails and
p is lesser than “GTGTA,” the binary search will be con-
tinued in the first half of the sorted array. *e complexity of
the search is log ls since the binary search is applied.
However, since the suffix array has to be sorted, the com-
plexity of the method is O (ls log ls).

*e research on pattern matching is not only into dif-
ferent data structures but also into suggesting hardware-
related solutions to improvise performance. Özcan and
Ünsal [53] proposed hardware-based solution for bitwise
string matching and proved that it performs well.

*e character-based algorithm, KMP, is having better
time efficiency. *e key idea of this efficiency is the com-
putation of the shift value for the pattern. *e same is
applied for preprocessing the pattern and is utilized for
identifying pattern similarity.

3. Research Methods

3.1. Exact Pattern Matching. Knuth et al. [3], (KMP), pro-
posed an algorithm for EPM, which scans the characters of
the given sequence only once from left to right, and the
characters of the pattern were aligned to a character in the
text according to the previous comparison. Hence, the time
complexity will be in the linear order of the length of the
sequence in which the pattern is searched for.

*e algorithm makes sure that the characters of the
sequence are scanned once. It is assured by preprocessing the
pattern to calculate the shift position. *e shift position
indicates the next window for further comparison in case of
any mismatch. *e shift position is assigned such that the
sequence of characters compared already with the pattern in

the current window of the sequence will not be compared
again if a mismatch occurs.

3.2. Preprocessing the Pattern. Let DNA sequence be of
length ls and the pattern of length lp. *e straightforward
algorithm for EPM makes a greater number of comparisons
since there is an absence of observing the pattern before the
comparison. Directly, the pattern is aligned at the left end of
the sequence and character comparison starts. To enhance
the solution, the pattern is scanned from left to right and
observed for the repetition of any prefixes in the substrings.
*is observation is recorded in the shift beyond for avoiding
redundant comparison (SBARC) table. *e table consists of
the shift value for the characters of the pattern.*is assists in
escaping from the redundant comparison in the occurrences
of recurring characters.

Let DNA sequence be of length ls and the pattern of
length lp. *e straightforward algorithm for EPM makes a
greater number of comparisons since there is an absence of
observing the pattern before the comparison. Hence, the
time complexity of this solution isO (ls∗ lp). For small lp, this
is affordable.*is becomes problematic as lp increases.*ere
is a lot of information available once it is checked whether S
[i,. . ., i+ lp − 1] matches P or not, so we can determine
whether S [i+ 1,. . ., i+ lp] fits P. *ere is one way to deal with
this problem at a high level. *is is to design a deterministic
finite automaton (DFA) that depends on the pattern [54, 55].
*e state diagram comprises lp � |P| states. *is automaton
receives the sequence S. If a sequence of j characters from the
pattern has already matched at the location, where they are
currently in the sequence, the DFA guarantees that we will
be in the jth state. Now, the next two characters will be
examined. *e next state is reached if a match occurs, i.e.,
j+ 1 characters are matched. An error can be resolved by
going back to some earlier state. It is needed to make an
intelligent decision about that earlier state. It will be an
incorrect choice if the initial state in the DFA is selected. As
based on the information about all possible states, the
possible furthest back state has to be chosen. Suppose the
pattern, P�AAC, then the DFA will be as shown in Figure 2.

As soon as we see the pattern, the final state (S3) would be
reached. As a result, the location at which the pattern P
appears the first time in sequence S. When finding all in-
stances of P, the DFA would need to be adjusted as shown in
Figure 3.

*e current location in S would be output every time the
final state is reached, and then all instances of P in S could be
output.

Having designed the DFA, it takes just O (ls) time to feed
the sequence S and the positions in S into the DFA each time
the final state is reached. *e total run-time of the pattern
matching algorithm would be O (lp) +O (ls) if building the
DFA takes O (lp) time.

Let a pattern P be p0p1p2 . . . plp− 1, and Pk represents the
prefix p0p1 . . . pk. In each prefix Pk there is one state qk. Being
in the state qk . . . the state of qk, the next state has to be
decided when the character c is seen after pk. If c matches
pk+ 1, then the state relevant to Pk+ 1 � p0p1 . . . pkpk+ 1 will be

4 Computational Intelligence and Neuroscience

chosen. In any case, c is not the same as pk+ 1, a wise decision
has to be made to choose the next state. It should not miss
any possible match in the sequence.

Whenever a match begins in a region that already
matches P, the match begins with any prefix of P; and, there
has to be a matching pattern in S up to k. In order to avoid
skipping a match in S, the longest such region is best. It is
therefore necessary to identify the longest prefix of P that
corresponds to Pk. To be more specific, it will require
dropping the fewest characters from Pk’s beginning to get
something that looks like a prefix of P again.

*is observation is recorded in the shift beyond for
avoiding redundant comparison (SBARC) table. *e table
consists of the shift value for the characters of the pattern.
*is assists in escaping from the redundant comparison in
the occurrences of recurring characters. For computing such
a skip, we focus on substrings of patterns that are prefix and
suffix. A string must be different from the string itself in
order to be a proper prefix. As an example, in the string
“ACG,” the prefixes are “”, “A,” “AC,” and “ACG.” However,
the proper prefixes are “”, “A,”and “AC.” In particular, we
focus on substrings of patterns that are prefixes and suffixes.
Whenever the prefix Pat [0. . .i] of pattern consists of i� 0 to
m− 1, the shift value for the position i of the pattern, SVPat
[i], stores the length of the maximum matching proper
prefix, that is, also the suffix of the subpattern pat [0. . .i].

