United European Gastroenterology Journal WI L EY

UNITED EUROPEAN
GASTROENTEROLOGY @ l

ueg journa
| REVIEW ARTICLE EEIETED

Artificial Intelligence in Pancreatic Imaging: A Systematic
Review

Nicoleta Podind"* @ | Elena Codruta Gheorghe® | Alina Constantin® | Irina Cazacu® | Vlad Croitoru® |
Cristian Gheorghe'” | Daniel Vasile Balaban® | Mariana Jinga"® | Cristian George Tieranu™’ @ | Adrian Siftoiu">’

«Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania | ZDepartment of Gastroenterology, Ponderas Academic Hospital, Bucharest,

Romania | *Department of Family Medicine, University of Medicine and Pharmacy Craiova, Craiova, Romania | *Oncology Department, Fundeni Clinical
Institute, Bucharest, Romania | *Center of Gastroenterology and Hepatology, Fundeni Clinical Institute, Bucharest, Romania | 6Depalrtment of
Gastroenterology, “Carol Davila” Central Military University Emergency Hospital, Bucharest, Romania | “Department of Gastroenterology and Hepatology,
Elias Emergency University Hospital, Bucharest, Romania

Correspondence: Adrian Séftoiu (adriansaftoiu@gmail.com; adrian.saftoiu@umfcd.ro)
Received: 11 July 2024 | Revised: 24 October 2024 | Accepted: 3 November 2024

Funding: This work was supported by European Research Executive Agency under the project TRAINING IN TRANSLATIONAL PROTOCOLS FOR
MINIMAL INVASIVE DIAGNOSIS AND THERAPY IN PANCREATICO-BILIARY CANCERS—TRIP (HORIZON-WIDERA-2021-ACCESS-03: Twinning,
grant agreement number: 101079210/2022) and by UEFISCDI, Ministry of Education, Romania, under the co-financing project TRAINING IN
TRANSLATIONAL PROTOCOLS FOR MINIMAL INVASIVE DIAGNOSIS AND THERAPY IN PANCREATICO-BILIARY CANCERS—NEW-TRIP (PN-
IV-P8-8.1-PRE-HE-ORG-2023-0069, grant agreement number: 23PHE/2023).

Keywords: artificial intelligence | deep learning | endoscopic ultrasound | machine learning | pancreatic ductal adenocarcinoma

ABSTRACT

The rising incidence of pancreatic diseases, including acute and chronic pancreatitis and various pancreatic neoplasms, poses a
significant global health challenge. Pancreatic ductal adenocarcinoma (PDAC) for example, has a high mortality rate due to late-
stage diagnosis and its inaccessible location. Advances in imaging technologies, though improving diagnostic capabilities, still
necessitate biopsy confirmation. Artificial intelligence, particularly machine learning and deep learning, has emerged as a revo-
lutionary force in healthcare, enhancing diagnostic precision and personalizing treatment. This narrative review explores Artificial
intelligence's role in pancreatic imaging, its technological advancements, clinical applications, and associated challenges.
Following the PRISMA-DTA guidelines, a comprehensive search of databases including PubMed, Scopus, and Cochrane Library
was conducted, focusing on Artificial intelligence, machine learning, deep learning, and radiomics in pancreatic imaging. Articles
involving human subjects, written in English, and published up to March 31, 2024, were included. The review process involved title
and abstract screening, followed by full-text review and refinement based on relevance and novelty. Recent Artificial intelligence
advancements have shown promise in detecting and diagnosing pancreatic diseases. Deep learning techniques, particularly
convolutional neural networks (CNNs), have been effective in detecting and segmenting pancreatic tissues as well as differentiating
between benign and malignant lesions. Deep learning algorithms have also been used to predict survival time, recurrence risk, and
therapy response in pancreatic cancer patients. Radiomics approaches, extracting quantitative features from imaging modalities
such as CT, MRI, and endoscopic ultrasound, have enhanced the accuracy of these deep learning models. Despite the potential of
Artificial intelligence in pancreatic imaging, challenges such as legal and ethical considerations, algorithm transparency, and data
security remain. This review underscores the transformative potential of Artificial intelligence in enhancing the diagnosis and
treatment of pancreatic diseases, ultimately aiming to improve patient outcomes and survival rates.
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1 | Introduction

The increasing incidence of pancreatic diseases poses a signifi-
cant global health challenge. Recent studies have indicated a
rising trend in the occurrence of acute and chronic pancreatitis
over time, reflecting a growing burden on healthcare systems
worldwide [1-3]. Pancreatic neoplasms, including solid tumors
like pancreatic ductal adenocarcinoma (PDAC) and pancreatic
neuroendocrine neoplasms (PNEN), along with various cystic
lesions, are on a troubling rise [4]. Despite being the seventh
among cancers globally, pancreatic cancer (PC) is one of the
most lethal, with a high mortality rate closely mirroring its
incidence [5, 6].

In this challenging context, artificial intelligence (AI), and
especially deep learning (DL), has emerged as a powerful force
in healthcare, offering new avenues for enhancing diagnostic
precision and personalizing treatment. However, the integration
of Al into healthcare also introduces challenges, including legal
and ethical considerations, algorithm transparency and data
security concerns [7]. This narrative review aims to provide a
comprehensive overview of the role of Al in pancreatic imaging,
touching on the technological advancements and clinical ap-
plications, but also challenges and limitations of a technology
that is currently evolving rapidly.

2 | Materials and Methods

The present study followed the Preferred Reporting Items for
Systematic Review and Meta-Analysis of Diagnostic Test Accu-
racy Studies (PRISMA-DTA) guidelines. A comprehensive
search has been performed in medical databases such as
PubMed, Scopus and Cochrane Library, focusing on articles
relevant to the application of AI, ML, DL, and radiomics in
pancreatic imaging. The following MeSH (Medical Subject
Headings) terms and keywords were used: “Artificial Intelli-
gence,” “Machine Learning,” “Deep Learning,” “Neural Net-
works,” as well as “Pancreas,” “Pancreatitis,” “Pancreatitis,
Acute Necrotizing,” “Pancreatitis, Chronic,” “Pancreatic Neo-
plasms/Diagnostic Imaging,” “Ultrasonography,” “Tomography,
X-Ray Computed,” “Magnetic Resonance Imaging,” “Positron
Emission Tomography,” “Endoscopic Ultrasound.” Specific
search strings were constructed for each library to ensure thor-
ough retrieval. In the initial stages of the systematic literature
review, we utilized advanced Al-based tools including ChatGPT
40, Perplexity Al, and Microsoft Co-Pilot to assist in developing
search queries and identifying relevant keywords and synonyms,
including MeSH terms (Supporting Information S1).

”

2

We included in the analysis original research articles involving
human subjects, written in English and published (or available
as “online first”), up until March 31, 2024. After initial retrieval,
duplicates were screened and assessed for eligibility based on
their relevance to AI and pancreatic imaging. This phase
involved a careful review of titles and abstracts, followed by full-
text screening of selected articles. The detailed process of study
inclusion can be summarized in the following flow diagram
based on the PRISMA methodology (Figure 1). Thus, an initial

search in three databases yielded 1069 studies, with 446 studies
screened after removal of duplicates. After the initial exclusion
of 256 studies, 190 were retrieved and 95 were excluded after
retrieval, with a total number of 95 studies included in the
review.

3 | Technological Advancements

Recent technological advancements in AI models and algo-
rithms tailored for pancreatic imaging have shown significant
promise in enhancing the detection and diagnosis of pancreatic
diseases [8], particularly PC [9]. Thus, Al techniques usually
consist in the integration of DL classifiers and radiomics feature
extraction applied for imaging modalities like multi-slice CT
scans, MR images, and endoscopic ultrasound (EUS), providing
precise segmentation of pancreatic tissues and aiding in the
differentiation between benign and malignant lesions [8-10].
Moreover, Al-driven algorithms have been utilized to predict
survival time, recurrence risk, metastasis development, and
therapy response in PC patients.

Radiomics approaches for processing CT/MR/EUS images have
shown promising results by systematically extracting quantita-
tive features from images (manually crafted features) and
identifying subtle changes indicative of pathology, although
they are often regarded as a pre-DL method [8]. Most of the
recent Al-driven DL methods are utilizing convolutional neural
networks (CNNs) to enable accurate image segmentation, con-
tour identification, and disease classification (Figure 2) [11].
Several DL techniques have been used extensively in the
pancreas imaging literature, most of them based on CNNs
(Supporting Information S2) [12-14].