*e algorithm for the computation of the SBARC table is
given in Algorithm 1. *e calculation is done as follows: the
pattern is scanned from left to right; the shift value for the
characters of the pattern is computed based on the repetition
of any prefix of length 1 to lp − 1 in Pat. If any such prefix is
occurring for the next time, the shift value (SV) for the
repetition will be related to the position of the same char-
acter in the prefix.

For example, considering the pattern “ACGACG,” the
prefix “ACG” appears twice. Prefix “A,” of length 1, appears
at position 4 again (at index 3); thus, index 3 has 1 for its shift
value. Continuing the prefix “AC” ending at the fifth po-
sition (the index 4), the shift value for index 4 is 2; and prefix
“ACG” of length 3 is appearing again till the sixth position
(at the index 5), index 5 has 3 as the shift value. *e shift
value is assigned to each index position of the pattern and
not to the characters in the pattern.

S0 S1 S2 S3

C

A A

A

C

C

Figure 2: DFA for the pattern “AAC.”

S0 S1 S2 S3

C

A A

A

A

C

C

Figure 3: DFA for finding all repeated occurrences of the pattern
“AAC.”

7654321Index 0
Text C G T G T G T A

(a)

CGTGTGTA

A GT A

A

GT

7

5

3 1

6

4 2

0GT T

A AGTA GTA

(b)

SuffixStart Index
0
1
2
3
4
5
6
7 A

TA
GTA
TGTA
GTGTA
TGTGTA
GTGTGTA
CGTGTGTA

(c)

SuffixStart Index
7 A
0 CGTGTGTA
5 GTA
3 TGTA
1 GTGTGTA
6 TA
4 TGTA
2 TGTGTA

(d)

Figure 1: (a) Sample text and index. (b) Suffix tree. (c) All possible suffixes with start index. (d) Sorted suffixes.

Computational Intelligence and Neuroscience 5

*e shift value assigned for each position of the pattern is
otherwise known as the longest proper prefix, that is, also a
suffix. *e important point to be observed here is that the
prefix is the proper substring starting from the beginning of
the pattern, but the suffix is considered for each substring
ending at all possible positions of the pattern.

During the comparison of the pattern against the se-
quence, the search starts from the left end of the sequence.
*e pattern is aligned with the first lp characters of the
sequence. *e character-by-character comparison is per-
formed from left to right. When a mismatch is found after
matching of few characters, a few characters of the next
window are already known. Using this advantage, we do not
have to compare those characters that are known to match
anyway. Hence, when there is a mismatch, the shift value of
the previous index of the mismatched position in the pattern
is referred to. In the pattern, if any prefix is repeated as the
suffix till the position of mismatch, the comparison of
characters in the prefix need not be repeated with the se-
quence. Accordingly, shift value for each position of the
pattern is assigned and the same is referred for continuing
the comparison.

Comparison with the characters of the current window
starts with Pat[j] with j� 0. Matching characters, Seq [i] and
Pat [j], is continued and i and j are incremented, while Pat [j]
matches Seq [i]. When a mismatch occurs, it is known that
the characters Pat [0. . .j− 1] match with Seq [i− j. . .i− 1].
Additionally, it is true (from the compute_SBARC algo-
rithm) that SVPat [j− 1] is the count of characters of Pat
[0. . .j− 1] that are both proper prefixes and suffixes. As a
result of these two points, it can be concluded that SVPat
[j− 1] characters do not need to be matched with Seq
[i− j. . .i− 1], because they will match anyway.

*e core idea is not to go back to the previous characters
in the sequence during a mismatch, i.e., the index used for
the sequence will always be moving forward or idle, but not

backward for sure. Only the index of the pattern will be
getting increased or decreased based on the shift value.
Hence, the EPM algorithm, presented in Algorithm 2,
achieves a linear time complexity for pattern matching.

For the pattern matching process, the comparison of
characters starts at index 0 of both Seq and Pat. *e
comparison continues towards the right linearly till the
match of the characters is successful. Once a mismatch
occurs between Pat [j] and Seq [i], the character of the
pattern at the shift value of j− 1, i.e., SVPat [j− 1], is aligned
to Seq [i] and the comparison continues.

3.3. Demonstration of the Algorithm with Example.
Consider the example given in Figure 4 for the computation
of the shift value of each position of the pattern. *e shift
value is assigned for each index of the pattern and not to the
characters of the pattern. A pattern’s index number is in-
dicated by Indpat, while the shift value is represented by
SVPat.

In the pattern “ACTCTAACTGA,” at index 5, 6 and 10
prefix A appear, hence, shift value 1 is assigned; prefix AC of
length 2 is ending at index 7, hence, shift value 2 is assigned
to index 7; prefix ACTof length 3 is ending at index 8, hence,
3 is assigned to 8; the method given in Algorithm 1 computes
SBARC table of the pattern.

*e example is demonstrated in Figure 5 elaborates the
process of pattern matching in a DNA sequence. Indseq and
Indpat indicate the index positions of the characters in a
sequence and in a pattern, respectively. *e characters in the
first window of 10 characters in the Seq are compared from
left to right with the characters of the pattern. *e characters
from position 0 to 8 are matched successfully. Since Pat [9] is
“G”and Seq [9] is “C,” a mismatch has occurred. As a result,
it is apparent that the pattern is not present at position 0. A
naive approach would shift the pattern into the window of

//Input: Pattern (Pat) and length of the pattern (lp)
//Output: Shift Value of the pattern
begin

l� 0
SVPat [0]� 0
i� 1
while (i< lp)

if (Pat [i]� � Pat [l])
l+� 1
SVPat [i]� l
i+� 1

else if (l!� 0)
l� SVPat [l− 1]

else
SVPat [i]� 0
i+� 1

endIf
endWhile
return SVPat []

end;

ALGORITHM 1: compute_SBARC(Pat, lp).

6 Computational Intelligence and Neuroscience

index positions 1 to 11, and continue the comparison. *e
EPM algorithm uses the SBARC table to determine the index
of the following window in order to optimize the com-
parison process. A new starting index is not explicitly
assigned to the next window. Rather, it takes the index of the
pattern character to be compared next to the 9th character
from SVPat.*erefore, the character at the position of SVPat
[8] in the pattern is aligned with Seq [9] and the matching
process continues. Again, the Pat [4] is mismatched with Seq
[10].*e next window is chosen by assigning the character at
the position of SVPat [3] in the pattern aligned with Seq [10].
Followed by this, all the characters of the pattern are exactly
matched from position 10 in the sequence.

In the sequence of length, the window of the pattern is
shifted barely three times in order to identify the pattern. If
the naive algorithm had been applied, the shifts would have
been ls − lp+ 1 times, which would yield 21− 11 + 1� 11.
According to our analysis, the number of shifts has reduced
drastically, reflecting the fall in the number of character
comparisons in total.

3.4. Algorithm for Optimized Pattern Similarity Identification
(OPSI). While applying pattern matching in DNA se-
quences, there is a chance that the mutated pattern will be
present in the sequence instead of the exact pattern. Hence,

pattern similarity also needs to be enhanced to efficiently
find out possible positions where the pattern is almost in the
DNA sequence.

APM can be made by allowing insertion, deletion, and
substitution of characters for a given threshold value. *e
example in Figure 6 demonstrates the possible mutations in
the DNA sequence.

//Input: Seq-Sequence, Pat-Pattern
//ls-length of the Seq
//lp-length of Pattern
//Output: Pos[]–Matched Index Positions
begin

j� 0, i� 0
compute_SBARC (Pat, lp)
while i< ls:
if Pat [j]� � Seq [i]:
increment i and j by 1

endIf
if j� � lp:

add i− j to Pos
j� SVPat [j− 1]

else if (i< ls and Pat [j]!� Seq [i]):
if (j!� 0)

j� SVPat [j− 1]
else:

i+� 1
endIf

endIf
endWhile
return Pos[]

end;

ALGORITHM 2: EPM (Seq, Pat, ls, lp).

0 1 2 3 4 5 6 7 8 9 10
Pat A C T C T A A C T G A

0 0 0 0 0 1 1 2 3 0 1

Indpat

SVpat

Figure 4: SBARC for the pattern.

Indseq 0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A C T C T A A C T C A

A C T C T A A C T G A

A C T C T A A C T G A

A C T C T A A C T G A

C T C T A A C T G A

A C T C T A A C T C A C T C T A A C T G A

A C T C T A A C T C A C T C T A A C T G A

Seq
Indpat

Pat

Indseq

Seq
Indpat

Pat

Indseq

Seq
Indpat

Pat

Mismatch at Pat[9]. Align the index of SVpat[8] to Seq[9]
(As in fig. 2, SVPat[8] = 3)

Mismatch at Pat[4]. Align the index of SVpat[3] to Seq[10]
(As in fig. 2, SVPat[3] = 0)

Match is found at 10 of seq

Figure 5: Demonstration of EPM.

Computational Intelligence and Neuroscience 7

OPSI algorithm identifies pattern similarity by allowing
the mutation caused by substitution. During the search of a
pattern in the DNA sequence, if the pattern is exactly
matched with the current window of the sequence, the
portion of the sequence matched with the pattern is not
considered for approximate matching. Since the approxi-
mation is permitted, the time efficiency of the process de-
pends on the number of mismatches considered. Hence,
OPSI algorithm has a time complexity in the order of the
product of the length of the text and the threshold for
mismatches allowed (O (ls. è)). If the number of mismatches
permitted is least considerable, then OPSI algorithm is
having the time complexity in linear order. OPSI has shown
an improvement as 69% in the execution time. With in-
creasing thresholds for mismatches and sequence length,
there will be an increase in time complexity.

When there is a mismatch between the characters of the
sequence and the pattern, the pattern similarity is identified
by allowing a specified number of mismatches. *is
threshold for mismatches is represented as è. *e flow of
OPSI method is illustrated in Figure 7.

*e example in Figure 8 explains the pattern similarity
permitting a maximum of three mismatches using OPSI.*e
EPM algorithm is followed the same way when there is a
perfect match between the characters of the sequence and
the pattern. When a mismatch occurs, the algorithm counts
up the mismatch and proceeds as if there was no mismatch.
When the count exceeds the specified acceptable number of
mismatches, the algorithm alerts to switch to the shift value
of the pattern, based on the index, where the first mismatch
occurred in the current window of comparison. Hence, if the
exact match is found, the algorithm proceeds, as the EPM
algorithm works for the current window of characters. And
during mismatch, the index of the text is also moved back to
the position of the first mismatch.

OPSI algorithm, given in Algorithm 3, gets sequence
(Seq), pattern (Pat), length of the sequence (ls), length of the
pattern (lp), and the permitted number of mismatches (è) as
input and returns the list of positions (Pos), wherever the
pattern is found in the sequence with mismatches less than
or è+ 1. *e comparison of characters starts as in the EPM
algorithm.*e matching process starts from the left end and
moves to the right, character by character. When there is a
mismatch and the count of mismatches till then is less than è,
the count of error is updated and the comparison proceeds

towards the right. If the index of the pattern becomes the
length of the pattern, a pattern is found with a permitted
number of mismatches and hence it is added to the output
array, Pos.