4 | Detection and Segmentation

Early qualitative studies have shown that DL has the potential
to greatly improve the detection and segmentation of pancreatic
lesions in imaging studies [15-17]. Nevertheless, automated
segmentation of the pancreas remains insufficiently accurate
due to several reasons: (1) there are different shapes and sizes of
the pancreas; (2) the pancreatic tissue is soft and highly
deformable so it can be compressed or moved by its surrounding
organs; and (3) the margins of the pancreas are often indistin-
guishable from that of the intestine, vessels, abdominal fat and
other neighboring soft tissues, generating a significant amount
of uncertainties along the boundaries of pancreatic and non-
pancreatic tissues. Given all the above-listed reasons, the accu-
rate detection of pancreatic margins is still insufficiently ach-
ieved in clinical practice [18]. Most of the studies report metrics
like the Dice-Serensen coefficient (DSC), which represents a
statistical measure that evaluates the similarity between two
sets, commonly used to assess the accuracy of image segmen-
tation in medical imaging, ranging from 0 (no overlap) to 1
(perfect overlap) (Figure 3). The studies reporting the usage of
various DL approaches for accurate detection and segmentation
of CT/MR/EUS images are presented in Table 1.
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FIGURE 1 | The process of study inclusion based on PRISMA methodology.

41 |

Computer Tomography

CT imaging, especially with a pancreatic protocol, offers valu-
able information regarding the size, extent, and local invasion of
tumors. However, detecting small or subtle pancreatic lesions,
especially at an early stage, remains a significant challenge.
Several DL models enhance the early diagnostic process by
pinpointing tumors that may not yet be symptomatic or visible
on routine CT scans. Such advancements in detection could
shift clinical practices toward earlier, more proactive treatment
strategies, thereby improving prognosis for patients with PC.

Segmentation of the pancreas and pancreatic tumors is an area
where AI has demonstrated significant potential. Accurate
segmentation is vital for diagnosis, treatment planning, and
follow-up, particularly in determining tumor boundaries and
vascular involvement. The pancreas is surrounded by numerous
other soft tissues, and its shape and size can differ significantly

between patients, which complicates segmentation efforts.
Nevertheless, various DL models have been tested with different
training and testing strategies, as well as variable success for
segmentation, usually yielding DSCs of 0.6-0.96 [14, 19-39].

Hierarchical DL models achieved acceptable DSC values for
pancreatic segmentation on CT, marking a significant
improvement over earlier methods [19-21]. Other studies also
used complex architectures for segmentation although they did
not use hierarchical models in the same structured way [22, 23].
Cascade networks, which involve multiple stages where the
output of one network becomes the input to another, are often
considered hierarchical because they process data in stages and
refine results progressively [24, 25].

Several groups used variations of the U-Net architecture to

improve the accuracy and robustness as well as the speed of
segmentation as compared to medical experts. A hierarchical
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FIGURE 2 | A schematic drawing showing how a CNN model is analyzing pancreatic imaging data.

a No Overlap (Large Hausdorff)

b Partial Overlap (Moderate Hausdorff)

C Complete Overlap (Hausdorff = 0)

FIGURE 3 | Situations representing different DICE scores: (a) No Overlap (DICE = 0) > the two areas do not overlap at all; (b) Partial Overlap
(DICE < 1) > the circles overlap to some extent, leading to a DICE score between 0 and 1; (c) Complete Overlap (DICE = 1) > The circles perfectly
overlap, resulting in a maximum DICE score of 1. The Hausdorff distance that indicates the maximum distance between the two sets as measured

from their boundaries is also represented (red arrow).

approach using a reinforcement learning strategy for localiza-
tion and a deformable U-Net for segmentation was used to
refine the segmentation progressively [27]. Similar approaches
compared manual segmentation to CNN-based volumetric seg-
mentation, focusing on accuracy and efficiency, while they
showed that expert manual segmentation can be reached by DL
models with a significant reduction of the time required for
segmentation [28, 29]. Other DL models include MAD-UNet,
which integrates a U-shaped network architecture boosted with
an attention mechanism to better capture the complex features
of pancreatic tissues [30]. Another DL approach for automated
pancreas segmentation in CT scans has been introduced by
Panda et al. [31]. This two-stage model utilizes 3D CNNs based
on a modified U-net architecture to achieve accurate volumetric
segmentation with the ground truth represented by the curated
images from two radiologists who excluded pancreatic disease

CT images from the initial dataset. Key results from the study
include a DSC of 0.91 on the test set and no significant differ-
ence between model-predicted and ground truth (GT) pancre-
atic volumes. On an external dataset, the model maintained
high reliability, outperforming human readers at both full and
reduced radiation doses, with a mean DSC of 0.96 at reduced
dose CT scans. Addition of a graph enhancement module or
deformable convolution modules on top of U-Net architectures
seems to better capture spatial relationships [32, 33].

Furthermore, DL-based automatic semantic segmentation tech-
niques have been clinically tested in a large dataset of 1006
healthy patients, using four 3D segmentation networks (all based
on U-NET architecture: Basic U-Net, Dense U-net, Residual U-
net and Residual Dense U-net), achieving a high accuracy and
effectiveness, with a DSC of over 0.8 [34]. Likewise, a tunicate-
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TABLE 1 | Studies report the usage of various DL approaches for accurate detection and segmentation of CT/MR/EUS images.
First
author
[Ref] Imaging Type of Al Application of Al Image datasets Accuracy data
Fuetal. [19] CT Hierarchical deep Pancreas segmentation  Local hospital dataset DSC: 0.76
learning framework
Roth CT Holistically-nested Pancreas segmentation NIH dataset DSC: 0.81
et al. [20] convolutional networks
(HNNs)
Chen CT Multi-scale feature Pancreas segmentation NIH dataset DSC: 0.87
et al. [21] fusion model
Hu CT DenseASPP network Pancreas segmentation =~ NIH dataset and local DSC: 0.85
et al. [22] hospital dataset
Zhao CT Knowledge-aided CNN  Pancreas segmentation =~ VISCERAL challenge DSC: 0.82
et al. [23] dataset (20 non-contrast
CT and 20 contrast-
enhanced CT volumes)
Yang CT Cascade neural network Pancreas segmentation NIH dataset DSC: 0.87
et al. [24]
Zhang CT Multi-atlas registration, Pancreas segmentation Three different datasets DSC: 0.82
et al. [25] 3D level-set, coarse-to- with 399 CT volume
fine-to-refine images
segmentation
Kawamoto CT Residual deep Pancreas segmentation 91 CTs (42 normal, 49 DSC: 0.87 (normal), 0.85
et al. [26] supervision network abnormal) (abnormal)
Man CT Deep Q learning, Pancreas segmentation NIH dataset DSC: 0.84
et al. [27] geometry-aware U-net
Boers CT Interactive 3D U-net Pancreas segmentation The cancer Image DSC: 0.78 (auto), 0.86
et al. [28] (iUnet) archive (TCIA) (interactive)
pancreas-CT dataset and
the beyond the cranial
vault (BTCV)
Abdomen dataset for
training and Radboud
UMC local dataset
Khasawneh CT CNN-based approach Pancreas segmentation 294 portal venous CT DSC: 0.88
et al. [29] scans
Li et al. [30] CT MAD-UNet Pancreas segmentation NIH dataset and DSC: 0.86
MICCALI segmentation
decathlon challenge
dataset
Panda CT 3D CNNs, modified Pancreas segmentation  TCIA and NIH dataset  DSC: 0.91 (TCIA) and
et al. [31] U-net 0.89 (NIH)
Liu CT GEPS-net Pancreas segmentation =~ NIH dataset four-fold DSC: 0.84
et al. [32] cross-validation
Huang CT Deformable U-Net Pancreas segmentation NIH dataset DSC: 0.87
et al. [33]
Lim CT Deep neural network:  Pancreas segmentation 1006 healthy patients DSC: 0.84
et al. [34] Basic U-net, residual U-
net, dense U-net,
residual dense U-net
Gandikota CT Tunicate-swarm Pancreatic cancer Benchmark dataset with  Sensitivity, specificity
et al. [35] algorithm, deep echo segmentation and 500 samples and accuracy > 99%

state network (W-NET)

classification

(Continues)
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TABLE 1 | (Continued)
First
author
[Ref] Imaging Type of Al Application of Al Image datasets Accuracy data
Dogan CT Mask R-CNN, 3D U-net Pancreas segmentation NIH dataset DSC: 0.86
et al. [14]
Mahmoudi CT Deep convolutional PDAC and vessel MICCAI segmentation DSC: 0.6
et al. [36] neural networks segmentation decathlon challenge
(modified U-Net > dataset and local dataset
TAU-Net)
Wang CT/PET Multi-modal fusion and Pancreas segmentation Public dataset (head and DSC: 0.76
et al. [37] calibration networks neck cancer), in-house
(MFCNet) dataset (pancreas
cancer)
Liu CT 3D self-attention U-net Multiple organ Local dataset with CT DSC: 0.86-0.96 for
et al. [38] segmentation to identify images from 100 different organs
organs-at-risk during pancreatic cancer
pancreatic cancer patients undergoing
radiotherapy pancreatic radiotherapy
Dai CBCT  CycleGAN, MS R-CNN Multiple organ Two separate datasets. Mean DSC 0.92
et al. [39] segmentation for First, CT and CBCT
delineation of organs-at- images from 35
risk during pancreatic pancreatic cancer
cancer radiotherapy  patients. Second, 120 sets
of CBCT images with
corresponding ground-
truth for contours from
40 pancreatic cancer
patients
Cai MR Graph-based decision ~ Pancreas segmentation 78 MRI scans DSC: 0.76
et al. [40] fusion, CNN
Chen MR 2D U-net, densely Multi-organ Multi-slice MRI scans ~ DSC: 0.87-0.96 (varies
et al. [41] connected networks segmentation from 102 subjects by organ)
Zhang MR Prior knowledge-guided Complex anatomy T2-weighted MRI images  DSC: 0.87 (pancreas)
et al. [42] deep learning segmentation from 75 patients
Bongratz CT/MR Deep diffeomorphic Abdominal organ 1000 abdominal CT and DSC: 0.95 (liver), 0.91
et al. [43] mesh deformations segmentation 70 MRI scans (kidney), 0.92 (spleen),
(UNetFlow) 0.72 (pancreas)
Kart MR nnU-net Abdominal organ UK Biobank (UKBB)  DSC: > 0.9 (liver, spleen,
et al. [44] segmentation and German National  kidneys), 0.82 (UKBB)
Cohort (GNC) and 0.89 (GNC)
(pancreas)
Rickmann MR Deep neural network Abdominal organ German National DSC: > 0.9 (liver, spleen,
et al. [45] (QuickNAT and U-Net) segmentation Cohort, UK Biobank, kidneys), 0.74
Kohorte im Raum (pancreas)
Augsburg
Mazor MR MC3DU-net Pancreatic cyst 158 MRI studies DSC: 0.80
et al. [46] segmentation comprising 840 cysts
Liang MR Square-window Pancreatic tumor Approximately 475,000 DSC: 0.73
et al. [47] based CNN segmentation image patches
Zhang EUS Deep-learning based Pancreas segmentation 19,486 EUS images for DSC: 0.836 (internal
et al. [48] approach and station recognition station classification, segmentation)
2207 EUS images for DSC: 0.715 (external
pancreas segmentation segmentation)
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swarm algorithm with DL based pancreatic cancer segmentation
and classification used a W-net segmentation approach to define
the affected region on CT [35]. The performance of the proposed
model was tested on a benchmark dataset with 500 samples
comprising PC and non-pancreatic tumor, outperforming other
systems with accuracy, sensitivity, and specificity over 99%.

As mentioned, two-step (cascade) methods seem to be more
beneficial. This approach usually involves two phases: for
example, Mask R-CNN for rough pancreatic localization on 2D
CT slices and 3D U-Net for refined segmentation [14]. Additional
segmentation of surrounding vessels, beside PDAC, can be per-
formed by 2D Attention U-Net and Texture Attention U-Net
(TAU-Net), followed by a 3D-CNN ensemble model used to
achieve precise segmentation through multiple fine-tuning
steps [36].

Significant improvements in segmentation accuracy based on
three-dimensional PET-CT images have also been reported
previously [37].

Segmenting multiple organs in CT images has also been devel-
oped with a specific focus on improving the accuracy of pancreatic
segmentation for radiotherapy planning [38]. The proposed
method employs a 3D Self-attention U-Net network, leveraging
attention mechanisms to enhance the model's ability to focus on
relevant features in the images. The contours generated using the
proposed method closely resemble the ground-truth manual
contours, with a high DSC of 0.9. A similar approach assessed a
DL-based method for segmenting multiple organs in cone-beam
computed tomography (CBCT) images to aid adaptive radio-
therapy for PDAC [39]. The study achieved significant improve-
ments in segmentation performance, with a DSC reaching up to
0.91 for certain organs, demonstrating its effectiveness in clinical
settings for better treatment planning and delivery.

4.2 | Magnetic Resonance

Initial studies reporting accurate segmentation of the pancreas in
MR scans integrated CNNs for tissue detection with graph-based
decision fusion to enhance segmentation accuracy, and obtained
aDSC 0f 0.76 [40]. Automated DL-based Abdominal Multi-Organ
segmentation (ALAMO) has been developed for automatic seg-
mentation of multiple abdominal organs-at-risk [41], based on a
2D U-net combined with densely connected networks and
tailored data augmentation strategies. This approach achieved an
impressive performance, with high DSCs in the range 0f 0.87-0.96
for nine organs, completing a full 3D volume within 1 min. A
generalized rather than organ-specific DL semiautomatic seg-
mentation model using a 2D U-Net DL model to guide auto-for the
next slide also seems to be beneficial, yielding a DSC of 0.87 for the
pancreas and higher values for other organs [42]. Likewise, a
novel U-Net-Flow approach for segmenting four abdominal or-
gans in CT and MRI scan achieved a DSC of 0.95 for liver seg-
mentation, 0.91 for kidney segmentation, 0.72 for pancreas and
0.92 for spleen segmentation [43].

Automated whole-body MRI segmentation has been tested on
images from the UK Biobank (UKBB) and German National

Cohort (GNC), using nnU-net for training using 400 T1-
weighted MR image datasets from healthy volunteers and ach-
ieved a mean DSC for the liver, spleen, and kidneys above 0.9,
while for the pancreas, the DSC was around 0.82 for UKBB and
0.89 for GNC data [44]. AbdomenNet, another DL model
designed to realize automatic segmentation of abdominal organs
in MRI scans, has been developed to overcome the challenge of
time-consuming manual segmentation, yielding a DSC of 0.95
for liver segmentation, 0.91 for spleen segmentation, and 0.74
for pancreas segmentation [45].

The first DL model designed to automatically detect and segment
pancreatic cysts in MRI studies during follow-up employs a
multisequence approach to enhance segmentation accuracy [46].
More precisely, this cascaded pipeline method includes a first step
with segmentation of the pancreas based on a region of interest in
the TSE MRI scan, which is transferred in a second step to the
MRCP scan where 3D U-Nets perform the segmentation and
identification of pancreatic cysts, thus achieving a mean DSC of
0.80 for cysts larger than 5 mm in diameter.

A retrospective study including a small number of patients
tested a model used for the automatic segmentation of pancre-
atic tumors in multi-parametric MRI to rapidly generate the
gross tumor volume (GTV) for radiation therapy, using a square-
window based CNN architecture, thus yielding significant ac-
curacy and a high DSC of 0.82 [47].

4.3 | Endoscopic Ultrasound

While EUS has been proven to be an invaluable procedure in
many clinical scenarios, there is a significantly steep learning
curve with this procedure, which can take years to become
proficient. An illustrative example of how AI cand help in EUS
training and quality control is a DL-based system named BP
MASTER [48]. The system demonstrated 90% accuracy in sta-
tion classification and segmentation, performing comparably to
expert endoscopists, with a DSC of 0.77 and 0.81 in blood vessel
and pancreas segmentation.

5 | Clinical Applications

AT applications for pancreatic lesions in a clinical setting have
primarily focused on lesion detection, segmentation, charac-
terization and monitoring (Figure 4). The studies reporting the
usage of various DL approaches for CT/MR/EUS used for
diagnosis of pancreatic lesions are presented in Table 2. More-
over, Al prognostic abilities have been extensively challenged in
various scenarios using different imaging techniques, as sum-
marized in Table 3.

5.1 | Computer Tomography

Abdominal CT scan with the pancreatic protocol is widely uti-
lized as a pivotal method for diagnosing and determining the
stage of pancreatic tumors. It enables accurate assessment of
tumor size, vascular involvement, and the extent of disease
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FIGURE 4 | AlI clinical applications for pancreatic diseases.

spread [49, 111]. AI has been further applied to CT imaging to
improve the detection and characterization of pancreatic lesions
for risk stratification and prediction of treatment response.