If an exact match is found, the pattern index will update
based on the last character of the pattern. If the pattern was
foundwithmismatches or the number ofmismatches overtakes
è, then the index of the sequence is moved to the position,
where the first mismatch occurred in the current alignment,
and the pattern index is moved to the shift value of the
character behind the position of the mismatch in the pattern.

4. Results and Analysis

4.1. Implementation and Experiment Design. OPSI was
implemented in Python 3. Intel (R) Core (TM) i5-1035G1
CPU @ 1.00GHz 1.19GHz with 8GB RAM. For the
implemented work to be tested, data was taken from Homo
sapiens chromosome Y, CM000686.2 in the NCBI library.
Figure 8 shows a sample input sequence of 2000 base pairs
(bp). In double-stranded nucleic acids, a base pair is formed
by joining two nucleobases together with hydrogen bonds.
Genes and organisms are described in terms of the number
of base pairs contained in their genetic sequences as DNA is
usually double-stranded. It is for this purpose that for every
strand of DNA with a given sequence, there is an opposite
strand containing complementary sequences as A comple-
ments T, and G complements C. According to Watson and
Crick, the pair of researchers, who revealed DNA’s structure,
this complementarity was designated the Watson‒Crick
pairing rule [56]. Based on this, the number of nucleotides in
each strand equals the total number of base pairs.

To experimentally demonstrate the output of EPM, the
test input in Figure 9 was chosen as the sample sequence.*e
pattern “TCTGGTCTCTTTCTGTCCTCAATGAGACCT”
of length 30 bp is given to be searched in the sequence. *e
pattern gets matched exactly starting from index 719 in the
given sequence.*e output obtained is given in Figure 8.*e
same input is then used for verifying the OPSI. *e iden-
tification of exact pattern matching is done through the
OPSI algorithm. If the same matching in EPM is identified
by OPSI, it shows that the matching is not missed by the
OPSI algorithm.

OPSI algorithm is also executed for searching the same
pattern “TCTGGTCTCTTTCTGTCCTCAATGA GACCT”
of length 30 bp in the sequence in Figure 10, the tolerable
number of mismatches is assigned as 5. *e OPSI algorithm
is applied to the same inputs as a check. If the same inputs
are fed to the OPSI algorithm, it is expected that this exact
matching position, as well as approximate matched posi-
tions, are to be located. All the approximate matching po-
sitions with 0 to 5 mismatches are expected to be identified.
*e output is shown in Figure 10. As a result, the exact
matching position, and the starting indices of the pattern in
the sequence, wherever it is approximately matched with a
maximum of 5 mismatches, are listed out. *e exact
matching position 719 as given by the EPM algorithm is
listed among the outputs received from OPSI algorithm and
the same is highlighted in Figure 11.

Seq A A C CG G G G GC CT

G G GC CT

G G GC CT

G G GC CT

A
A

T T

A A C CG G AT T
G G GC CAA A C CG G CT A

A A C
A A C

CG G A
G G GC CTC G A

T T

A A C CG G T C AT TMutatedseq (Insertion)

Mutatedseq (Deletion)

Mutatedseq
(Substitution)

In the mutated sequence, TCA is additionally inserted into the
DNA sequence

In the mutated sequence, GTT is removed from the DNA
sequence

Seq

Seq

In the mutated sequence, 3 base pairs are replaced by other base
pairs

Figure 6: Example for mutation types.

8 Computational Intelligence and Neuroscience

4.2. Analysis of OPSI. In the compute_SBARC() algorithm,
the pattern string is traversed at most once through the while
loop. *e variable i controls the number of iterations of the
while loop. *e variable l is used for tracking the length of
the SVPat for the previous index.*e variables l and SVPat [0]
are initialized to 0. If Pat [l] matches Pat [i], l is incremented
by 1 and SVPat [i] is assigned the incremented value.
Whenever Pat [i] does not match to Pat [l] and l is not 0, l is
updated to SVPat [l− 1]. *is process assures that the pattern
is scanned once to its length. Hence the time complexity of
the algorithm is O (lp).

*ere is only one while loop used in the EPM algo-
rithm. *e index variable, “i,”that controls the loop is
initially set to 0, and it is incremented until “i” is equal to
the length of the sequence. While this indicates that the
while loop is executed ls times, it does not necessarily
mean that it is executed exactly ls times. *is is because “i”

is not incremented constantly throughout the while loop.
*ere are few conditions in which “i” stays idle. In the
event that the ith character of sequence matches the jth
character of the pattern, “i” is incremented. If not, “j” is set
to the SVPat of j – 1 and the loop continues without an
update to the index “i.” *is is possible to a maximum of 2
∗ ls number of times. *is means that the EPM algorithm
has O (ls) time complexity.

Together, the compute_SBARC and EPM algorithm
takes O (ls+ lp) time. Due to the shorter length of the pattern
than the length of the sequence, the time complexity is
bounded by ls. *is leads to the conclusion that the finding
exact matching has the time complexity O (ls).

OPSI algorithm behaves in a similar way when there are
exact matches found in the sequence. When mismatches
occur, the behavior of OPSI differs. *e input scenario for
the OPSI algorithm can be categorized into three cases.

St
ar

t

Align the pattern with
the first m characters of

the sequence and
compare each character

Sequence
S[0..n-1] Number of

mismatches
allowed è

If
number

of
mismatches

<= è

Yes Log the matched
position and è

If end of
the

sequence

Yes

St
op

No
No

Let i and j: the position of mismatch in
the sequence and the pattern

respectively.
Align the character at position SV[j-1]
in the pattern with the ith character of

the sequence and compare each
character

SV[0..m-1]

Pattern, P[0..m-1] Compute Shi� Value
for each position of

the pattern, i.e, 0..m-1

Figure 7: Flow diagram of OPSI.