Multiple studies have demonstrated significant promise for the
use of Al to identify PDAC at an early stage using CT scans
[49-53]. Identification of PDAC in the pre-diagnostic phase is
of utmost importance and a radiomics-based AI algorithm
tackling this challenge has been proposed by Mukherjee et al.
This model showed a high AUC in diagnosing PDAC within
3-36 months before clinical diagnosis, surpassing the perfor-
mance of two radiologists who individually assessed the im-
ages in the test set [52]. Detecting pre-invasive cancer using
CT scans and a 3D CNN was shown to be feasible and highly
accurate in another study by Korfiatis et al. [49]. Their model
was able to detect PDAC a median of 475 days (range, 93—
1082 days) before the clinical diagnosis. Imaging techniques
like CT or MR are known for their limited accuracy in
detecting small pancreatic lesions defined by their diameter
below 15-20 mm. Nevertheless, one recent algorithm [50] was
able to differentiate between PDAC and a healthy pancreas
using portal venous CT scans, effectively detecting pancreatic
cancer on CT scans and exhibiting satisfactory sensitivity for
tumors measuring less than 2 cm. Another study contributing
to the field is Park et al., who developed a DL algorithm to
distinguish between images of pancreatic neoplasms (such as
PDAC, neuroendocrine neoplasm, solid pseudopapillary
neoplasm, intraductal pancreatic mucinous neoplasm, serous
cystic neoplasm, and mucinous cystic neoplasm) and images
without any pancreatic abnormalities [53].

Moving further to differential diagnosis, Anai et al. [54] devel-
oped a support vector machine (SVM) classifier using CT
texture-based analysis to distinguish between focal-type auto-
immune pancreatitis (AIP) and PDAC. Moreover, Ren et al.

Risk Stratification

Predicting
treatment
outcomes and
survival

Targeted Sampling

Ablation Guidance

used CT and radiomics and evaluated their predictive capacity
in distinguishing between pancreatic adenosquamous carci-
noma (PASC) and PDAC [55]. The model demonstrated favor-
able outcomes as a noninvasive technique in distinguishing
between PASC and PDAC, achieving an accuracy of 94.5%,
sensitivity of 98.3%, specificity of 90.1%, positive predictive value
(PPV) of 91.9%, and negative predictive value of 97.8%.
Although the accuracy was impressive, there was a random
division into training and testing datasets, based on a 10 times
cross-validation analysis, with no external validation.

After the initial reports based on radiomics, an excellent
approach was published by Cao et al., that used a cascade of
three network stages that increase in model complexity [56].
Stage 1 involves pancreas localization using an nnU-Net model,
with Stage 2 multi-task CNN used for lesion detection and
pancreas segmentation, while Stage 3 is another multi-task CNN
for the differential diagnosis, integrated with an auxiliary
memory transformer branch to automatically encode the feature
prototypes of the pancreatic lesions, such as local texture, po-
sition and pancreas shape, for more accurate fine-grained clas-
sification. PANDA, a deep learning tool trained on 3208
patients, achieved high accuracy in detecting pancreatic lesions
in non-contrast CT (AUC 0.986-0.996) in a retrospective
multicenter validation involving 6239 patients across 10 centers.
Furthermore, it outperformed radiologists in sensitivity and
specificity (92.9% and 99.9% respectively), and shows non-
inferiority to contrast-enhanced CT in differentiating pancre-
atic lesion subtypes, making it promising for large-scale PDAC
screening.

To date, surgical intervention remains the best treatment option
for achieving potential long-term survival in PDAC. However, it
is applicable to only a minority (10%-15%) of patients. The main
factor in determining eligibility for tumor resection is the
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TABLE 2 | Summary of studies reporting on CT/MRI/EUS based Al applications for the diagnosis of pancreatic lesions.
First
author
[Ref] Imaging Type of Al Lesion type Image datasets Accuracy
Korfiatis CT 3D CNN model PDAC Trained on 696 CT scans Accuracy: 84%
et al. [49] with PDAC, 1080 Sensitivity: 75%
control CT with Specificity: 90% to detect
nonneoplastic pancreas. occult PDAC at a
Evaluated on several = median 475 days before
multi-institutional diagnosis
datasets
Chen CT CNN PDAC 546 patients with PDAC, Sensitivity: 89.7%
et al. [50] 733 controls. Evaluated  Specificity: 92.8% for
on a real-world multi-  malignancy vs. control
institutional dataset Sensitivity: 74.7% for
tumors < 2 cm
Qureshi CT Radiomics PDAC 108 CT scans Accuracy: 86%
et al. [51]
Mukherjee CT Radiomics PDAC Prediagnostic CT scans Sensitivity: 95.5%
et al. [52] of 155 PDAC patients, Specificity: 90.3%
265 controls Accuracy: 92.2% AUC:
0.98 (95% CI 0.94-0.98)
Park CT DL (nnU-Net) Solid and cystic 852 patients in the Sensitivity: 98%-100%
et al. [53] pancreatic lesions training set, 603 in test  for solid lesions, 92%-
set 1, 589 patients in test 93% for cystic lesions >
set 2 1.0 cm
Anai CT SVM PDAC vs. AIP 50 patients (20 with AUC = 0.920 in
et al. [54] differential diagnosis PDAC, 30 with AIP) differentiating focal AIP
from PDAC
Ren CT Radiomics PDAC vs. PASC 81 patients with PDAC, Accuracy: 94.5%,
et al. [55] differential diagnosis 31 patients with PASC Sensitivity: 98.3%,
Specificity: 90.1%
Cao CT PANDA model (stepwise Lesion detection Five patient cohorts: ~ AUC of 0.986-0.996, for
et al. [56] training using nnU-net, (normal vs. abnormal Internal development, lesion detection,
CNNs and auxiliary pancreas), primary internal test, external  sensitivity of 92.9% and
transformer memory diagnosis (PDAC vs. multicenter test, chest- specificity of 99.9%,
branch) non-PDAC vs. normal), CT test, and rel-world
classification (PDAC or clinical evaluation
7 subtypes of non-PDAC cohort
lesions)
Yimamu CT Human-machine fusion PDAC resectability 349 patients from 4 AUC 0.884, Accuracy
et al. [57] ML model prediction centers 82.5%, Sensitivity 84.2%,
Specificity 82%
Bereska CT CNN PDAC Training set: 613 CT ~ 80% agreement with the
et al. [58] scans from 467 patients radiologist in classifying
with pancreatic tumors, resectability
50 controls
Test set: 60 CT scans, 20
resectable, 20 borderline
resectable, and 20 locally
advanced tumors
Miao CT DL PDAC 509 PDAC patients AUC 0.849, Sensitivity:
et al. [59] 87.5%, Specificity: 72.8%
for T4-PDAC
(Continues)
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TABLE 2 | (Continued)
First
author
[Ref] Imaging Type of AI Lesion type Image datasets Accuracy
Yao CT ResNet3D with contrast PDAC Dataset A: 296 patients c-index = 0.659 for
et al. [60] enhanced convolutional with PDAC; Dataset B1: survival prediction
long short-term memory 571 patients with PDAC;
network Dataset B2: 61 patients
with IPMN; Dataset C:
281 patients with
annotated pancreatic
tumors public dataset
provided by Memorial
Sloan Kettering; Dataset
D: combination of two
public datasets of CT
scans from 90 patients
Healy CT Radiomics PDAC Training cohort: 352 c-index = 0.545, 95%:
et al. [61] patients (5 Canadian 0.543-0.546 for
centers) predicting OS/DFS
Validation cohort: 215
patients (34 Ireland
centers)
He et al. [62] CT Radiomics NF-pNET vs. PDAC 147 patients (80 PDAC, AUC 0.884
differential diagnosis 67 atypical NF-pNET)
Li et al. [63] CT Volumetric CT texture Atypical pNET 127 patients (50 PDAC, = AUC 0.887, Sn 90%,
analysis (hypovascular) vs. PDAC 77 pNET with 25 Sp 80%
differential diagnosis atypical pET)
Yu et al. [64] CT Texture analysis Nonhypervascular 120 patients (40 PNEN, AUC 0.929
PNEN vs. PDAC 80 PDAC)
differential diagnosis
Canellas CT Texture analysis PNET 101 PNETs Accuracy: 79.3% for
et al. [65] predicting tumor grading
Gu et al. [66] CT Radiomics pNET 138 PNETS (104 training ~ AUC 0.902 (95% CI
cohort, 34 validation 0.798-1.000) for
cohort) predicting tumor
grading
Yang CT Radiomics Pancreatic cystic lesions 53 SCA, 25 MCA AUC 0.66 for 2 mm slice
et al. [67] thickness, 0.75 for 5 mm
slice thickness to
differentiate SCA
from MCA
Yang CT Texture analysis Pancreatic cystic lesions 59 SCA, 32 MCA AUC 0.893 for
et al. [68] differentiating SCA
from MCA
Shen CT ML algorithms—SVM, Pancreatic cystic lesions 164 patients including SVM Accuracy: 71.43%
MCN and 48 with IPMN
ANN Accuracy: 71.43%
Hanania CT Quantitative imaging  Pancreatic cystic lesions 53 IPMN (34 “high- AUC 0.96
et al. [70] analysis grade,” 19 “low-grade”) Sensitivity: 97%
Specificity: 88%
Chen CT Radiomics Acute pancreatitis 389 AP patients (271 AUC 0.941 for the
et al. [71] primary cohort, 188  primary set, 0.929 for the
validation set) validation set
(Continues)
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TABLE 2 | (Continued)
First
author
[Ref] Imaging Type of AI Lesion type Image datasets Accuracy
Mashayekhi CT Radiomics Recurrent acute 56 patient (20 RAP, 19 Accuracy: 82.1%
et al. [72] pancreatitis (RAP), functional abdominal
Chronic pain, 17 ChP)
pancreatitits (ChP)
Guo MR Radiomics pNET 77 patients, MRI images ~AUC: 0.813-0.989 for
et al. [73] grade prediction
Song MR Radiomics Hypovascular NF- 79 patients (57 SPN and AUC: 0.92078
et al. [74] PNET vs. SPN 22 NF-pNET), MRI
differential diagnosis images
Jeon MR Texture analysis Pancreatic cystic lesions MRI scans of 248 Diagnostic performance
et al. [75] patients with IPMN (106 for predicting malignant
malignant) IPMN 0.85 (95% CI,
0.80-0.89)
Cui MR Radiomic nomogram IPMNs Training cohort (n =103  AUC for predicting
et al. [76] patients) high-grade BD-IPMN
Validation cohort 0.880 (mean for 2
1 (n = 48) external validation
L cohorts)
Validation cohort
2 (n = 51)
Lin MR Radiomics Acute pancreatitis Training cohort (99 non- AUC: 0.848
et al. [77] severe, 81 severe)
Validation cohort (43
non-severe, 36 severe)
Frokjaer MR Texture analysis Chronic MRI scans of 77 patients Sensitivity: 97%
et al. [78] pancreatitis (ChP) with ChP and 22 healthy Specificity: 100%
controls
Accuracy: 98%
Guetal. [79] EUS Radiomics PDAC Training cohort (368 AUC 0.936, Accuracy
patients) 86.3%, Sensitivity 83.1%,
Test cohort (123 Specificity 90.4%
patients)
Kuwahara EUS EfficientNet Solid pancreas masses, 933 patients, 22,000 AUC 0.90
et al. [80] incl. PDAC images Sensitivity 96%
Tonozuka EUS Custom based CNN PDAC 139 patients, 920 images AUC 0.94, Sensitivity
et al. [81] model + pseudo-colored used for training and 92%, Specificity 84%
feature mapping validation
Udristoiu EUS Custom based CNN PDAC 65 patients, 1300 AUC 0.97, Sensitivity
et al. [82] model + long short-term collected images 98.1%, Specificity 96.7%
memory network
Marya EUS CNN AIP, PDAC 583 patients Sensitivity 90%
et al. [83] Specificity 93%
Tang EUS CNN Solid pancreas masses CH-EUS videos Accuracy 88.9% for
et al. [84] identifying malignancy
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author
[Ref] Imaging Type of AI Lesion type Image datasets Accuracy
Mo EUS Ultrasomics nomogram PDAC vs. pNET 231 patients, 127 with AUC 0.884
et al. [85] differential diagnosis PDAC and 104 with
pNET
Vilas-Boas EUS CNN Mucinous versus non- 5505 images from 28 Accuracy 98.5%
et al. [86] mucinous PCL PCLs (3725 mucinous Sensitivity 98.3%
and 1780 non- .
. Specificity 98.9%
mucinous)

Kuwahara EUS ResNet IPMN 3970 EUS images Sensitivity 95.7%
et al. [87]

Specificity 92.6%
Accuracy 94.0%

imaging assessment of tumor-vascular contact. Al's ability to
contribute to the field has also been tested. Several authors have
developed ML models in this setting with good accuracy for the
evaluation of the tumor vascular involvement and NCCN
guidelines-based resectability [57, 58]. The TNM classification
by the American Joint Committee on Cancer (AJCC) is the
primary method used for staging PDAC [111]. Miao et al. [59]
developed and validated an automated AI system that can
accurately predict the T4 stage of PDAC using contrast-
enhanced CT imaging. The model's performance was found to
be similar to that of two skilled abdominal radiologists, with
AUC values of 0.849, 0.834, and 0.857, respectively.

Survival prediction of patients with PDAC represents another
challenge for AI proposed by several authors. Integrating radio-
mics and DL features extracted from CT scans has been shown to
be superior to traditional Cox proportional hazard methods for
survival prediction [88, 89]. More advanced models with self-
learning capabilities are even able to predict resection margins
preoperatively [60]. FDG-PET/CT radiomic features integrated
into ML models are similarly capable of predicting survival in
PDAC patients [90]. Prediction of tumor response to neoadjuvant
therapy using Al is also challenging. Healy et al. [61] conducted a
multicenter study to predict outcomes in surgically treatable cases
by analyzing radiomics data from preoperative CT scans along
with clinical factors, while the model outperformed the TNM
staging. These studies suggest that pre-operative imaging alone
does not provide enough information to accurately predict prog-
nosis. Indeed, the addition of CA 19-9 in a model proposed by
Watson et al. was correlated with an increased accuracy of two
(pure and hybrid) DL models in predicting pathological response
in PDAC patients [91]. Therefore, it is recommended to integrate
other data modalities, such as clinical variables, histopathology,
genomics, and additional imaging techniques, to improve prog-
nostic predictions. Lastly, other features of PDAC such as tumor-
infiltrating lymphocytes, lymph node metastasis, or specific cell
populations infiltrating tumor microenvironment have also been
successfully predicted using CT radiomics and DL [92-94].

For pancreatic neuroendocrine tumors (pNETs), the use of
radiomics and CT has been studied for differentiating and
classifying pancreatic tumors. Multiple studies assessed Al
models capable of differentiating between pNETs and PDACs.

He et al. [62] developed three models to distinguish between
nonfunctional pNETs and PDACs based on a radiomics model
improved through integration of clinical-radiological features.
Li et al. [63] investigated the application of volumetric CT
texture analysis in distinguishing atypical pNETs from PDACs.
In a separate investigation conducted by Yu et al. [64], radio-
mics was employed to distinguish non-hypervascular pNETS
from PDACs in a cohort of 120 patients. Accurate pre-surgical
aggressiveness prediction of pNETs has been attained by Mori
et al. based on radiomic features extracted by an ML model from
preoperative contrast-enhanced CT images, separate or along
with clinico-radiological features. The model was able to predict
tumor grade, presence of distant metastases, metastatic lymph
nodes, and microvascular invasion with moderate to high ac-
curacy [95]. Several studies have also examined the feasibility of
using CT-based texture analysis to predict the histological grade
of a pNET [65, 66, 96, 97].

Diagnosis of pancreatic cystic lesions is a challenge. Neverthe-
less, the integration of macroscopic morphological features and
texture analysis significantly enhanced the diagnostic accuracy
in characterizing cystic lesions. The effectiveness of an AT model
in differentiating between mucinous cystic neoplasms (MCNs)
and serous cystic neoplasms (SCNs) was assessed by Yang et al.
The same authors evaluated the capacity of CT texture analysis
to differentiate between pancreatic serous cystadenoma (SCA)
and mucinous cystadenoma (MCA), as well as enhance diag-
nostic accuracy by integrating morphological traits and textural
attributes [68]. Shen et al. [69] examined the capability of CT to
differentiate between various subtypes of pancreatic cystic
neoplasms (PCNs). Additional research has concentrated on
predicting the malignancy risk of IPMN, a condition that is
difficult to manage due to the limited capacity of traditional
imaging methods in detecting suspicious lesions. Hanania et al.
[70] established a correlation between the histopathological
grade of an IPMN and multiple radiomics markers located
within the cyst boundaries.

While Chen et al. looked at the prediction of recurrence of acute
pancreatitis [71], Mashayekhi et al. have attempted to assess
whether a radiomics model could distinguish between acute and
chronic pancreatitis [72]. Another application of Al in pancre-
atic CT imaging was proposed by Liang et al., who focused on
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TABLE 3 | Summary of studies reporting on CT/MRI/EUS based Al applications for prognosis of pancreatic lesions.