2IndPat

Pat
SVPat

0 1 3 4 5 6

0 0 0 1 2 3 4
A C G A C G A

(a)

Indseq 0 1 2 3 4 5 6

0 1 2 3 4 5 6

0 1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Seq
Indpat

Pat
Match found at 0 with 0 mismatch;

Align Pat[SVpat[6] with Seq[7] to find next match

Indseq

Seq
Indpat

Pat
Match found at 3 with 1 mismatch;

Align Pat[SVpat[3] with Seq[7] to find next match

Indseq

Seq
Indpat

Pat
4 mismatches, Align Pat[0]with Seq[7]to find next match

A C G A C G A

A C G A C G A

T G A A C G

A C G A C G A T G A A C G

A C G A C G A T G A A C G

A C G A C G A

A C G A C G A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 6

(b)

Figure 8: (a) SBARC table. (b) Finding pattern similarity.

Computational Intelligence and Neuroscience 9

Figure 9: Sample sequence of length 2000 bp.

//Input: Seq-Sequence, Pat-Pattern, ls-length of the Seq
//Input: lp-length of Pattern, è-Number of permitted mismatches
//Output: Pos[]–Starting indices of the Pat in Seq with less than è+ 1 mismatches
begin

j� 0, i� 0
compute_SBARC (Pat, lp)
while (i< ls)

if (pat [j]� � txt [i])
increment i and j
else

increment the count of error
if count of error >è

reinitialize i and j based on the shift value calculated
goto line 5

endIf
endIf
if (j� � lp)

add i− j to Pos
if count of errors� � 0

assign shift value of j− 1 to j
else

reinitialize count of errors to 0
shift i to the position where the mismatch occurred first in the current window
shift j to the shift value of the previous position where the mismatch occurred

endIf
endIf

endWhile
return Pos []

end;

ALGORITHM 3: OPSI (Seq, Pat, ls, lp, è).

10 Computational Intelligence and Neuroscience

Case 1. All exact matches of the pattern in the text: For every
window alignment of pattern with the substring of text, if
there are always exact matches found in the text, OPSI
proceeds as same as the EPM algorithm. Hence, the time
complexity will be linear for this case.

Case 2. Lesser number of mismatches than è: If the number
of mismatched characters is less than the permitted count of
mismatches, then, the next window of search is decided
based on the shift value of the position where the first
mismatch was found.

Case 3. Number of mismatches exceeding è: When the
number of mismatches exceeds the count, then the search
will be continued from the shift value of the first mismatched
character in the present window of search.

Considering Cases 2 and 3, the position of themismatch is
resumed once the present window is processed. *e shift
value is used to select the next window for the matching
process. Since the shift value assures that the compared pair of
characters will not be compared again, the time complexity
for the average case will be still linear. *e worst case will
occur when the number of mismatches in each comparison
window exceeds è. In such a case, once the mismatch count

Figure 11: OPSI search of “TCTGGTCTCTTTCTGTCCTCAATGA GACCT” in the sequence in Figure 7.

Figure 10: EPM search of “TCTGGTCTCTTTCTGTCCTCAATGA GACCT” in the sequence in Figure 7.

Computational Intelligence and Neuroscience 11

5000 10000 15000 20000 25000 30000
Length of Sequence (bp)

EPM
OPSI

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

EP
M

 E
xe

cu
tio

n
Ti

m
e (

Se
co

nd
s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

O
PS

I E
xe

cu
tio

n
Ti

m
e (

Se
co

nd
s)

Figure 14: EPM vs OPSI.

BM
EPM

5000 10000 20000 30000 40000 50000
Length of Sequence (bp)

Ex
ec

ut
io

n
Ti

m
e (

Se
c)

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0

Figure 12: Execution time of preprocessing in Boyer‒Moore vs compute_SBARC.

Ex
ec

ut
io

n
Ti

m
e

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0
0 10 20 30 40 50 60

No of Mismatches

Figure 13: Execution time of OPSI vs number of mismatches.

12 Computational Intelligence and Neuroscience

exceeds è, further characters in the present windowwill not be
compared; instead, the comparison window is immediately
shifted. *is leads to conclude that the time complexity of
OPSI will be O (ls. è) in the worst case.

4.3. Experimental Results. *e performance of the OPSI
algorithm was experimented with and analyzed from three
perspectives such as, (i) the preprocessing of the pattern is
compared with the preprocessing of Boyer‒Moore for cal-
culating the shift value, (ii) correlate with the EPM to prove
the time complexity of OPSI, and (iii) comparison with the
APM based on the hamming (edit) distance.

According to the bad character heuristic, the Boyer‒
Moore algorithm calculates the shift value during its
preprocessing. Based on the presence of a prefix as a suffix,
the compute_SBARC algorithm calculates the shift value.

Both the algorithms were implemented in Python 3 and
tested with patterns of size 5000 to 50000 base pairs. As
shown in Figure 12, a graph is generated with data collected
during the execution of both methods. Based on the graph,
it can be concluded that the difference in execution time is
negligible and that both algorithms perform in similar time
frames.

OPSI algorithm was applied on a DNA sequence of
length 6000 bp and a pattern of length 200 bp. *e values for
è are varied from 0 to 50 in an interval of 10. *e algorithm
for OPSI is applied with each of these è values repeatedly for
five times and the average execution time is recorded.
Figure 13 shows that the execution time increases in the
linear order of the growth of the number of mismatches.