Author Imaging Type of Al Lesion type Imaging datasets Accuracy
Yimamu CT Human-machine fusion PDAC resectability 349 patients from 4 AUC: 0.884, Accuracy
et al. [57] ML model prediction centers 82.5%, Sensitivity:
84.2%, Specificity: 82%
Bereska CT nnU-Nets network Assess vascular 467 PDAC 50 control  Radiologists' agreement
et al. [58] involvement and patients 76% for vascular
resectability of PDAC involvement
613 CT scans 80% overall
agreement for
resectability
Zhang CT Radiomics + deep Survival prediction in 68 patients (training) 30  AUC: 0.84 (95%CIL:
et al. [88] learning (transfer resectable PDAC patients (test cohort)  0.70-0.98), Specificity:
learning) with 8- 68%, Specificity: 91%
layered CNN
Zhang CT CNN Survival prediction in ~ Cohort 1: 422 patients  Superior to traditional
et al. [89] resectable PDAC with non-small cell lung  models for index of
cancer prediction accuracy
Cohort 2: 68 patients (IPA): 11.89%
with resectable PDAC versus 4.40%

Cohort 3: 30 patients
with resectable PDAC

(test)

Yao et al. [60] CT ResNet3D with contrast Predict survival Dataset A: 296 patients  Harell's concordance
enhanced convolutional outcomes in resectable with PDACs index (C-index): 0.645
long short-term memory PDAC Dataset B1 and dataset 1-year overall survival

network B2: 571 patients with ~ AUC: 0.684 + 0.013
PDACSs and 61 patients
with IPMNs

Dataset C: 281 patients 2-year overall survival
with pancreatic tumor AUC: 0.689 £ 0.023

Datased D: 90 patients
with 17 classes of pixel-
level organ and vessel

annotations
Toyama PET/CT Radiomics + machine Predict outcomes in 161 PDAC patients Not specified - 2
et al. [90] learning pancreatic cancer radiomic features
identified as the most
relevant discrimination
factors for overall
survival
Watson CT Pure and hybrid deep Predict response to 81 patients 776 CT ~ AUC: 0.738 for pure DL
et al. [91] learning models neoadjuvant therapy in images model
PDAC AUC: 0.785 for hybrid
DL model
(incorporating CA 19-9
10% decrease)
Bian et al. [92] CT XGBoost machine Predict tumor- 183 PDAC patients AUC: 0.73 (95%CI:
learning infiltrating lymphocytes 0.65-0.92), Sensitivity:
in PDAC 63%, Specificity: 91%
Bian et al. [93] CT CNN Predict lymph node 734 PDAC patients AUC: 0.92

metastasis in PDAC

(Continues)
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TABLE 3 | (Continued)
Author Imaging Type of AI Lesion type Imaging datasets Accuracy
Yu et al. [94] CT Multilayer perceptron Predict CD20 (+) B cells 189 PDAC patients AUC: 0.84 (95%CI:
network classifier infiltration in PDAC 0.72-0.93), Sensitivity:
86.2%,
Specificity: 78.5%
Mori et al. [95] CT Machine learning Predict aggressiveness of 101 patients AUC: 0.61 to 0.81 for
pNENS different agressiveness
factors (presence of
distant metastasis,
metastatic lymph
nodes, vascular
invasion, tumor
grading G1 vs. G2/3)
Luo et al. [96] CT CNN Predict pathological 93 patients AUC: 0.82 highest for
grading of pNENs G3 lesions
Javed CT Random forest model  Predict histologic grade 270 patients AUC: 0.69, sensitivity:
et al. [97] of NF-pNETs 80% for G2/3 lesions,
superior tot EUS-FNA
Liang CT DenseNet CNN Predict severity of acute 1561 acute pancreatitis AUC: 0.980 for severe
et al. [98] pancreatitis patients acute pancreatitis
Chen CT Deep learning/CNN  Predict severity of acute 978 acute pancreatitis AUC: 0.920 (95%CIL:
et al. [99] pancreatitis patients 0.87-0.95) for severe
acute pancreatitis
Kambakamba CT Machine learning Predict postoperative 110 patients AUC: 0.95, sensitivity:
et al. [100] pancreatic fistula 96%, specificity: 98%
Mu et al. [101] CT Deep learning Predict postoperative 513 patients AUC: 0.89 (95%CI:
pancreatic fistula 0.79-0.96)
Kaissis MR Random forest classifier Predict overall survival 132 PDAC patients AUC: 0.90, sensitivity:
et al. [102] in PDAC 87%, specificity: 80% for

survival prediction

Xie et al. [103] MR Machine learning Predict pathological 166 PDAC patients AUC: 0.892 for
outcomes in pancreatic histological grade and
cancer 0.875 for lymph node
metastasis
Yuan MR Radiomics Predict liver metastasis 148 PDAC patients Accuracy: 0.832
et al. [104] in PDAC
Li et al. [105] MR Multilayer perceptron  Predict CD20+ B-cells 156 PDAC patients AUC: 0.79, Sensitivity:
classifier (MLPC) in PDAC 69.2%,
Specificity: 80.9%
Skawran MR Logistic Predict postoperative 62 patients AUC: 0.90 (95%CIL:
et al. [106] regression + gradient pancreatic fistula 0.84-0.95)
boosted tree (GBT)
Facciorusso EUS  ANN /logistic regression  Predict pain response 156 patients AUC: 0.94 for ANN,
et al. [107] after celiac plexus superior to 0.85 for
neurolysis (CPN) and logistic regression
need for repeat CPN
Huang CEUS Deep Predict aggressiveness of 104 patients (84 training  AUC: 0.85 (95%CI:
et al. [108] learning + nomogram pNENs set, 24 test set) 0.69-1.00)
Schulz EUS Deep learning (transfer  Risk stratification for =~ 3355 EUS images from Accuracy: 99.6%
et al. [109] learning) IPMNs 43 patients
(Continues)
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Author Imaging Type of AI Lesion type Imaging datasets Accuracy
Machicado EUS- CNN Risk stratification for 15,027 video frames Sensitivity: 83.3%,
et al. [110] needle IPMNs from 35 consecutive =~ Mean specificity: 85.3%
based patients with
CLE histopathologically

proven IPMNs (18 with
High grade dysplasia/
Adenocarcinoma)

predicting the severity of acute pancreatitis using enhanced CT
scans analyzed by CNN, showing significant predictive capa-
bilities in terms of both CTSI and Atlanta classifications [98]. A
more recent study explored the application of DL to predict the
severity of acute pancreatitis (AP) early in its progression on
non-enhanced CT scan images [99].

A fearful complication after surgery for PDAC is known to be
pancreatic fistula. Predicting this complication is an important
area where Al could contribute. Thus, ML techniques have been
shown to improve surgical outcomes by analyzing complex
datasets to predict patient outcomes, optimize surgical planning,
and personalize postoperative care [100]. The predictive ability
of a ML-based texture analysis with the original and alternative
risk scores for pancreatic fistula after pancreatic surgery shows a
clear superiority of the former [100, 101]. This effect is attrib-
utable to ML's ability to detect features like histologic fibrosis,
histologic lipomatosis, and intraoperative pancreatic hardness
that negatively impact surgical outcomes. The AI role becomes
most important in intermediate-risk patients where traditional
fistula risk scores perform worst.

5.2 | Magnetic Resonance

MRI is a valuable tool for analyzing both cystic and solid tumors
as it enables the examination of the pancreatic ducts, pancreatic
tissue, nearby soft tissues, and blood vessels.

Most research on the radiomics of MRI has primarily concen-
trated on distinguishing normal tissue from pancreatic tumors
as well as predicting treatment outcomes and overall survival
[102]. Thus, a supervised ML algorithm was developed to pre-
dict above-versus below-median overall survival (OS) in patients
with PDAC using radiomic features derived from diffusion-
weighted imaging. The use of multiparametric MRI radiomics
has been investigated to predict lymph node metastasis and
other survival-related features in PDAC patients, based on the
extraction of texture features from both peritumoral and intra-
tumoral regions, which served as the base for the training of six
classifiers, aiming to enhance the accuracy of preoperative
evaluations to predict key pathological characteristics such as
tumor grade, lymph node involvement, and overall survival
[103]. Another important survival-related parameter is the
development of liver metastasis. AI models using MRI radiomics
and serological markers used in combination showed promising
results in a recent study [104]. Other survival-related

applications of MRI-based ML models are related to the cell
populations that infiltrate the tumor. In this regard, a multilayer
perceptron classifier was trained on non-contrast MRI scans to
non-invasively predict CD20 expression, which is a potential
therapeutic target in PDAC and a predictor of survival [105].
The classifier demonstrated promising accuracy with an AUC
of 0.79.

MRI findings, such as tumor margins, texture, local invasion or
metastases, tumor enhancement, and diffusion restriction, along
with texture parameters, can help predict the grading of pNETSs,
as demonstrated by Guo et al. [73]. The significance of radio-
mics parameters obtained from MRI scans in distinguishing
between hypovascular nonfunctional pancreatic neuroendo-
crine tumors and solid pseudopapillary neoplasms of the
pancreas has also been evaluated [74]. A nomogram composed
of age and arterial phase radiomic feature signature performed
best with AUC of over 0.9 in both training and validation co-
horts [75].

When assessing cystic lesions using MRI, a difficulty arises in
the examination of IPMNs and accurately determining the
probability of malignant transformation. Multiple studies have
examined the utilization of MR radiomics signatures to accu-
rately predict the likelihood of malignancy in IPMNs solely
through texture analysis or by combining clinical and radio-
logical characteristics [76]. Enhancing mural nodule size
> 5 mm and dilated main pancreatic duct are independent
predictors of malignant IPMNs, with the information derived
from MRI. The addition of MR texture analysis can improve the
prediction of malignant IPMNs.

A radiomics model that utilizes contrast-enhanced MRI on
portal venous phase images seems to accurately predict the
severity of acute pancreatitis, even in its early stages [77]. The
AUC of the radiomics model, APACHE II, BISAP, and MRSI
were 0.848, 0.725, 0.708, and 0.719, respectively, with the
radiomics model that yielded good performance in the early
prediction of AP severity. Frokjaer et al. conducted a study to
evaluate the use of texture analysis in MRI scans of 77 patients
with chronic pancreatitis and 22 healthy controls [78]. The
study found that the classification of chronic pancreatitis versus
healthy controls had a sensitivity of 97%, specificity of 100%, and
accuracy of 98%.

Similarly to CT, the use of MRI radiomics, more specifically
gradient-boosted trees (GBT), was challenged to predict post-
operative pancreatic fistula, demonstrating the potential of MRI
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features to improve prognostic assessments [106]. The model
achieved AUC of 0.75. However, combining the GBT with the
pancreas-to-muscle T1 Si ratio augmented its AUC to 0.90.

5.3 | Endoscopic Ultrasound

Implementation of Al in real-time during EUS-guided proced-
ures will provide the next great leap in the management of
pancreatic diseases. The ability to enhance diagnostic EUS with
Al to stratify lesion likelihood to be malignant and to define
precise targets for therapy will greatly increase utilization of
EUS for both diagnosis and therapy. Other potential applica-
tions include tracking tumor progression, assessing treatment
response, and predicting patient outcome.

Most of the research focused on differentiating PDAC from
chronic pancreatitis (CP) using EUS images, showing a high ac-
curacy when using an AI algorithm [112, 113]. Al can identify
patternsin data which may not be obvious to the human eye and is
able to construct predictive models for diagnosis, prognosis, and
treatment response. Several studies still used EUS images for the
automatic diagnosis of focal pancreatic masses [79-81]. However,
at this moment, there is no standardized protocol regarding data
collection, image processing, and analysis, while in most of the
studies there is a lack of external validation. One study aimed to
develop a DL radiomics (DLR) model using EUS images to
identify PDAC and assess its clinical utility. Results showed that
the DLR model achieved high diagnostic performance with an
AUC of 0.936. DLR assistance significantly improved the diag-
nostic accuracy, particularly enhancing the performance of junior
endosonographers to be comparable with their senior counter-
parts [79]. Kuwahara et al. used another CNN model (Effi-
cientNet) based on EUS images and were able to distinguish
between various types of pancreatic masses, achieving high
diagnostic AUC (0.9) for the diagnosis of PDAC, although the
study lacked external validation [80]. Tonozuka et al. evaluated
their ML algorithm for classifying pancreatic masses using a
dataset of 139 patients, achieving 92.4% sensitivity, 84.1% speci-
ficity, and 0.94 AUC with a CNN model on 470 test images, while
also employing pseudo-colored feature mapping to enhance
decision-making clarity for endosonographers [81]. A more
recent study evaluated an ML model combining a custom-based
CNN and Long Short-Term Memory (LSTM) networks to clas-
sify focal solid pancreatic lesions (PDAC vs. chronic pseudotu-
moral pancreatitis and pNETSs) extracted from various types of
EUS images (grayscale, color Doppler, arterial and venous phase
contrast-enhancement and elastography) [82]. This approach
achieved 98.1% sensitivity, 96.7% specificity, and 0.97 AUC for the
diagnosis of PDAC in a population of 65 patients (1300 collected
images increased to 3360 by various augmentation techniques),
with diagnoses confirmed by histology and clinical follow-up. The
ML approach was more complex as it combined two ML ap-
proaches with CNN and LSTM, allowing the inclusion of tem-
poral data based on contrast-enhanced harmonic (CHI) EUS
imaging, although the study lacked external validation. Another
group developed a CNN model using EUS images to differentiate
autoimmune pancreatitis (AIP) from PDAC, chronic pancreatitis
(CP), and normal pancreas (NP), achieving 99% sensitivity and
98% specificity for AIP versus NP, 94% sensitivity, and 71%

specificity for AIP versus CP, and 90% sensitivity and 93% speci-
ficity for AIP versus PDAC, potentially enabling earlier and more
accurate diagnosis to improve patient care and outcomes [83].
Based on the performance and speed of newer CNN models, a
real-time Al-enhanced system has been developed for the detec-
tion and segmentation of pancreas, cystic lesions and solid
pancreatic masses [114].

More recently, a CAD system using contrast-enhanced EUS
showed promising results for the diagnosis of pancreatic masses
in real time [84]. This study aimed to develop a DL-based sys-
tem, CH-EUS MASTER, to assist in diagnosing pancreatic
masses using contrast-enhanced harmonic endoscopic ultraso-
nography (CH-EUS) and guiding EUS-guided fine-needle aspi-
ration (EUS-FNA). The system achieved a diagnostic accuracy
of 92.3%, sensitivity of 92.3%, and specificity of 92.3%, out-
performing endoscopists who had an accuracy of 87.2%, sensi-
tivity of 88.5%, and specificity of 84.6%. The system's positive
predictive value (PPV) was 96.0% and negative predictive value
(NPV) was 85.7%. During EUS-FNA, CH-EUS MASTER-guided
procedures showed a first-pass diagnostic yield of 80.0% for
malignancies, compared to 33.3% in the control group.

A prognostic application of AI for EUS was tested to predict
patient need for repeat EUS-guided celiac plexus neurolysis
(rCPN). Two ML algorithms, an ANN and a logistic regression
one, were investigated for the ability to predict the pain
response and the need for repeat EUS and rCPN for managing
refractory pain in pancreatic cancer patients. The findings
showed that ML models could accurately predict pain relief
outcomes, with a superiority of the neural network in terms of
AUC (0.94 vs. 0.85, p < 0.001).

Various ML algorithms based on EUS images were able to
distinguish between pNET and PDAC in a recent study [85].
Ultrasomics features were extracted from EUS images, followed
by dimensionality reduction using the Mann-Whitney test and
least absolute shrinkage and selection operator (LASSO) algo-
rithm. Besides differentiation from PDAC, prediction of tumor
aggressiveness for pNETSs has also been tested with Al, using a
nomogram that integrates DL-derived features from contrast-
enhanced ultrasound (CEUS) and clinical data pNETs [108].
The combined nomogram model that incorporated independent
clinical risk factors such as tumor size, arterial enhancement
level, and DL predictive probability demonstrated high accuracy
with an AUC of 0.85.

In the setting of pancreatic IPMN, it has been shown that there is
only moderate interobserver agreement with EUS and cyst fluid
analysis for distinguishing benign from malignant lesions [115,
116]. Given the indolent nature of low-grade dysplasia IPMN and
the associated risk of surgical overtreatment [117], the ability to
better characterize IPMN with EUS is an important goal. Vilas-
Boas et al. developed a CNN algorithm based on 28 cystic
pancreatic lesions and 5505 EUS images. The Xception model
with weights trained on ImageNet achieved 98.5% accuracy,
98.3% sensitivity, 98.9% specificity, and an AUC of 1, with an
image processing speed of 7.2 ms per frame, effectively differ-
entiating mucinous from non-mucinous cysts to aid in risk
stratification of PCLs [86]. Another study investigated the effec-
tiveness of a DL algorithm for diagnosing malignancy in IPMNs
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using EUS images [87]. The retrospective analysis included EUS
images processed using a CNN based on ResNet50 architecture.
Results showed that the Al algorithm had a significantly higher
accuracy (94.0%) in predicting malignancy compared to the
doctor's diagnosis (56.0%) and conventional methods. Preopera-
tive risk stratification based on histological dysplasia grading has
been tested with DL models in a study that used transfer learning
to fine-tune a CNN to analyze and distinguish between low-grade
and high-grade/invasive carcinoma IPMNs, achieving an
impressive accuracy of 99.6% and significantly outperforming
current international consensus guidelines, which have accu-
racies ranging from 51.8% to 70.4% [109]. An interesting approach
for risk stratification of IPMNs was proposed by Machicado et al.
[110]. The research team designed two CNN algorithms capable
of analyzing confocal laser endomicroscopy (CLE) images that
were compared with the American Gastroenterological Associ-
ation and the revised Fukuoka guidelines through means of
sensitivity and specificity. Compared to the guidelines, both
models yielded higher sensitivity (83.3% both CAD-CNNSs vs.
55.6% both guidelines) with comparable specificity for diagnosing
high-grade dysplasia/adenocarcinoma.