OPSI and EPM algorithms are applied on DNA se-
quences of various lengths and the average execution times
are recorded. *e value of è is set to 10 and a pattern of

5000 10000 15000 20000 25000 30000
Length of Sequence (bp)

APM_Hamming Distance
OPSI

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Ex
ec

ut
io

n
Ti

m
e (

Se
c)

(a)

Length of Sequence (bp)

APM_Hamming Distance
OPSI

10000 20000 30000 40000 50000 60000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ex
ec

ut
io

n
Ti

m
e (

Se
c)

(b)

Figure 15: Hamming_Distance Based APM vs OPSI. (a) For DNA sequence. (b) For protein sequence.

Computational Intelligence and Neuroscience 13

length 200 is chosen for searching. *e execution time is
portrayed in Figure 14 for both the EPM algorithm and the
OPSI algorithm. *e execution time is taken as the average
time of the multiple executions of the algorithms. It is
observed that the execution time of Algorithm 3 is ap-
proximately 10 (�è) times the execution time of the EPM
algorithm. Hence, supports the statement that the time
complexity of OPSI is O (ls∗ è).

*e execution time of the OPSI algorithm is compared
with the APM algorithm based on hamming distance [23].
*e OPSI algorithm is not limited to DNA sequences, as it
can be used with any alphabet. *is has been demonstrated
by applying it to protein sequences as well.*e data for DNA
and Protein sequences are taken from https://pizzachili.dcc.
uchile.cl. A pattern of 200 characters is searched using the
algorithms. *e average execution time is observed for
different lengths of the sequences for both algorithms. *e
graphs are given in Figures 15(a) and 15(b) report the time
taken by OPSI and hamming distance-based APM for
searching the pattern in increasing lengths of sequences.
According to the difference between the execution times of
OPSI and the other algorithm, OPSI algorithm is more
efficient.

*e improvement in the performance of OPSI is ana-
lyzed by comparing the slopes of the lines shown in Fig-
ure 15. Considering that the lines are not straight, slopes
between every two points are measured.*e average of these
slopes is calculated and applied for computing the per-
centage of improvement in the performance of OPSI for
APM. It is found to be 68.96% in the case of DNA data set
and 70% for Protein sequence. On average, the execution
time was improved by 69.48%.

5. Conclusion

Pattern matching is an important and frequent function in
any field where a large amount of data is handled. Many
algorithms are being proposed by researchers for improving
the performance of the search. OPSI finds the positions of
the pattern in the text by allowing a specified number of
mismatches.

Since the approximation is permitted, the time efficiency
of the process depends on the number of mismatches
considered. Hence, the OPSI algorithm has a time com-
plexity in the order of the product of the length of the text
and the threshold for mismatches allowed (O (ls. è)). If the
number of mismatches permitted is least considerable, then
the OPSI algorithm is having the time complexity in linear
order.

As compared to the APM based on hamming distance,
OPSI has shown an improvement of 69% in the execution
time. OPSI possesses scalability because there are no limits
on the size of the inputs such as the threshold for mis-
matches, sequence length, and pattern length. With in-
creasing thresholds for mismatches and sequence length,
there will be an increase in time complexity.

In addition, because OPSI is generalizable, it can be
applied not just to DNA sequences but also to any string-

matching problems. *is algorithm calculates the shift po-
sition based on the prefix. In future work, this work can be
improved by integrating suffix-based methods such as the
BM algorithm.

Data Availability

*e datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
request.

Conflicts of Interest

*e authors declare that they have no conflicts of interest.

References

[1] M. Rashid, M. Imran, and A. R. Jafri, “Exploration of
hardware architectures for string matching algorithms in
network intrusion detection systems,” in Proceedings of the
ACM International Conference Proceeding Series, Bangkok
*ailand, July 2020.

[2] S. Doan, E. W. Yang, S. S. Tilak, P. W. Li, D. S. Zisook, and
M. Torii, “Extracting health-related causality from twitter
messages using natural language processing,” BMC Medical
Informatics and Decision Making, vol. 19, no. S3, p. 79, 2019.

[3] D. E. Knuth, J. H. Morris Jr, V. R. Pratt, and V. R. Pratt, “Fast
pattern matching in strings,” SIAM Journal on Computing,
vol. 6, no. 2, pp. 323–350, 1977.

[4] K. V. Voelkerding, S. Dames, and J. D. Durtschi, “Next
generation sequencing for clinical diagnostics-principles and
application to targeted resequencing for hypertrophic car-
diomyopathy: a Paper from the 2009 William Beaumont
Hospital Symposium on Molecular Pathology,” Journal of
Molecular Diagnostics, vol. 12, no. 5, pp. 539–551, 2010.

[5] T. Mantere, S. Kersten, and A. Hoischen, “Long-read se-
quencing emerging in medical genetics,” Frontiers in Genetics,
vol. 10, pp. 426–514, 2019.

[6] H. P. J. Buermans and J. T. den Dunnen, “Next generation
sequencing technology: advances and applications,” Bio-
chimica et Biophysica Acta - Molecular Basis of Disease,
vol. 1842, no. 10, pp. 1932–1941, 2014.

[7] S. Behjati and P. S. Tarpey, “What is next generation se-
quencing?” Archives of disease in childhood - Education &
practice edition, vol. 98, no. 6, pp. 236–238, 2013.

[8] X. Huang, J. Wang, S. Aluru, S. P. Yang, and L. Hillier, “Pcap:
a whole-genome assembly program,” Genome Research,
vol. 13, no. 9, pp. 2164–2170, 2003.

[9] M. M. W. De la Bastide, “Assembling genomic DNA se-
quences with PHRAP,” Bioinformatics, vol. 11, pp. 1–15, 2007.

[10] Z. Zhang, W. R. Pearson, and W. Miller, “Aligning a DNA
sequence with a protein sequence,” Journal of Computational
Biology, vol. 4, no. 3, pp. 339–349, 1997.

[11] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy
algorithm for aligning DNA sequences,” Journal of Compu-
tational Biology, vol. 7, no. 1–2, pp. 203–214, 2000.

[12] H. Li, “Aligning Sequence Reads, Clone Sequences and As-
sembly Contigs with BWA-MEM,” pp. 1–3, 2013, https://
arxiv.org/abs/1303.3997.

[13] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment
with Bowtie 2,” Nature Methods, vol. 9, no. 4, pp. 357–359,
2012.

14 Computational Intelligence and Neuroscience

https://pizzachili.dcc.uchile.cl
https://pizzachili.dcc.uchile.cl
https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997

[14] K. Reinert, B. Langmead, D. Weese, and D. J. Evers,
“Alignment of next-generation sequencing reads,” Annual
Review of Genomics and Human Genetics, vol. 16, no. 1,
pp. 133–151, 2015.

[15] G.-F. Richard, A. Kerrest, and B. Dujon, “Comparative ge-
nomics and molecular dynamics of DNA repeats in eu-
karyotes,” Microbiology and Molecular Biology Reviews,
vol. 72, no. 4, pp. 686–727, 2008.

[16] Y. Yan, N. Chaturvedi, and R. Appuswamy, “Accel-Align: a
fast sequence mapper and aligner based on the
seed–embed–extend method,” BMC Bioinformatics, vol. 22,
no. 1, pp. 257–320, 2021.

[17] H. Hyyrö, K. Narisawa, and S. Inenaga, “Dynamic edit dis-
tance table under a general weighted cost function,” Journal of
Discrete Algorithms, vol. 34, pp. 2–17, 2015.

[18] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa, “Fast
gap-affine pairwise alignment using the wavefront algorithm,”
Bioinformatics, vol. 37, no. 4, pp. 456–463, 2021.

[19] H. Li and R. Durbin, “Fast and accurate short read alignment
with Burrows-Wheeler transform,” Bioinformatics, vol. 25,
no. 14, pp. 1754–1760, 2009.

[20] B. Langmead, “Aligning short sequencing reads with Bowtie,”
Current Protocols in Bioinformatics, 24 pages, Johns Hopkins
University, Maryland MD USA, 2010.

[21] D. Kim, G. Pertea, C. Trapnell, H. Pimentel, R. Kelley, and
S. L. Salzberg, “TopHat2: accurate alignment of tran-
scriptomes in the presence of insertions, deletions and gene
fusions,” Genome Biology, vol. 14, no. 4, p. R36, 2013.

[22] C. Camacho, G. Coulouris, V. Avagyan et al., “BLAST+:
architecture and applications,” BMC Bioinformatics, vol. 10,
pp. 421–429, 2009.

[23] P. Zhang and M. J. Atallah, “On approximate pattern
matching with thresholds,” Information Processing Letters,
vol. 123, pp. 21–26, 2017.

[24] E. Giaquinta, S. Grabowski, and K. Fredriksson, “Approxi-
mate pattern matching with k-mismatches in packed text,”
Information Processing Letters, vol. 113, no. 19–21,
pp. 693–697, 2013.

[25] M. Isa Irawan, I. Mukhlash, A. Rizky, and A. Ririsati Dewi,
“Application of Needleman-Wunch Algorithm to identify
mutation in DNA sequences of Corona virus,” Journal of
Physics: Conference Series, vol. 1218, no. 1, Article ID 012031,
2019.

[26] L. Salmela and J. Schröder, “Correcting errors in short reads
by multiple alignments,” Bioinformatics, vol. 27, no. 11,
pp. 1455–1461, 2011.

[27] W. C. Kao, A. H. Chan, and Y. S. Song, “ECHO: a reference-
free short-read error correction algorithm,”Genome Research,
vol. 21, no. 7, pp. 1181–1192, 2011.

[28] KMP, “KMP Algorithm for Pattern Recognition,” 2022,
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-
searching/.

[29] C. R. Rathish and A. Rajaram, “Efficient path reassessment
based on node probability in wireless sensor network,” In-
ternational Journal of Control ;eory and Applications,
vol. 34, pp. 817–832, 2016.

[30] S. Rahamat Basha, C. Sharma, F. Sayeed et al., “Imple-
mentation of reliability antecedent forwarding technique
using straddling path recovery in manet,” Wireless Com-
munications and Mobile Computing, vol. 20229 pages, 2022.

[31] C. R. Rathish and A. Rajaram, “Hierarchical load balanced
routing protocol for wireless sensor networks,” International
Journal of Applied Engineering Research, vol. 10, no. 7,
pp. 16521–16534, 2015.

[32] S. Kannan and A. Rajaram, “Enhanced stable path routing
approach for improving packet delivery in MANET,” Journal
of Computational and ;eoretical Nanoscience, vol. 14, no. 9,
pp. 4545–4552, 2017.

[33] R. P. P. Anand and A. Rajaram, “Effective timer count
scheduling with spectator routing using stifle restriction al-
gorithm in manet,” IOP Conference Series: Materials Science
and Engineering, vol. 994, no. 1, Article ID 012031, 2020.

[34] M. Dinesh, C. Arvind, S. Sreeja Mole et al., “An energy ef-
ficient architecture for furnace monitor and control in
foundry based on industry 4.0 using IoT,” Scientific Pro-
gramming, vol. 2022, Article ID 1128717, 8 pages, 2022.