6 | Diagnosis Confirmation

Therapeutic approaches and prognoses for PDAC/PNEN
significantly differ from those for benign pancreatic masses.
Therefore, accurate pathological diagnosis of pancreatic tu-
mors is crucial for determining the most effective therapeutic
strategy. Al systems based on DL models can offer significant
assistance to the pathologists in assessing pancreatic lesions.
In contrast to the pathologist, DL models typically require a
shorter training time and exhibit greater objectivity. AI has
also been employed in the field of EUS-FNA/B, significantly
advancing automated pathological image diagnosis.

In the first study using EUS-guided FNA specimens for cyto-
logical analysis, Momeni-Boroujeni et al. used a K-means clus-
tering algorithm and a multilayer perceptron neural network
(MNN) to classify pancreatic samples as either benign or ma-
lignant [118]. The AI algorithm showed a 100% accuracy rate in
discriminating between benign and malignant pancreatic
cytology, while achieving a 77% accuracy rate for the atypical
dataset. Furthermore, Kurita et al. combined biomarkers, cyto-
logical analysis, and clinical data to differentiate malignant from
benign pancreatic cystic lesions using an Al algorithm, sur-
passing traditional methods in sensitivity and accuracy. The
findings of this study demonstrated that AI has significantly
higher sensitivity than pancreatic cyst fluid analysis in dis-
tinguishing between malignant and benign cystic lesions [119].
Hyperspectral imaging (HSI) is a new optical diagnostic tech-
nology that combines spectroscopy to measure the interaction
between tissues and light through an HSI camera [120]. The
HSI-based CNN model achieved high accuracies on both in-
ternal (92.04%) and external (92.27%) test datasets, by using
informative spectral features to differentiate benign and malig-
nant pancreatic cytology.

One study developing a DL model for confirmation of PDAC in
rapid on site cytopathological evaluation (ROSE) during EUS-

FNA was conducted by Zhang et al. [121]. This retrospective
study using a novel deep CNN achieved an accuracy of 94.4% on
the internal testing dataset. Furthermore, the system showed
robust generalization on external testing datasets with accu-
racies ranging from 91.2% to 95.8%. Similarly, in the same year,
Lin et al. introduced an AI model designed to replace ROSE
during EUS-FNA [122]. The accuracy in the internal validation
dataset was 83.4% and 88.7% in the external validation dataset,
showing that AI can make ROSE accessible in more hospitals.

The introduction of EUS-guided FNB needles enabled the
acquisition of larger tissue samples with fewer needle passes.
Therefore, a retrospective study conducted by Naito et al.
assessed pancreatic cancer using FNB whole slide images (WSI)
with a CNN, achieving an AUC of 0.984 [123]. Likewise, Ishi-
kawa et al. presented a new Al-based system for evaluating
EUS-FNB samples in pancreatic lesions using DL and contras-
tive learning [124]. This model attained a similar accuracy rate
(84.4%) to endoscopists in assessing the diagnostic quality of
EUS-FNB specimens in macroscopic on-site evaluation (MOSE),
which involves the visual assessment of samples collected dur-
ing EUS-FNA/B procedures. The use of Al for directing targeted
EUS-FNA/FNB procedures is a novel field but shows great po-
tential for more accurate sampling, avoiding necrotic areas and
allowing less needle passes. A new combination of CH-EUS and
EUS-FNA/B can provide subtle parenchymal changes and thus
guide puncture sites [125].

7 | Challenges and Limitations

Al in pancreatic imaging holds tremendous promise, yet several
challenges and limitations must be addressed to fully highlight
its potential. One of the hurdles is the quality and quantity of
data available for training AI models. High-quality annotated
datasets are essential, but they are often scarce due to the
complexity of pancreatic anatomy and variability in CT/MR/
EUS imaging protocols across different institutions. For
example, several published studies used the NIH pancreas CT
dataset (https://www.cancerimagingarchive.net/collection/panc
reas-ct/) [14, 20-22, 30, 31, 33, 34] which is limited to 80 patients
with contrast-enhanced 3D CT scans. Although larger datasets
are available (for e.g., the Medical Segmentation Decathlon or
DeepLesion from NIH), specific usage for pancreatic imaging
has scarcely been reported [30]. Moreover, the ground truth
(gold standard) for training is usually represented by high-
quality validated data or expert annotations used to train the
models [126]. Manual expert annotations are provided by mul-
tiple radiologists with consensus labeling in cases with signifi-
cant differences. However, there is an important effect of
interobserver variability on segmentation, especially for tumor
delineation, as the lesions can be heterogenous and similar to
the surrounding background [127]. Employing automatic or
semi-automatic segmentation algorithms might reduce these
differences [128].

The generalizability of AI models is another concern. Models
trained on specific datasets may not perform well on data from
different populations or imaging protocols, leading to potential
biases. Technical limitations also impact the effectiveness of Al
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in pancreatic imaging. Variability in pancreatic shapes and
sizes, the soft and deformable nature of pancreatic tissue, and
indistinguishable margins from surrounding organs contribute
to inaccuracies in automated segmentation and detection tasks.
This complexity demands sophisticated algorithms capable of
handling such variability. Thus, only a few DL algorithms have
been validated prospectively on external data using various
methodologies [31, 49-53, 56, 76, 121]. Also, even though there
are specific algorithms available on the market designed to
improve early detection rates, enhance segmentation, and sup-
port clinical decision-making, most of these are insufficiently
tested on external data. To the best of our knowledge, there are
no published clinical studies that directly compare the perfor-
mance of commercially available algorithms for pancreatic
cancer detection in a head-to-head fashion. While individual
algorithms have been clinically validated and some have been
measured against standard diagnostic practices, direct compar-
isons between different pancreas imaging Al algorithms within
a clinical setting are limited. A recent systematic review looked
upon the randomized control trials (RCTs) using Al and found
that most of these are linked with colonic polyps or gastric le-
sions, none being performed for pancreatic diseases [129].
However, the clinical relevance of these methods will certainly
impact pancreatic imaging, the transition being rapid toward
integration in daily practice [130].

Integrating AI into clinical workflows requires substantial
changes in infrastructure and extensive training for healthcare
professionals. The adaptation process is often slow and resource-
intensive, demanding rigorous validation in real-world
clinical settings before Al tools can be widely adopted. Moreover,
regulatory and ethical considerations pose significant challenges.
Ensuring patient data privacy, securing consent for data usage,
and addressing the ethical implications of AI-driven decisions are
critical for compliance with regulations such as GDPR and
HIPAA. In this context, human AI interaction in diagnosing
pancreatic diseases will certainly focus on how clinicians utilize
Al and DL tools designed to assist in the detection, diagnosis,
and management of conditions such as pancreatic cancer
and pancreatitis. For example, in the study by Park et al. [53],
researchers examined the effect of integrating Al assistance on
radiologists’ performances. They assessed the impact of human-
machine collaboration by comparing diagnostic accuracy, sensi-
tivity, specificity, and reading times between Al-assisted readings
and those performed without AI support.

8 | Future Directions and Trends

The main challenge for effective machine learning applications
in pancreatic lesions is the lack of large datasets of patients with
early pancreatic subtypes and an unequivocal “ground truth” for
testing algorithms. The complex nature of medical image
perception should mean that AI solutions are designed to
augment the decision-making of expert clinicians and thus be
subjected to equally rigorous testing prior to a clinical applica-
tion. In the context of future AI applications, cooperation be-
tween academia, industry, and multi-site international
collaborations of expert clinicians is crucial for data sharing,
testing large-scale deep learning models, and the development

of regulatory policies. Moreover, most studies focus on detection
of lesion compared to characterization due to the difficulty in
the latter; therefore, future studies must aim to classify different
lesion subtypes and their malignant potential. Also, the majority
of existing studies are retrospective in nature and rely on static
images or video recordings. It is imperative to increase the
number of prospective studies capable of evaluating the real-
time performance of AI systems. Validation and bench-
marking are thus crucial for ensuring the reliability of Al
models. Despite promising results from many studies, large-
scale multicenter trials are necessary to validate AI perfor-
mance across different clinical settings.

9 | Conclusion

In conclusion, the synergy between AI and pancreatic imaging
represents a paradigm shift in the management of pancreatic
lesions, offering unprecedented diagnostic accuracy, monitoring
capabilities, and personalized treatment strategies. If computer
vision AI models can provide a way to perform “virtual pa-
thology” with high diagnostic accuracy, this would be a great
advantage given the current limitations, high cost and associ-
ated risks of the procedures.
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