[35] K. Mahalakshmi, K. Kousalya, H. Shekhar et al., “Public
auditing scheme for integrity verification in distributed cloud
storage system,” Scientific Programming, vol. 2021, Article ID
8533995, 5 pages, 2021.

[36] J. Divakaran, S. Malipatil, T. Zaid et al., “Technical Study on
5G Using Soft Computing Methods,” Scientific Programming,
vol. 2022, Article ID 1570604, 7 pages, 2022.

[37] B. Gobinathan, M. A. Mukunthan, S. Surendran et al., “A
Novel Method to Solve Real Time Security Issues in Software
Industry Using Advanced Cryptographic Techniques,” Sci-
entific Programming, vol. 2021, Article ID 3611182, 9 pages,
2021.

[38] S. Shitharth, P. Meshram, P. R. Kshirsagar, H. Manoharan,
V. Tirth, and V. P. Sundramurthy, “Impact of big data analysis
on nanosensors for applied sciences using neural networks,”
Journal of Nanomaterials, vol. 2021, Article ID 4927607,
9 pages, 2021.

[39] S. I. Hakak, A. Kamsin, P. Shivakumara, G. A. Gilkar,
W. Z. Khan, and M. Imran, “Exact string matching algo-
rithms: survey, issues, and future research directions,” IEEE
Access, vol. 7, pp. 69614–69637, 2019.

[40] R. M. Karp and M. O. Rabin, “Efficient randomized pattern-
matching algorithms,” IBM Journal of Research and Devel-
opment, vol. 31, no. 2, pp. 249–260, 1987.

[41] F. Zhao and Q. Liu, “A string matching algorithm based on
efficient hash function,” in Proceedings o- 2009 International
Conference on Information Engineering and Computer Science
ICIECS, December 2009.

[42] T. Gururaj and G. M. Siddesh, “Hybrid approach for en-
hancing performance of genomic data for stream matching,”
International Journal of Cognitive Informatics and Natural
Intelligence, vol. 15, no. 4, pp. 1–18, 2021.

[43] R. Chikhi and G. Rizk, “Space-efficient and exact de Bruijn
graph representation based on a Bloom filter,” Algorithms for
Molecular Biology, vol. 8, no. 1, pp. 22–29, 2013.

[44] M. Najam, R. U. Rasool, H. F. Ahmad, U. Ashraf, and
A. W. Malik, “Pattern Matching for DNA Sequencing Data
Using Multiple Bloom Filters,” BioMed Research Interna-
tional, vol. 20199 pages, 2019.

[45] R. S. Boyer and J. S. Moore, “A fast string searching algo-
rithm,” Communications of the ACM, vol. 20, no. 10,
pp. 762–772, 1977.

[46] A. Daptardar and D. Shapira, “Adapting the Knuth-Morris-
Pratt algorithm for pattern matching in Huffman encoded
texts,” in Proceedings of the Data Compression Conference
Proceedings, vol. 535, March 2004.

[47] R. Grossi and G. Italiano, “Suffix trees and their applications
in string algorithms,” in Proceedings of the South American
Workshop on String Processing, vol. 20244, pp. 57–76, South
America, February 1997.

[48] A. N. F. Arruggia, T. R. G. Agie, and G. O. N. Avarro, “Relative
Suffix Trees,” ;e Computer Journal, vol. 61, no. 5, 2018.

Computational Intelligence and Neuroscience 15

https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/
https://www.geeksforgeeks.org/kmp-algorithm-for-pattern-searching/

[49] J. C. Na, H. Park, M. Crochemore et al., “Suffix tree of
alignment: an efficient index for similar data,” Lecture Notes in
Computer Science (Including Subseries Lecture Notes in Ar-
tificial Intelligence and Lecture Notes in Bioinformatics),
Springer, Berlin, Heidelberg, pp. 337–348, 2013.

[50] M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch, “Replacing
suffix trees with enhanced suffix arrays,” Journal of Discrete
Algorithms, vol. 2, no. 1, pp. 53–86, 2004.

[51] A. M. S. Shrestha, M. C. Frith, and P. Horton, “A bio-
informatician’s guide to the forefront of suffix array con-
struction algorithms,” Briefings in Bioinformatics, vol. 15,
no. 2, pp. 138–154, 2014.

[52] C. H. Teo and S. V. N. Vishwanathan, “Fast and space efficient
string kernels using suffix arrays,” in Proceedings of the 23rd
international conference on Machine learning - ICML,
pp. 929–936, Pennsylvania, PA, USA, June 2006.

[53] G. Özcan and O. S. Ünsal, “Fast bitwise pattern-matching
algorithm for DNA sequences on modern hardware,” Turkish
Journal of Electrical Engineering and Computer Sciences,
vol. 23, no. 5, pp. 1405–1417, 2015.

[54] P. Ejendibia and B. Baridam, “String searching with DFA-
based algorithm,” International Journal of Applied Informa-
tion Systems, vol. 9, no. 8, pp. 1–6, 2015.

[55] J. Kaur, B. Chauhan, and J. K. Korepal, “Implementation of
query processor using automata and natural language pro-
cessing,” International Journal of Scientific and Research
Publications, vol. 3, no. 5, pp. 1–5, 2013.

[56] L. Pray, “Discovery of DNADouble Helix: Watson and Crick |
Learn Science at Scitable,” 2008, https://www.nature.com/
scitable/topicpage/discovery-of-dna-structure-and-function-
watson-397/.

16 Computational Intelligence and Neuroscience

https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/
https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/
https://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397/

